1
|
Lashley A, Miller R, Provenzano S, Jarecki SA, Erba P, Salim V. Functional Diversification and Structural Origins of Plant Natural Product Methyltransferases. Molecules 2022; 28:43. [PMID: 36615239 PMCID: PMC9822479 DOI: 10.3390/molecules28010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
In plants, methylation is a common step in specialized metabolic pathways, leading to a vast diversity of natural products. The methylation of these small molecules is catalyzed by S-adenosyl-l-methionine (SAM)-dependent methyltransferases, which are categorized based on the methyl-accepting atom (O, N, C, S, or Se). These methyltransferases are responsible for the transformation of metabolites involved in plant defense response, pigments, and cell signaling. Plant natural product methyltransferases are part of the Class I methyltransferase-superfamily containing the canonical Rossmann fold. Recent advances in genomics have accelerated the functional characterization of plant natural product methyltransferases, allowing for the determination of substrate specificities and regioselectivity and further realizing the potential for enzyme engineering. This review compiles known biochemically characterized plant natural product methyltransferases that have contributed to our knowledge in the diversification of small molecules mediated by methylation steps.
Collapse
Affiliation(s)
- Audrey Lashley
- Department of Biological Sciences, Louisiana State University, Shreveport, LA 71115, USA
| | - Ryan Miller
- Department of Biological Sciences, Louisiana State University, Shreveport, LA 71115, USA
- School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA 70112, USA
| | - Stephanie Provenzano
- Department of Biological Sciences, Louisiana State University, Shreveport, LA 71115, USA
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA
| | - Sara-Alexis Jarecki
- Department of Biological Sciences, Louisiana State University, Shreveport, LA 71115, USA
| | - Paul Erba
- Department of Biological Sciences, Louisiana State University, Shreveport, LA 71115, USA
- School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA 70112, USA
| | - Vonny Salim
- Department of Biological Sciences, Louisiana State University, Shreveport, LA 71115, USA
| |
Collapse
|
2
|
Smoleń S, Czernicka M, Kowalska I, Kȩska K, Halka M, Grzebelus D, Grzanka M, Skoczylas Ł, Pitala J, Koronowicz A, Kováčik P. New Aspects of Uptake and Metabolism of Non-organic and Organic Iodine Compounds-The Role of Vanadium and Plant-Derived Thyroid Hormone Analogs in Lettuce. FRONTIERS IN PLANT SCIENCE 2021; 12:653168. [PMID: 33936138 PMCID: PMC8086602 DOI: 10.3389/fpls.2021.653168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/19/2021] [Indexed: 05/26/2023]
Abstract
The process of uptake and translocation of non-organic iodine (I) ions, I- and IO3 -, has been relatively well-described in literature. The situation is different for low-molecular-weight organic aromatic I compounds, as data on their uptake or metabolic pathway is only fragmentary. The aim of this study was to determine the process of uptake, transport, and metabolism of I applied to lettuce plants by fertigation as KIO3, KIO3 + salicylic acid (KIO3+SA), and iodosalicylates, 5-iodosalicylic acid (5-ISA) and 3,5-diiodosalicylic acid (3,5-diISA), depending on whether additional fertilization with vanadium (V) was used. Each I compound was applied at a dose of 10 μM, SA at a dose of 10 μM, and V at a dose of 0.1 μM. Three independent 2-year-long experiments were carried out with lettuce; two with pot systems using a peat substrate and mineral soil and one with hydroponic lettuce. The effectiveness of I uptake and translocation from the roots to leaves was as follows: 5-ISA > 3,5-diISA > KIO3. Iodosalicylates, 5-ISA and 3,5-diISA, were naturally synthesized in plants, similarly to other organic iodine metabolites, i.e., iodotyrosine, as well as plant-derived thyroid hormone analogs (PDTHA), triiodothyronine (T3) and thyroxine (T4). T3 and T4 were synthesized in roots with the participation of endogenous and exogenous 5-ISA and 3,5-diISA and then transported to leaves. The level of plant enrichment in I was safe for consumers. Several genes were shown to perform physiological functions, i.e., per64-like, samdmt, msams5, and cipk6.
Collapse
Affiliation(s)
- Sylwester Smoleń
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Małgorzata Czernicka
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Iwona Kowalska
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Kinga Kȩska
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Maria Halka
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Dariusz Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Marlena Grzanka
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Łukasz Skoczylas
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, Kraków, Poland
| | - Joanna Pitala
- Laboratory of Mass Spectrometry, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Aneta Koronowicz
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Kraków, Poland
| | - Peter Kováčik
- Department of Agrochemistry and Plant Nutrition, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| |
Collapse
|
3
|
Bhatt P, Pal K, Bhandari G, Barh A. Modelling of the methyl halide biodegradation in bacteria and its effect on environmental systems. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 158:88-100. [PMID: 31378365 DOI: 10.1016/j.pestbp.2019.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 06/10/2023]
Abstract
Methyl halide group of pesticides are being used widely in past decades as fumigant but due to their hazardous effect, these pesticides are not sold directly. They are volatile and gaseous in nature and may easily come in the contact of trophosphere and stratosphere. In troposphere, they are harmful to the living beings; nevertheless, in stratosphere they react with ozone and degrade the ozone layers. In this study, we have investigated the in-silico pathways of methyl halide and its toxic effect on living systems like pest, humans and environment. Till date, limited studies provide the understanding of degradation of methyl halide and its effect on the environment. This leads to availability of scanty information for overall bio-magnifications of methyl halides at molecular and cellular level. The model developed in the present study explains how a volatile toxic compound not only affects living systems on earth but also on environmental layers. Hub nodes were also evaluated by investigating the developed model topologically. Methyl transferase system is identified as promising enzyme in response to degradation of methyl halides.
Collapse
Affiliation(s)
- Pankaj Bhatt
- Department of Microbiology, Dolphin (P.G) Institute of Biomedical and Natural Sciences Dehradun, Uttarakhand, India.
| | - Kalyanbrata Pal
- Department of Microbiology, Dolphin (P.G) Institute of Biomedical and Natural Sciences Dehradun, Uttarakhand, India
| | - Geeta Bhandari
- Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| | - Anupam Barh
- ICAR-Directorate of Mushroom Research, Solan, H.P, India
| |
Collapse
|
4
|
Jaeger N, Besaury L, Röhling AN, Koch F, Delort AM, Gasc C, Greule M, Kolb S, Nadalig T, Peyret P, Vuilleumier S, Amato P, Bringel F, Keppler F. Chloromethane formation and degradation in the fern phyllosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:1278-1287. [PMID: 29660879 DOI: 10.1016/j.scitotenv.2018.03.316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/25/2018] [Accepted: 03/25/2018] [Indexed: 06/08/2023]
Abstract
Chloromethane (CH3Cl) is the most abundant halogenated trace gas in the atmosphere. It plays an important role in natural stratospheric ozone destruction. Current estimates of the global CH3Cl budget are approximate. The strength of the CH3Cl global sink by microbial degradation in soils and plants is under discussion. Some plants, particularly ferns, have been identified as substantial emitters of CH3Cl. Their ability to degrade CH3Cl remains uncertain. In this study, we investigated the potential of leaves from 3 abundant ferns (Osmunda regalis, Cyathea cooperi, Dryopteris filix-mas) to produce and degrade CH3Cl by measuring their production and consumption rates and their stable carbon and hydrogen isotope signatures. Investigated ferns are able to degrade CH3Cl at rates from 2.1 to 17 and 0.3 to 0.9μggdw-1day-1 for C. cooperi and D. filix-mas respectively, depending on CH3Cl supplementation and temperature. The stable carbon isotope enrichment factor of remaining CH3Cl was -39±13‰, whereas negligible isotope fractionation was observed for hydrogen (-8±19‰). In contrast, O. regalis did not consume CH3Cl, but produced it at rates ranging from 0.6 to 128μggdw-1day-1, with stable isotope values of -97±8‰ for carbon and -202±10‰ for hydrogen, respectively. Even though the 3 ferns showed clearly different formation and consumption patterns, their leaf-associated bacterial diversity was not notably different. Moreover, we did not detect genes associated with the only known chloromethane utilization pathway "cmu" in the microbial phyllosphere of the investigated ferns. Our study suggests that still unknown CH3Cl biodegradation processes on plants play an important role in global cycling of atmospheric CH3Cl.
Collapse
Affiliation(s)
- Nicole Jaeger
- Institute of Earth Sciences, Heidelberg University, Im Neuenheimer Feld 236, Heidelberg, Germany.
| | - Ludovic Besaury
- Institut de Chimie de Clermont-Ferrand (ICCF), UMR6096 CNRS-UCA-Sigma, Clermont-Ferrand, France; Université de Strasbourg, CNRS, GMGM UMR 7156, Department of Microbiology, Genomics and the Environment, Strasbourg, France; UMR FARE, Université de Reims Champagne Ardenne, INRA, Reims, France
| | - Amelie Ninja Röhling
- Institute of Earth Sciences, Heidelberg University, Im Neuenheimer Feld 236, Heidelberg, Germany
| | - Fabien Koch
- Institute of Earth Sciences, Heidelberg University, Im Neuenheimer Feld 236, Heidelberg, Germany
| | - Anne-Marie Delort
- Institut de Chimie de Clermont-Ferrand (ICCF), UMR6096 CNRS-UCA-Sigma, Clermont-Ferrand, France
| | - Cyrielle Gasc
- Université Clermont Auvergne, INRA, MEDIS, Clermont-Ferrand, France
| | - Markus Greule
- Institute of Earth Sciences, Heidelberg University, Im Neuenheimer Feld 236, Heidelberg, Germany
| | - Steffen Kolb
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Thierry Nadalig
- Université de Strasbourg, CNRS, GMGM UMR 7156, Department of Microbiology, Genomics and the Environment, Strasbourg, France
| | - Pierre Peyret
- Université Clermont Auvergne, INRA, MEDIS, Clermont-Ferrand, France
| | - Stéphane Vuilleumier
- Université de Strasbourg, CNRS, GMGM UMR 7156, Department of Microbiology, Genomics and the Environment, Strasbourg, France
| | - Pierre Amato
- Institut de Chimie de Clermont-Ferrand (ICCF), UMR6096 CNRS-UCA-Sigma, Clermont-Ferrand, France
| | - Françoise Bringel
- Université de Strasbourg, CNRS, GMGM UMR 7156, Department of Microbiology, Genomics and the Environment, Strasbourg, France
| | - Frank Keppler
- Institute of Earth Sciences, Heidelberg University, Im Neuenheimer Feld 236, Heidelberg, Germany; Heidelberg Center for the Environment HCE, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
5
|
Correlated production and consumption of chloromethane in the Arabidopsis thaliana phyllosphere. Sci Rep 2017; 7:17589. [PMID: 29242530 PMCID: PMC5730606 DOI: 10.1038/s41598-017-17421-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/24/2017] [Indexed: 11/24/2022] Open
Abstract
Chloromethane (CH3Cl) is a toxic gas mainly produced naturally, in particular by plants, and its emissions contribute to ozone destruction in the stratosphere. Conversely, CH3Cl can be degraded and used as the sole carbon and energy source by specialised methylotrophic bacteria, isolated from a variety of environments including the phyllosphere, i.e. the aerial parts of vegetation. The potential role of phyllospheric CH3Cl-degrading bacteria as a filter for plant emissions of CH3Cl was investigated using variants of Arabidopsis thaliana with low, wild-type and high expression of HOL1 methyltransferase previously shown to be responsible for most of CH3Cl emissions by A. thaliana. Presence and expression of the bacterial chloromethane dehalogenase cmuA gene in the A. thaliana phyllosphere correlated with HOL1 genotype, as shown by qPCR and RT-qPCR. Production of CH3Cl by A. thaliana paralleled HOL1 expression, as assessed by a fluorescence-based bioreporter. The relation between plant production of CH3Cl and relative abundance of CH3Cl-degrading bacteria in the phyllosphere suggests that CH3Cl-degrading bacteria co-determine the extent of plant emissions of CH3Cl to the atmosphere.
Collapse
|
6
|
Yang G, Ding Y. Recent advances in biocatalyst discovery, development and applications. Bioorg Med Chem 2014; 22:5604-12. [DOI: 10.1016/j.bmc.2014.06.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 12/25/2022]
|
7
|
Dolan S, Owens R, O’Keeffe G, Hammel S, Fitzpatrick D, Jones G, Doyle S. Regulation of Nonribosomal Peptide Synthesis: bis-Thiomethylation Attenuates Gliotoxin Biosynthesis in Aspergillus fumigatus. ACTA ACUST UNITED AC 2014; 21:999-1012. [DOI: 10.1016/j.chembiol.2014.07.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/09/2014] [Accepted: 07/21/2014] [Indexed: 01/30/2023]
|
8
|
Mathur V, Tytgat TOG, Hordijk CA, Harhangi HR, Jansen JJ, Reddy AS, Harvey JA, Vet LEM, van Dam NM. An ecogenomic analysis of herbivore-induced plant volatiles in Brassica juncea. Mol Ecol 2013; 22:6179-96. [PMID: 24219759 DOI: 10.1111/mec.12555] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 09/23/2013] [Accepted: 09/27/2013] [Indexed: 11/27/2022]
Abstract
Upon herbivore feeding, plants emit complex bouquets of induced volatiles that may repel insect herbivores as well as attract parasitoids or predators. Due to differences in the temporal dynamics of individual components, the composition of the herbivore-induced plant volatile (HIPV) blend changes with time. Consequently, the response of insects associated with plants is not constant either. Using Brassica juncea as the model plant and generalist Spodoptera spp. larvae as the inducing herbivore, we investigated herbivore and parasitoid preference as well as the molecular mechanisms behind the temporal dynamics in HIPV emissions at 24, 48 and 72 h after damage. In choice tests, Spodoptera litura moth preferred undamaged plants, whereas its parasitoid Cotesia marginiventris favoured plants induced for 48 h. In contrast, the specialist Plutella xylostella and its parasitoid C. vestalis preferred plants induced for 72 h. These preferences matched the dynamic changes in HIPV blends over time. Gene expression analysis suggested that the induced response after Spodoptera feeding is mainly controlled by the jasmonic acid pathway in both damaged and systemic leaves. Several genes involved in sulphide and green leaf volatile synthesis were clearly up-regulated. This study thus shows that HIPV blends vary considerably over a short period of time, and these changes are actively regulated at the gene expression level. Moreover, temporal changes in HIPVs elicit differential preferences of herbivores and their natural enemies. We argue that the temporal dynamics of HIPVs may play a key role in shaping the response of insects associated with plants.
Collapse
Affiliation(s)
- Vartika Mathur
- Department of Zoology, Sri Venkateswara College, University of Delhi, Benito Juarez Marg, Dhaula kuan, New Delhi, 11002, India
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fluorescence-based bacterial bioreporter for specific detection of methyl halide emissions in the environment. Appl Environ Microbiol 2013; 79:6561-7. [PMID: 23956392 DOI: 10.1128/aem.01738-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Methyl halides are volatile one-carbon compounds responsible for substantial depletion of stratospheric ozone. Among them, chloromethane (CH3Cl) is the most abundant halogenated hydrocarbon in the atmosphere. Global budgets of methyl halides in the environment are still poorly understood due to uncertainties in their natural sources, mainly from vegetation, and their sinks, which include chloromethane-degrading bacteria. A bacterial bioreporter for the detection of methyl halides was developed on the basis of detailed knowledge of the physiology and genetics of Methylobacterium extorquens CM4, an aerobic alphaproteobacterium which utilizes chloromethane as the sole source of carbon and energy. A plasmid construct with the promoter region of the chloromethane dehalogenase gene cmuA fused to a promotorless yellow fluorescent protein gene cassette resulted in specific methyl halide-dependent fluorescence when introduced into M. extorquens CM4. The bacterial whole-cell bioreporter allowed detection of methyl halides at femtomolar levels and quantification at concentrations above 10 pM (approximately 240 ppt). As shown for the model chloromethane-producing plant Arabidopsis thaliana in particular, the bioreporter may provide an attractive alternative to analytical chemical methods to screen for natural sources of methyl halide emissions.
Collapse
|
10
|
Rezek J, Macek T, Doubsky J, Mackova M. Metabolites of 2,2'-dichlorobiphenyl and 2,6-dichlorobiphenyl in hairy root culture of black nightshade Solanum nigrum SNC-9O. CHEMOSPHERE 2012; 89:383-388. [PMID: 22743185 DOI: 10.1016/j.chemosphere.2012.05.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 04/30/2012] [Accepted: 05/19/2012] [Indexed: 06/01/2023]
Abstract
The hairy root culture of black nightshade (Solanum nigrum) SNC-9O was exposed to 2,2'-dichlorobiphenyl (PCB 4) and 2,6-dichlorobiphenyl (PCB 10) to follow the metabolites produced. The analytical standards of 4-hydroxy-2,2'-dichlorobiphenyl, 5'-hydroxy-2,2'-dichlorobiphenyl, 4-hydroxy-2,6-dichlorobiphenyl, 2-hydroxy-2',6'-dichlorobiphenyl, 3-hydroxy-2',6'-dichlorobiphenyl and 4-hydroxy-2',6'-dichlorobiphenyl have been synthesized. Hydroxy-metabolites of both PCB 4 and PCB 10 were present in the biomass. These appeared mainly as conjugates rather than as free hydroxy-PCBs, both maintained in plant cells. The concentrations of non-conjugated hydroxy-PCBs ranged between 0.9 and 35.2 μg kg(-1) of biomass fresh weight and the concentration of the conjugated ones ranged between 2.0 and 113.0 μg kg(-1) depending on the position of hydroxyl. The para- position of biphenyl (4 or 4') seems to be preferred for hydroxylation. Methoxy-PCBs and hydroxy-methoxy-PCBs have also been identified in plant cells. Hydroxyl in the meta-position (3, 3', 5 or 5') appears to be preferred for methylation in hydroxy-PCBs. Hydroxy-methoxy-PCBs have occurred in the conjugated form as well.
Collapse
Affiliation(s)
- Jan Rezek
- Joint Laboratory of the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Institute of Chemical Technology Prague, Flemingovo namesti 2, 166 10 Prague 6, Czech Republic
| | | | | | | |
Collapse
|
11
|
Zhao N, Ferrer JL, Moon HS, Kapteyn J, Zhuang X, Hasebe M, Stewart CN, Gang DR, Chen F. A SABATH Methyltransferase from the moss Physcomitrella patens catalyzes S-methylation of thiols and has a role in detoxification. PHYTOCHEMISTRY 2012; 81:31-41. [PMID: 22795762 DOI: 10.1016/j.phytochem.2012.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/20/2012] [Accepted: 06/18/2012] [Indexed: 05/13/2023]
Abstract
Known SABATH methyltransferases, all of which were identified from seed plants, catalyze methylation of either the carboxyl group of a variety of low molecular weight metabolites or the nitrogen moiety of precursors of caffeine. In this study, the SABATH family from the bryophyte Physcomitrella patens was identified and characterized. Four SABATH-like sequences (PpSABATH1, PpSABATH2, PpSABATH3, and PpSABATH4) were identified from the P. patens genome. Only PpSABATH1 and PpSABATH2 showed expression in the leafy gametophyte of P. patens. Full-length cDNAs of PpSABATH1 and PpSABATH2 were cloned and expressed in soluble form in Escherichia coli. Recombinant PpSABATH1 and PpSABATH2 were tested for methyltransferase activity with a total of 75 compounds. While showing no activity with carboxylic acids or nitrogen-containing compounds, PpSABATH1 displayed methyltransferase activity with a number of thiols. PpSABATH2 did not show activity with any of the compounds tested. Among the thiols analyzed, PpSABATH1 showed the highest level of activity with thiobenzoic acid with an apparent Km value of 95.5μM, which is comparable to those of known SABATHs. Using thiobenzoic acid as substrate, GC-MS analysis indicated that the methylation catalyzed by PpSABATH1 is on the sulfur atom. The mechanism for S-methylation of thiols catalyzed by PpSABATH1 was partially revealed by homology-based structural modeling. The expression of PpSABATH1 was induced by the treatment of thiobenzoic acid. Further transgenic studies showed that tobacco plants overexpressing PpSABATH1 exhibited enhanced tolerance to thiobenzoic acid, suggesting that PpSABATH1 have a role in the detoxification of xenobiotic thiols.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Iranshahi M. A review of volatile sulfur-containing compounds from terrestrial plants: biosynthesis, distribution and analytical methods. JOURNAL OF ESSENTIAL OIL RESEARCH 2012. [DOI: 10.1080/10412905.2012.692918] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Nadalig T, Farhan Ul Haque M, Roselli S, Schaller H, Bringel F, Vuilleumier S. Detection and isolation of chloromethane-degrading bacteria from the Arabidopsis thaliana phyllosphere, and characterization of chloromethane utilization genes. FEMS Microbiol Ecol 2011; 77:438-48. [PMID: 21545604 DOI: 10.1111/j.1574-6941.2011.01125.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Chloromethane gas is produced naturally in the phyllosphere, the compartment defined as the aboveground parts of vegetation, which hosts a rich bacterial flora. Chloromethane may serve as a growth substrate for specialized aerobic methylotrophic bacteria, which have been isolated from soil and water environments, and use cmu genes for chloromethane utilization. Evidence for the presence of chloromethane-degrading bacteria on the leaf surfaces of Arabidopsis thaliana was obtained by specific quantitative PCR of the cmuA gene encoding the two-domain methyltransferase corrinoid protein of chloromethane dehalogenase. Bacterial strains were isolated on a solid mineral medium with chloromethane as the sole carbon source from liquid mineral medium enrichment cultures inoculated with leaves of A. thaliana. Restriction analysis-based genotyping of cmuA PCR products was used to evaluate the diversity of chloromethane-degrading bacteria during enrichment and after strain isolation. The isolates obtained, affiliated to the genus Hyphomicrobium based on their 16S rRNA gene sequence and the presence of characteristic hyphae, dehalogenate chloromethane, and grow in a liquid culture with chloromethane as the sole carbon and energy source. The cmu genes of these isolates were analysed using new PCR primers, and their sequences were compared with those of previously reported aerobic chloromethane-degrading strains. The three isolates featured a colinear cmuBCA gene arrangement similar to that of all previously characterized strains, except Methylobacterium extorquens CM4 of known genome sequence.
Collapse
Affiliation(s)
- Thierry Nadalig
- Université de Strasbourg, UMR 7156 CNRS, Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
14
|
Toda H, Itoh N. Isolation and characterization of a gene encoding a S-adenosyl-l-methionine-dependent halide/thiol methyltransferase (HTMT) from the marine diatom Phaeodactylum tricornutum: Biogenic mechanism of CH(3)I emissions in oceans. PHYTOCHEMISTRY 2011; 72:337-343. [PMID: 21227473 DOI: 10.1016/j.phytochem.2010.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 11/19/2010] [Accepted: 12/03/2010] [Indexed: 05/27/2023]
Abstract
Several marine algae including diatoms exhibit S-adenosyl-l-methionine (SAM) halide/thiol methyltransferase (HTMT) activity, which is involved in the emission of methyl halides. In this study, the in vivo biogenic emission of methyl iodide from the diatom Phaeodactylum tricornutum was found to be clearly correlated with iodide concentration in the incubation media. The gene encoding HTMT (Pthtmt) was isolated from P. tricornutum CCAP 1055/1, and expressed in Escherichia coli. The molecular weight of the enzyme was 29.7kDa including a histidine tag, and the optimal pH was around pH 7.0. The kinetic properties of recombinant PtHTMT towards Cl(-), Br(-), I(-), [SH](-), [SCN](-), and SAM were 637.88mM, 72.83mM, 8.60mM, 9.92mM, 7.9mM, and 0.016mM, respectively, and were similar to those of higher-plant HTMTs, except that the activity towards thiocyanate was lower. The biogenic emission of methyl halides from the cultured cells and the enzymatic properties of HTMT suggest that the HMT/HTMT reaction is key to understanding the biogenesis of methyl halides in oceanic environments as well as terrestrial ones.
Collapse
Affiliation(s)
- Hiroshi Toda
- Department of Biotechnology, Faculty of Engineering, Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | | |
Collapse
|
15
|
Drouillet-Pinard P, Boisset M, Periquet A, Lecerf JM, Casse F, Catteau M, Barnat S. Realistic approach of pesticide residues and French consumer exposure within fruit & vegetable intake. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2011; 46:84-91. [PMID: 21191868 DOI: 10.1080/03601234.2011.534413] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The increase of fruit and vegetable (F&V) intake contributes to the prevention of chronic diseases, but could also significantly increase pesticide exposure and may thus be of health concern. Following a previous pesticide exposure assessment study, the present study was carried out to determine actual levels of pesticides within 400 g of F&V intake and to evaluate consumer risk. Forty-three Active Substances (AS) exceeding 10 % of the Acceptable Daily Intake (ADI) in balanced menus established for our previous theoretical study were considered. Fifty-six pooled food samples were analyzed: 28 fruit samples and 28 vegetable samples. Pesticide values were compared to Maximum Residue Levels (MRL) and to the "toxicological credit" derived from ADI. It was observed that 23 out of the 43 retained AS were never detected, 5 were detected both in F&V samples, 12 only in fruits and 3 only in vegetables. The most frequently detected AS were carbendazim, iprodione and dithiocarbamates. When detected, AS were more frequently found in fruit samples (74 %) than in vegetable samples (26 %). A maximum of 3 AS were detected at once in a given sample. Overall, we observed 8 and 14 overruns of the MRL in 1204 measures in pooled vegetable and fruit samples, respectively (0.7 % and 1.2 % of cases, respectively). Chronic exposure for adults was the highest for dithiocarbamates but did not exceed 23.7 % of the ADI in F&V. It was concluded that raising both F&V consumption up to 400 g/day (~5 F&V/day) according to recommendations of the national health and nutrition plan, does not induce pesticide overexposure and should not represent a risk for the consumer.
Collapse
|
16
|
Itoh N, Toda H, Matsuda M, Negishi T, Taniguchi T, Ohsawa N. Involvement of S-adenosylmethionine-dependent halide/thiol methyltransferase (HTMT) in methyl halide emissions from agricultural plants: isolation and characterization of an HTMT-coding gene from Raphanus sativus (daikon radish). BMC PLANT BIOLOGY 2009; 9:116. [PMID: 19723322 PMCID: PMC2752461 DOI: 10.1186/1471-2229-9-116] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 09/01/2009] [Indexed: 05/20/2023]
Abstract
BACKGROUND Biogenic emissions of methyl halides (CH3Cl, CH3Br and CH3I) are the major source of these compounds in the atmosphere; however, there are few reports about the halide profiles and strengths of these emissions. Halide ion methyltransferase (HMT) and halide/thiol methyltransferase (HTMT) enzymes concerning these emissions have been purified and characterized from several organisms including marine algae, fungi, and higher plants; however, the correlation between emission profiles of methyl halides and the enzymatic properties of HMT/HTMT, and their role in vivo remains unclear. RESULTS Thirty-five higher plant species were screened, and high CH3I emissions and HMT/HTMT activities were found in higher plants belonging to the Poaceae family, including wheat (Triticum aestivum L.) and paddy rice (Oryza sativa L.), as well as the Brassicaceae family, including daikon radish (Raphanus sativus). The in vivo emission of CH3I clearly correlated with HMT/HTMT activity. The emission of CH3I from the sprouting leaves of R. sativus, T. aestivum and O. sativa grown hydroponically increased with increasing concentrations of supplied iodide. A gene encoding an S-adenosylmethionine halide/thiol methyltransferase (HTMT) was cloned from R. sativus and expressed in Escherichia coli as a soluble protein. The recombinant R. sativus HTMT (RsHTMT) was revealed to possess high specificity for iodide (I-), bisulfide ([SH]-), and thiocyanate ([SCN]-) ions. CONCLUSION The present findings suggest that HMT/HTMT activity is present in several families of higher plants including Poaceae and Brassicaceae, and is involved in the formation of methyl halides. Moreover, it was found that the emission of methyl iodide from plants was affected by the iodide concentration in the cultures. The recombinant RsHTMT demonstrated enzymatic properties similar to those of Brassica oleracea HTMT, especially in terms of its high specificity for iodide, bisulfide, and thiocyanate ions. A survey of biogenic emissions of methyl halides strongly suggests that the HTM/HTMT reaction is the key to understanding the biogenesis of methyl halides and methylated sulfur compounds in nature.
Collapse
Affiliation(s)
- Nobuya Itoh
- Department of Biotechnology, Faculty of Engineering (Biotechnology Research Center), Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Hiroshi Toda
- Department of Biotechnology, Faculty of Engineering (Biotechnology Research Center), Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Michiko Matsuda
- Department of Biotechnology, Faculty of Engineering (Biotechnology Research Center), Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Takashi Negishi
- Department of Biotechnology, Faculty of Engineering (Biotechnology Research Center), Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Tomokazu Taniguchi
- Department of Biotechnology, Faculty of Engineering (Biotechnology Research Center), Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Noboru Ohsawa
- Department of Biotechnology, Faculty of Engineering (Biotechnology Research Center), Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
17
|
Modi V, Prakash M. Quick and reliable screening of compatible ingredients for the formulation of extended meat cubes using Plackett–Burman design. Lebensm Wiss Technol 2008. [DOI: 10.1016/j.lwt.2007.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
BOATRIGHT WL, STINE JC. Residual Sulfur Metabolites in Isolated Soy Proteins: Sulfite to Cysteine. J Food Sci 2006. [DOI: 10.1111/j.1365-2621.2004.tb13358.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Coiner H, Schröder G, Wehinger E, Liu CJ, Noel JP, Schwab W, Schröder J. Methylation of sulfhydryl groups: a new function for a family of small molecule plant O-methyltransferases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:193-205. [PMID: 16623883 PMCID: PMC2860623 DOI: 10.1111/j.1365-313x.2006.02680.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In plants, type I and II S-adenosyl-l-methionine-dependent O-methyltransferases (OMTs) catalyze most hydroxyl group methylations of small molecules. A homology-based RT-PCR strategy using Catharanthus roseus (Madagascar periwinkle) RNA previously identified six new type I plant OMT family members. We now describe the molecular and biochemical characterization of a seventh protein. It shares 56-58% identity with caffeic acid OMTs (COMTs), but it failed to methylate COMT substrates, and had no activity with flavonoids. However, the in vitro incubations revealed unusually high background levels without added substrates. A search for the responsible component revealed that the enzyme methylated dithiothreitol (DTT), the reducing agent added for enzyme stabilization. Unexpectedly, product analysis revealed that the methylation occurred on a sulfhydryl moiety, not on a hydroxyl group. Analysis of 34 compounds indicated a broad substrate range, with a preference for small hydrophobic molecules. Benzene thiol (Km 220 microm) and furfuryl thiol (Km 60 microm) were the best substrates (6-7-fold better than DTT). Small isosteric hydrophobic substrates with hydroxyl groups, like phenol and guaiacol, were also methylated, but the activities were at least 5-fold lower than with thiols. The enzyme was named C. roseus S-methyltransferase 1 (CrSMT1). Models based on the COMT crystal structure suggest that S-methylation is mechanistically identical to O-methylation. CrSMT1 so far is the only recognized example of an S-methyltransferase in this protein family. Its properties indicate that a few changes in key residues are sufficient to convert an OMT into a S-methyltransferase (SMT). Future functional investigations of plant methyltransferases should consider the possibility that the enzymes may direct methylation at sulfhydryl groups.
Collapse
Affiliation(s)
- Heather Coiner
- TU München, FG Biomolekulare Lebensmitteltechnologie, Lise-Meitner-Str. 34, D-85354 Freising, Germany
| | - Gudrun Schröder
- Universität Freiburg, Institut für Biologie II, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Elke Wehinger
- Universität Freiburg, Institut für Biologie II, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Chang-Jun Liu
- Biology Department, Bldg. 463, Brookhaven National Laboratory, 50 Bell Avenue, Upton, NY 11973, USA
- Howard Hughes Medical Institute, The Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Joseph P. Noel
- Howard Hughes Medical Institute, The Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Wilfried Schwab
- TU München, FG Biomolekulare Lebensmitteltechnologie, Lise-Meitner-Str. 34, D-85354 Freising, Germany
| | - Joachim Schröder
- Universität Freiburg, Institut für Biologie II, Schänzlestr. 1, D-79104 Freiburg, Germany
- For correspondence (fax +49 761 203 2601; )
| |
Collapse
|
20
|
Burga L, Wellmann F, Lukacin R, Witte S, Schwab W, Schröder J, Matern U. Unusual pseudosubstrate specificity of a novel 3,5-dimethoxyphenol O-methyltransferase cloned from Ruta graveolens L. Arch Biochem Biophys 2005; 440:54-64. [PMID: 16023070 DOI: 10.1016/j.abb.2005.05.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 05/25/2005] [Accepted: 05/26/2005] [Indexed: 11/17/2022]
Abstract
A cDNA was cloned from Ruta graveolens cells encoding a novel O-methyltransferase (OMT) with high similarity to orcinol or chavicol/eugenol OMTs, but containing a serine-rich N-terminus and a 13 amino acid insertion between motifs IV and V. Expression in Escherichia coli revealed S-adenosyl-l-methionine-dependent OMT activity with methoxylated phenols only with an apparent Km of 20.4 for the prime substrate 3,5-dimethoxyphenol. The enzyme forms a homodimer of 84 kDa, and the activity was insignificantly affected by 2.0 mM Ca2+ or Mg2+, whereas Fe2+, Co2+, Zn2+, Cu2+ or Hg2+ were inhibitory (78-100%). Dithiothreitol (DTT) suppressed the OMT activity. This effect was examined further, and, in the presence of Zn2+ as a potential thiol methyltransferase (TMT) cofactor, the recombinant OMT methylated DTT to DTT-monomethylthioether. Sets of kinetic OMT experiments with 3,5-dimethoxyphenol at various Zn2+/DTT concentrations revealed the competitive binding of DTT with an apparent Ki of 52.0 microM. Thus, the OMT exhibited TMT activity with almost equivalent affinity to the thiol pseudosubstrate which is structurally unrelated to methoxyphenols.
Collapse
Affiliation(s)
- Laura Burga
- Institut für Pharmazeutische Biologie, Philipps-Universität Marburg, Deutschhausstrasse 17A, D-35037 Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Yang M, Brazier M, Edwards R, Davis BG. High-throughput mass-spectrometry monitoring for multisubstrate enzymes: determining the kinetic parameters and catalytic activities of glycosyltransferases. Chembiochem 2005; 6:346-57. [PMID: 15678424 DOI: 10.1002/cbic.200400100] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A novel high-throughput screening (HTS) method with electrospray time-of-flight (ESI-TOF) mass spectrometry allows i) rapid and broad screening of multisubstrate enzyme catalytic activity towards a range of donor and acceptor substrates; ii) determination of full multisubstrate kinetic parameters and the binding order of substrates. Two representative glycosyltransferases (GTs, one common, one recently isolated, one O-glycosyltransferase (O-GT), one N-glycosyltransferase (N-GT)) have been used to validate this system: the widely used bovine beta-1,4-galactosyltransferase (EC 2.4.1.22), and the recently isolated Arabidopsis thaliana GT UGT72B1 (EC 2.4.1.-). The GAR (green/amber/red) broad-substrate-specificity screen, which is based on the mass ion abundance of product, provides a fast, high-throughput method for finding potential donors and acceptors from substrate libraries. This was evaluated by using six natural and non-natural donors (alpha-UDP-D-Glucose (UDPGlc), alpha-UDP-N-Acetyl-D-glucosamine (UDPGlcNAc), alpha-UDP-D-5-thioglucose (UDP5SGlc), alpha-GDP-L-fucose (GDPFuc), alpha-GDP-D-mannose (GDPMan), alpha,beta-UDP-D-mannose (UDPMan)) and 32 broad-ranging acceptors (sugars, plant hormones, antibiotics, flavonoids, coumarins, phenylpropanoids and benzoic acids). By using the fast-equilibrium assumption, KM, kcat and KIA were determined for representative substrates, and these values were used to determine substrate binding orders. These screening methods applied to the two very different enzymes revealed some unusual substrate specificities, thus highlighting the utility of broad-ranging substrate screening. For UGT72B1, it was shown that the donor specificity is determined largely by the nucleotide moiety. The method is therefore capable of identifying GT enzymes with usefully broad carbohydrate-transfer ability.
Collapse
Affiliation(s)
- Min Yang
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | | | | | | |
Collapse
|
22
|
Bentley R, Chasteen TG. Environmental VOSCs--formation and degradation of dimethyl sulfide, methanethiol and related materials. CHEMOSPHERE 2004; 55:291-317. [PMID: 14987929 DOI: 10.1016/j.chemosphere.2003.12.017] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Revised: 12/12/2003] [Accepted: 12/17/2003] [Indexed: 05/07/2023]
Abstract
Volatile organic sulfur compounds (VOSCs) play a major role in the global sulfur cycle. Two components, dimethyl sulfide (DMS) and methanethiol (MT) are formed in large amounts by living systems (e.g. algae, bacteria, plants), particularly in marine environments. A major route to DMS is by action of a lyase enzyme on dimethylsulfoniopropionate (DMSP). DMSP has other roles, for instance as an osmoprotectant and cryoprotectant. Demethiolation of DMSP and other materials leads to MT. A major transport process is release of DMS from the oceans to the atmosphere. Oxidation of DMS in the atmosphere by hydroxyl and nitrate radicals produces many degradation products including CO2, COS, dimethyl sulfoxide, dimethyl sulfone, organic oxyacids of sulfur, and sulfate. These materials also have roles in biotic processes and there are complex metabolic interrelationships between some of them. This review emphasizes the chemical reactions of the organic sulfur cycle. For biotic reactions, details of relevant enzymes are provided when possible.
Collapse
Affiliation(s)
- Ronald Bentley
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
23
|
Rhew RC, Østergaard L, Saltzman ES, Yanofsky MF. Genetic control of methyl halide production in Arabidopsis. Curr Biol 2004; 13:1809-13. [PMID: 14561407 DOI: 10.1016/j.cub.2003.09.055] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Methyl chloride (CH(3)Cl) and methyl bromide (CH(3)Br) are the primary carriers of natural chlorine and bromine, respectively, to the stratosphere, where they catalyze the destruction of ozone, whereas methyl iodide (CH(3)I) influences aerosol formation and ozone loss in the boundary layer. CH(3)Br is also an agricultural pesticide whose use is regulated by international agreement. Despite the economic and environmental importance of these methyl halides, their natural sources and biological production mechanisms are poorly understood. Besides CH(3)Br fumigation, important sources include oceans, biomass burning, tropical plants, salt marshes, and certain crops and fungi. Here, we demonstrate that the model plant Arabidopsis thaliana produces and emits methyl halides and that the enzyme primarily responsible for the production is encoded by the HARMLESS TO OZONE LAYER (HOL) gene. The encoded protein belongs to a group of methyltransferases capable of catalyzing the S-adenosyl-L-methionine (SAM)-dependent methylation of chloride (Cl(-)), bromide (Br(-)), and iodide (I(-)) to produce methyl halides. In mutant plants with the HOL gene disrupted, methyl halide production is largely eliminated. A phylogenetic analysis with the HOL gene suggests that the ability to produce methyl halides is widespread among vascular plants. This approach provides a genetic basis for understanding and predicting patterns of methyl halide production by plants.
Collapse
Affiliation(s)
- Robert C Rhew
- Department of Earth System Science, University of California, Irvine, Irvine, CA 92697-3100, USA.
| | | | | | | |
Collapse
|
24
|
Scheuermann TH, Lolis E, Hodsdon ME. Tertiary structure of thiopurine methyltransferase from Pseudomonas syringae, a bacterial orthologue of a polymorphic, drug-metabolizing enzyme. J Mol Biol 2003; 333:573-85. [PMID: 14556746 DOI: 10.1016/j.jmb.2003.08.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In humans, the enzyme thiopurine methyltransferase (TPMT) metabolizes 6-thiopurine (6-TP) medications, including 6-thioguanine, 6-mercaptopurine and azathioprine, commonly used for immune suppression and for the treatment of hematopoietic malignancies. S-Methylation by TPMT prevents the intracellular conversion of these drugs into active 6-thioguanine nucleotides (6-TGNs). Genetic polymorphisms in the TPMT protein sequence have been associated with decreased tissue enzymatic activities and an increased risk of life-threatening myelo-suppression from standard doses of 6-TP medications. Biochemical studies have demonstrated that TPMT deficiency is primarily associated with increased degradation of the polymorphic proteins through an ubiquitylation and proteasomal-dependent pathway. We have now determined the tertiary structure of the bacterial orthologue of TPMT from Pseudomonas syringae using NMR spectroscopy. Bacterial TPMT similarly catalyzes the S-adenosylmethionine (SAM)-dependent transmethylation of 6-TPs and shares 45% similarity (33% identity) with the human enzyme. Initial studies revealed an unstructured N terminus, which was removed for structural studies and subsequently determined to be required for enzymatic activity. Despite lacking sequence similarity to any protein of known three-dimensional structure, the tertiary structure of bacterial TPMT reveals a classical SAM-dependent methyltransferase topology, consisting of a seven-stranded beta-sheet flanked by alpha-helices on both sides. However, some deviations from the consensus topology, along with multiple insertions of structural elements, are evident. A review of the many experimentally determined tertiary structures of SAM-dependent methyltransferases demonstrates that such structural deviations from the consensus topology are common and often functionally important.
Collapse
Affiliation(s)
- Thomas H Scheuermann
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | |
Collapse
|
25
|
D'Auria JC, Chen F, Pichersky E. Chapter eleven The SABATH family of MTS in Arabidopsis Thaliana and other plant species. RECENT ADVANCES IN PHYTOCHEMISTRY 2003. [DOI: 10.1016/s0079-9920(03)80026-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
26
|
Wittstock U, Kliebenstein DJ, Lambrix V, Reichelt M, Gershenzon J. Chapter five Glucosinolate hydrolysis and its impact on generalist and specialist insect herbivores. RECENT ADVANCES IN PHYTOCHEMISTRY 2003. [DOI: 10.1016/s0079-9920(03)80020-5] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Wittstock U, Gershenzon J. Constitutive plant toxins and their role in defense against herbivores and pathogens. CURRENT OPINION IN PLANT BIOLOGY 2002; 5:300-7. [PMID: 12179963 DOI: 10.1016/s1369-5266(02)00264-9] [Citation(s) in RCA: 266] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Most recent investigations have focused on induced, rather than constitutive, plant defenses. Yet significant research has helped to illuminate some of the principal characteristics of constitutive defenses, including mechanisms of action and synergistic effects, as well as strategies used by herbivores and pathogens to circumvent them.
Collapse
Affiliation(s)
- Ute Wittstock
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Winzerlaer Strasse 10, Beutenberg Campus, D-07745 Jena, Germany.
| | | |
Collapse
|
28
|
Ohsawa N, Tsujita M, Morikawa S, Itoh N. Purification and characterization of a monohalomethane-producing enzyme S-adenosyl-L-methionine: halide ion methyltransferase from a marine microalga, Pavlova pinguis. Biosci Biotechnol Biochem 2001; 65:2397-404. [PMID: 11791711 DOI: 10.1271/bbb.65.2397] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A monohalomethane-producing enzyme, S-adenosyl-L-methionine-dependent halide ion methyltransferase (EC 2.1.1.-) was purified from the marine microalga Pavlova pinguis by two anion exchange, hydroxyapatite and gel filtration chromatographies. The methyltransferase was a monomeric molecule having a molecular weight of 29,000. The enzyme had an isoelectric point at 5.3, and was optimally active at pH 8.0. The Km for iodide and SAM were 12 mM and 12 microM, respectively, which were measured using a partially purified enzyme. Various metal ions had no significant effect on methyl iodide production, suggesting that the enzyme does not require metal ions. The enzyme reaction strictly depended on SAM as a methyl donor, and the enzyme catalyzed methylation of the I-, Br-, and Cl- to corresponding monohalomethanes and of bisulfide to methyl mercaptan.
Collapse
Affiliation(s)
- N Ohsawa
- Biotechnology Research Center, Toyama Prefectural University, Japan
| | | | | | | |
Collapse
|
29
|
|