1
|
Nowrouzi B, Rios-Solis L. Redox metabolism for improving whole-cell P450-catalysed terpenoid biosynthesis. Crit Rev Biotechnol 2021; 42:1213-1237. [PMID: 34749553 DOI: 10.1080/07388551.2021.1990210] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The growing preference for producing cytochrome P450-mediated natural products in microbial systems stems from the challenging nature of the organic chemistry approaches. The P450 enzymes are redox-dependent proteins, through which they source electrons from reducing cofactors to drive their activities. Widely researched in biochemistry, most of the previous studies have extensively utilised expensive cell-free assays to reveal mechanistic insights into P450 functionalities in presence of commercial redox partners. However, in the context of microbial bioproduction, the synergic activity of P450- reductase proteins in microbial systems have not been largely investigated. This is mainly due to limited knowledge about their mutual interactions in the context of complex systems. Hence, manipulating the redox potential for natural product synthesis in microbial chassis has been limited. As the potential of redox state as crucial regulator of P450 biocatalysis has been greatly underestimated by the scientific community, in this review, we re-emphasize their pivotal role in modulating the in vivo P450 activity through affecting the product profile and yield. Particularly, we discuss the applications of widely used in vivo redox engineering methodologies for natural product synthesis to provide further suggestions for patterning on P450-based terpenoids production in microbial platforms.
Collapse
Affiliation(s)
- Behnaz Nowrouzi
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, UK
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Mammalian cytochrome P450-dependent metabolism of polychlorinated dibenzo-p-dioxins and coplanar polychlorinated biphenyls. Int J Mol Sci 2014; 15:14044-57. [PMID: 25123135 PMCID: PMC4159838 DOI: 10.3390/ijms150814044] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/08/2014] [Accepted: 07/16/2014] [Indexed: 02/02/2023] Open
Abstract
Polychlorinated dibenzo-p-dioxins (PCDDs) and coplanar polychlorinated biphenyls (PCBs) contribute to dioxin toxicity in humans and wildlife after bioaccumulation through the food chain from the environment. The authors examined human and rat cytochrome P450 (CYP)-dependent metabolism of PCDDs and PCBs. A number of human CYP isoforms belonging to the CYP1 and CYP2 families showed remarkable activities toward low-chlorinated PCDDs. In particular, human CYP1A1, CYP1A2, and CYP1B1 showed high activities toward monoCDDs, diCDDs, and triCDDs but no detectable activity toward 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-tetraCDD). Large amino acids located at putative substrate-recognition sites and the F-G loop in rat CYP1A1 contributed to the successful metabolism of 2,3,7,8-tetraCDD. Rat, but not human, CYP1A1 metabolized 3,3',4,4',5-pentachlorobiphenyl (CB126) to two hydroxylated metabolites. These metabolites are probably less toxic than is CB126, due to their higher solubility. Homology models of human and rat CYP1A1s and CB126 docking studies indicated that two amino acid differences in the CB126-binding cavity were important for CB126 metabolism. In this review, the importance of CYPs in the metabolism of dioxins and PCBs in mammals and the species-based differences between humans and rats are described. In addition, the authors reveal the molecular mechanism behind the binding modes of dioxins and PCBs in the heme pocket of CYPs.
Collapse
|
3
|
Sadeghi SJ, Gilardi G. Chimeric P450 enzymes: Activity of artificial redox fusions driven by different reductases for biotechnological applications. Biotechnol Appl Biochem 2013; 60:102-10. [DOI: 10.1002/bab.1086] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/20/2012] [Indexed: 11/09/2022]
|
4
|
Tang T, Zhao C, Feng X, Liu X, Qiu L. Knockdown of several components of cytochrome P450 enzyme systems by RNA interference enhances the susceptibility of Helicoverpa armigera to fenvalerate. PEST MANAGEMENT SCIENCE 2012; 68:1501-11. [PMID: 22689565 DOI: 10.1002/ps.3336] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 03/15/2012] [Accepted: 04/04/2012] [Indexed: 05/03/2023]
Abstract
BACKGROUND The function of cytochrome P450 proteins (P450s) in the metabolism of a variety of compounds by oxidation and reduction is well elucidated, but its interactions with other electron transfer components in the pyrethroid resistance of insect pests have been a mystery for a long time. In previous studies the authors cloned and characterised CYP6B7 and cytochrome b(5) (Cyt-b(5)) in the fenvalerate-resistant HDFR strain of cotton bollworm (Helicoverpa armigera Hübner) and showed that CYP6B7 mRNA was overexpressed and important for resistance to fenvalerate. In the present study, the functional interactions of CYP6B7, NADPH-dependent cytochrome P450 reductase (CPR) and Cyt-b(5) were assessed using RNA interference (RNAi) strategies and monitoring for fenvalerate resistance levels. RESULTS RT-qPCR analyses indicated that the expression levels of CYP6B7, CPR and Cyt-b(5) mRNA were decreased drastically in the midgut of fourth-instar larvae of the H. armigera HDFR strain after corresponding double-stranded RNA (dsRNA) injection, compared with that of the control. The knockdown of CYP6B7, CPR and Cyt-b(5) transcripts was time course dependent during a 12-48 h period after dsRNA injection. At the earlier time points analysed, significant suppression of CYP6B7 mRNA levels was observed in larvae injected with dsCYP6B7-313 as compared with controls, and further suppression was observed in larvae injected with dsCYP6B7-313, dsCPR-403 and dsCyt-b(5) . The injection of dsCYP6B7-313 together with dsCPR-403 and dsCyt-b(5) increased larval susceptibility of the HDFR strain to fenvalerate. CONCLUSION The results demonstrated that silencing of CYP6B7 alone or CYP6B7 together with CPR and/or Cyt-b(5) increased the susceptibility of H. armigera to fenvalerate, suggesting that CYP6B7, CPR and Cyt-b(5) collaboratively participated in enhanced metabolism of fenvalerate and played an important role in the resistance of H. armigera to fenvalerate.
Collapse
Affiliation(s)
- Tao Tang
- Key Laboratory of Pesticide Chemistry and Application Technology, Ministry of Agriculture, College of Science, China Agricultural University, Beijing, China
| | | | | | | | | |
Collapse
|
5
|
Affiliation(s)
- Rudi Fasan
- Department of Chemistry,
Hutchison Hall, University of Rochester, Rochester, New York 14627,
United States
| |
Collapse
|
6
|
Biotechnological synthesis of drug metabolites using human cytochrome P450 isozymes heterologously expressed in fission yeast. Bioanalysis 2011; 1:821-30. [PMID: 21083140 DOI: 10.4155/bio.09.53] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cytochrome P450 mono-oxygenases (CYPs) are the major enzymes involved in the metabolism of drugs and poisons in humans. The variation of their activity - due to genetic polymorphisms or enzyme inhibition/induction - potentially increases the risk of side effects or toxicity. Studies on CYP-dependent metabolism are important in drug-development or toxicity studies. Reference standards of drug metabolites required for such studies, especially in the context of metabolites in safety testing (MIST), are often not commercially available and their classical chemical synthesis can be cumbersome. Recently, a biotechnological approach using human CYP isozymes heterologously expressed in fission yeast was developed for the synthesis of drug metabolites. Among other aspects, this approach has the distinct advantages that the reactions run under mild conditions and that only the final product must be isolated and characterized. This review overviews the first practical applications of this new approach and discusses the selection of substrates, metabolites and fission yeast strains as well as important aspects of incubation, product isolation and clean-up.
Collapse
|
7
|
Yasuda K, Ikushiro S, Kamakura M, Ohta M, Sakaki T. Metabolism of Sesamin by Cytochrome P450 in Human Liver Microsomes. Drug Metab Dispos 2010; 38:2117-23. [DOI: 10.1124/dmd.110.035659] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Sabbadin F, Hyde R, Robin A, Hilgarth EM, Delenne M, Flitsch S, Turner N, Grogan G, Bruce NC. LICRED: a versatile drop-in vector for rapid generation of redox-self-sufficient cytochrome P450s. Chembiochem 2010; 11:987-94. [PMID: 20425752 DOI: 10.1002/cbic.201000104] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cytochromes P450 (P450s) are a family of haem-containing oxidases with considerable potential as tools for industrial biocatalysis. Organismal genomes are revealing thousands of gene sequences that encode P450s of as yet unknown function, the exploitation of which will require high-throughput tools for their isolation and characterisation. In this report, a ligationindependent cloning vector "LICRED" is described that enables the high-throughput generation of libraries of redox-self-sufficient P450s by fusing a range of P450 haem domains to the reductase of P450RhF (RhF-Red) in a robust and generically applicable way. Cloning and expression of fusions of RhF-Red with the haem domains of P450cam and P450-XplA resulted in soluble, active, redox-self-sufficient, chimeric enzymes. In vitro studies also revealed that electron transfer from NADPH to haem was primarily intramolecular. The general applicability of the LICRED platform was then demonstrated through the creation of a library of RhF-Red fusion constructs by using the diverse complement of P450 haem domains identified in the genome of Nocardia farcinica. The resultant fusion-protein library was then screened against a panel of substrates; this revealed chimeric enzymes competent for the hydroxylation of testosterone and methyltestosterone, and the dealkylation of 7-ethoxycoumarin.
Collapse
Affiliation(s)
- Federico Sabbadin
- Centre for Novel Agricultural Products, Department of Biology, University of York, YO10 5YW York, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hlavica P. Assembly of non-natural electron transfer conduits in the cytochrome P450 system: A critical assessment and update of artificial redox constructs amenable to exploitation in biotechnological areas. Biotechnol Adv 2009; 27:103-21. [DOI: 10.1016/j.biotechadv.2008.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 09/29/2008] [Accepted: 10/04/2008] [Indexed: 10/21/2022]
|
10
|
Peters FT, Dragan CA, Schwaninger AE, Sauer C, Zapp J, Bureik M, Maurer HH. Use of fission yeast heterologously expressing human cytochrome P450 2B6 in biotechnological synthesis of the designer drug metabolite N-(1-phenylcyclohexyl)-2-hydroxyethanamine. Forensic Sci Int 2009; 184:69-73. [DOI: 10.1016/j.forsciint.2008.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 11/22/2008] [Accepted: 12/01/2008] [Indexed: 10/21/2022]
|
11
|
Rabe KS, Gandubert VJ, Spengler M, Erkelenz M, Niemeyer CM. Engineering and assaying of cytochrome P450 biocatalysts. Anal Bioanal Chem 2008; 392:1059-73. [PMID: 18622752 DOI: 10.1007/s00216-008-2248-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 06/11/2008] [Accepted: 06/12/2008] [Indexed: 11/29/2022]
Abstract
Cytochrome P450s constitute a highly fascinating superfamily of enzymes which catalyze a broad range of reactions. They are essential for drug metabolism and promise industrial applications in biotechnology and biosensing. The constant search for cytochrome P450 enzymes with enhanced catalytic performances has generated a large body of research. This review will concentrate on two key aspects related to the identification and improvement of cytochrome P450 biocatalysts, namely the engineering and assaying of these enzymes. To this end, recent advances in cytochrome P450 development are reported and commonly used screening methods are surveyed.
Collapse
Affiliation(s)
- Kersten S Rabe
- Fakultät für Chemie, Biologisch-Chemische Mikrostrukturtechnik, Technische Universität Dortmund, Otto-Hahn-Strabetae 6, 44227, Dortmund, Germany
| | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Elizabeth M. J. Gillam
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, Australia 4072
| |
Collapse
|
13
|
Cheng J, Wan DF, Gu JR, Gong Y, Yang SL, Hao DC, Yang L. Establishment of a yeast system that stably expresses human cytochrome P450 reductase: Application for the study of drug metabolism of cytochrome P450s in vitro. Protein Expr Purif 2006; 47:467-76. [PMID: 16434211 DOI: 10.1016/j.pep.2005.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 11/20/2005] [Accepted: 11/25/2005] [Indexed: 11/30/2022]
Abstract
Cytochrome P450s (CYPs) hold a balance in studying pharmacokinetics, toxico-kinetics, drug metabolism, and drug-drug interactions, which require association with cytochrome P450 reductase (CPR) to achieve optimal activity. A novel system of Saccharomyces cerevisiae useful for expression studies of mammalian microsomal CYPs was established. Human CPR (hCPR) was co-expressed with human CYP3A4 (hCYP3A4) in this system, and two expression plasmids pTpLC and pYeplac195-3A4 containing the cDNA of hCPR and hCYP3A4 were constructed, respectively. The two plasmids were applied first and controlled by phosphoglycerate kinase (PGK) promoter. S. cerevisiae BWG1-7alpha transformed with the expression plasmids produced the respective proteins in the expected molecular sizes reactive with both anti-hCYP3A4 immunoglobulin (Ig) and anti-hCPR Ig. The activity of hCPR in yeast BWG-CPR was 443.2 nmol reduced cytochrome c/min/mg, which was about three times the CPR activity of the microsome prepared from the parental yeast. The protein amount of hCYP3A4 in BWG-CPR/3A4 was 35.53 pmol/mg, and the 6beta-hydroxylation testosterone formation activity of hCYP3A4 expressed was 7.5 nmol/min/nmol CYP, 30 times higher than the activity of hCYP3A4 expressed in the parental yeast, and almost two times the activity of hCYP3A4 from homologous human liver microsome. Meanwhile, BWG-CPR/3A4 retained 100 generations under nonselective culture conditions, indicating this yeast was a mitotically stable transformant. BWG-CPR was further tested daily by the PCR amplification of hCPR of yeast genome, Western blot analysis, and the activity assay of hCPR of yeast microsome. This special expression host for CYPs was validated to be stable and efficient for the expression of CYPs, applying as an effective selection model for the drug metabolism in vitro.
Collapse
Affiliation(s)
- Jie Cheng
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
14
|
Sakaki T, Inouye K. Practical application of mammalian cytochrome P450. J Biosci Bioeng 2005; 90:583-90. [PMID: 16232916 DOI: 10.1263/jbb.90.583] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2000] [Accepted: 08/31/2000] [Indexed: 11/17/2022]
Abstract
Heterologous expression systems play an important role in the analysis of structure-function relationships of mammalian P450s. In addition, these expression systems allow practical application of mammalian P450s. Genetically engineered fused enzymes between mammalian P450 and yeast NADPH-P450 reductase have possible applications in bioconversion processes. Combined use of techniques reported thus far could produce steroid hormones in the recombinant yeast cells harboring four P450 species, CYP11A1, CYP17A1, CYP21B1 and CYP11B1. In an Escherichia coli expression system, the technology of the construction of the mitochondrial P450 electron transport chain has been established. The recombinant E. coli cells expressing CYP27B1, adrenodoxin and NADPH-adrenodoxin reductase would be applicable to a bioconversion process to produce 1alpha,25-dihydroxyvitamin D3. We also demonstrated the usefulness of heterologous expression systems for human liver microsomal P450s for the prediction of drug metabolism in the human body. Microsomal fractions prepared from recombinant yeast, insect and mammalian cells are commercially available and play an important role in preclinical drug development. Application of mammalian P450 to bioremediation with genetic engineering has also been developed. Thus, mammalian P450s appear to have great potential for a wide range of practical applications.
Collapse
Affiliation(s)
- T Sakaki
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | | |
Collapse
|
15
|
Lee JK, Choi EH, Lee KG, Chun HS. Alleviation of aflatoxin B1-induced oxidative stress in HepG2 cells by volatile extract from Allii Fistulosi Bulbus. Life Sci 2005; 77:2896-910. [PMID: 15970298 DOI: 10.1016/j.lfs.2005.03.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 03/03/2005] [Indexed: 10/25/2022]
Abstract
The volatile extract from Allii Fistulosi Bulbus (VEAF) was isolated by steam distillation under reduced pressure, followed by continuous liquid-liquid extraction, and its effects on aflatoxin B1 (AFB1)-induced oxidative stress were investigated in human hepatoma cells (HepG2). The main constituents of the VEAF, identified by gas chromatography/mass spectrometry, were 2-octyl-5-methyl-3(2H)-furanone, 2-hexyl-5-methyl-3(2H)-furanone, 2,5-dimethylthiophene, 3,5-diethyl-1,2,4-trithiolane and 3,4-dimethyl-2,5-dihydro-thiophene-2-one. VEAF significantly inhibited the formation of intracellular reactive oxygen species caused by AFB1 in a dose-dependent manner, concomitant with a significant decrease in the AFB1-induced cytotoxicity. VEAF pretreatment significantly reduced the levels of thiobarbituric acid reactive substances, an indicator of lipid peroxidation, whereas increased the level of reduced glutathione. The level of 8-hydroxy-2'-deoxyguanosine, a DNA oxidative stress marker, was also decreased by 49-59% with pretreatment of VEAF. With respect to the activity of AFB1 metabolizing enzymes, VEAF significantly increased the activity of glutathione S-transferase, and significantly decreased the cytochrome (CYP) P450 3A4 activity, but had a little effect on the CYP1As. These results suggest that VEAF may be selectively effective in alleviating the AFB1-induced oxidative stress, and lead to cytoprotection against AFB1 exposure.
Collapse
Affiliation(s)
- Joon-Kyoung Lee
- Food Function Research Division, Korea Food Research Institute, San 46-1, Backhyun, Bundang-gu, Sungnam, Kyonggi-do 463-746, South Korea
| | | | | | | |
Collapse
|
16
|
Inouye K, Shinkyo R, Takita T, Ohta M, Sakaki T. Metabolism of polychlorinated dibenzo-p-dioxins (PCDDs) by human cytochrome P450-dependent monooxygenase systems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2002; 50:5496-5502. [PMID: 12207498 DOI: 10.1021/jf020415z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Metabolism of polychlorinated dibenzo-p-dioxins (PCDDs) by monooxygenase systems dependent on 12 forms of human cytochrome P450 (CYP) was examined with the recombinant yeast microsomes containing each of the human CYP. The metabolites of PCDDs were analyzed by HPLC and GC-MS. Remarkable metabolism by the multiple CYP forms was observed toward dibenzo-p-dioxin (DD) and mono-, di-, and trichloroDDs. The metabolism contained multiple reactions such as hydroxylation at an unsubstituted position, hydroxylation with migration of a chloride substituent, and hydroxylation with elimination of a chloride substituent. Although major CYPs in human liver such as CYP2C8, CYP2C9, and CYP3A4 showed no significant metabolism toward the PCDDs, CYP1A1 and CYP1A2 showed high catalytic activity toward DD and mono-, di-, and trichloroDDs. The kinetic parameters K(m)(app) and V(max) of the CYP1A1-dependent 8-hydroxylation activity of 2,3,7-trichloro-DD (2,3,7-triCDD) were estimated to be 0.30 microM and 51 (mol/min/mol of P450), respectively, suggesting that 2,3,7-triCDD was a good substrate for CYP1A1. However, none of the CYPs showed any detectable activity [<0.01 mol/min/mol of P450)] toward 2,3,7,8-tetraCDD. Substrate-induced absorption spectrum and inhibition studies indicated that CYP1A1 could bind 2,3,7,8-tetraCDD with considerably high affinity. It was strongly suggested that the long half-life (7.1 years) of 2,3,7,8-tetraCDD in humans was due to an extremely low activity of CYPs toward 2,3,7,8-tetraCDD in addition to its chemical stability.
Collapse
Affiliation(s)
- Kuniyo Inouye
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | | | |
Collapse
|
17
|
Vico P, Cauet G, Rose K, Lathe R, Degryse E. Dehydroepiandrosterone (DHEA) metabolism in Saccharomyces cerevisiae expressing mammalian steroid hydroxylase CYP7B: Ayr1p and Fox2p display 17beta-hydroxysteroid dehydrogenase activity. Yeast 2002; 19:873-86. [PMID: 12112241 DOI: 10.1002/yea.882] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We have engineered recombinant yeast to perform stereospecific hydroxylation of dehydroepiandrosterone (DHEA). This mammalian pro-hormone promotes brain and immune function; hydroxylation at the 7alpha position by P450 CYP7B is the major pathway of metabolic activation. We have sought to activate DHEA via yeast expression of rat CYP7B enzyme. Saccharomyces cerevisiae was found to metabolize DHEA by 3beta-acetylation; this was abolished by mutation at atf2. DHEA was also toxic, blocking tryptophan (trp) uptake: prototrophic strains were DHEA-resistant. In TRP(+) atf2 strains DHEA was then converted to androstene-3beta,17beta-diol (A/enediol) by an endogenous 17beta-hydroxysteroid dehydrogenase (17betaHSD). Seven yeast polypeptides similar to human 17betaHSDs were identified: when expressed in yeast, only AYR1 (1-acyl dihydroxyacetone phosphate reductase) increased A/enediol accumulation, while the hydroxyacyl-CoA dehydrogenase Fox2p, highly homologous to human 17betaHSD4, oxidized A/enediol to DHEA. The presence of endogenous yeast enzymes metabolizing steroids may relate to fungal pathogenesis. Disruption of AYR1 eliminated reductive 17betaHSD activity, and expression of CYP7B on the combination background (atf2, ayr1, TRP(+)) permitted efficient (>98%) bioconversion of DHEA to 7alpha-hydroxyDHEA, a product of potential medical utility.
Collapse
Affiliation(s)
- Pedro Vico
- Transgene SA, 11 Rue de Molsheim, 67000 Strasbourg, France.
| | | | | | | | | |
Collapse
|
18
|
Sakaki T, Shinkyo R, Takita T, Ohta M, Inouye K. Biodegradation of polychlorinated dibenzo-p-dioxins by recombinant yeast expressing rat CYP1A subfamily. Arch Biochem Biophys 2002; 401:91-8. [PMID: 12054491 DOI: 10.1016/s0003-9861(02)00036-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metabolism of polychlorinated dibenzo-p-dioxins (PCDDs) by recombinant yeast cells expressing either rat CYP1A1 or CYP1A2 was examined. When each of the dibenzo-p-dioxins (DDs), mono-, di-, and tri-chloroDDs, was added to the cell culture of the recombinant yeast, a remarkable metabolism was observed. The metabolism contained multiple reactions such as hydroxylation at an unsubstituted position, hydroxylation with migration of a chloride substituent, hydroxylation with elimination of a chloride substituent, and opening of dioxin ring. The distinct difference was observed in substrate specificity and reaction specificity between CYP1A1 and CYP1A2. Kinetic analysis using microsomal fractions prepared from the recombinant yeast cells revealed that 2,7-dichloroDD and 2,3,7-trichloroDD were good substrates for both CYP1A1 and CYP1A2. When 2,3,7-trichloroDD was added to the yeast cells expressing each of rat CYP1A1 and CYP1A2, most of 2,3,7-trichloroDD was first converted to 8-hydroxy-2,3,7-trichloroDD, and further metabolized to more hydrophilic compounds whose ethereal bridges were cleaved. These findings give essential information on the metabolism of PCDDs in mammalian liver. In addition, this study indicates the possibility of application of microorganisms expressing mammalian cytochrome P450 to bioremediation of contaminated soils with dioxins.
Collapse
Affiliation(s)
- Toshiyuki Sakaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, 606-8502, Japan
| | | | | | | | | |
Collapse
|
19
|
Cooper MT, Porter TD. Cytochrome b(5) coexpression increases the CYP2E1-dependent mutagenicity of dialkylnitrosamines in methyltransferase-deficient strains of Salmonella typhimurium. Mutat Res 2001; 484:61-8. [PMID: 11733072 DOI: 10.1016/s0027-5107(01)00236-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Addition of cytochrome b(5) to recombinant cytochrome P450 2E1 systems has been shown to enhance the metabolism of dialkylnitrosamines in vitro. To determine if this effect could be observed with recombinant expression systems in vivo, we have constructed mutagenicity tester strains that coexpress full-length human cytochrome P450 2E1 (CYP2E1), rat cytochrome P450 reductase, and human cytochrome b(5) in Salmonella typhimurium lacking ogt and ada methyltransferases (YG7104, ogt(-); and YG7108, ogt(-), ada(-)). These new recombinant strains exhibit a four- to five-fold greater mutagenic response to dimethylnitrosamine, diethylnitrosamine, and dipropylnitrosamine than strains that contain only CYP2E1 and reductase, and are over 100-fold more sensitive to nitrosamines than the parental strains in the presence of an exogenous activating system (S9 fraction). The four-fold increase in mutagenicity in the presence of cytochrome b(5) was consistent with increasing alkyl chain length up to dibutylnitrosamine, which was poorly activated by CYP2E1. The greatest enhancement was obtained with a tricistronic construct in which the b(5) cDNA preceded the P450 and reductase cDNAs; placing the b(5) cDNA after the reductase cDNA was substantially less effective. These new, highly sensitive strains may prove useful in the detection of nitrosamine contamination of food and environmental samples.
Collapse
Affiliation(s)
- M T Cooper
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536-0305, USA
| | | |
Collapse
|
20
|
Deeni YY, Paine MJ, Ayrton AD, Clarke SE, Chenery R, Wolf CR. Expression, purification, and biochemical characterization of a human cytochrome P450 CYP2D6-NADPH cytochrome P450 reductase fusion protein. Arch Biochem Biophys 2001; 396:16-24. [PMID: 11716457 DOI: 10.1006/abbi.2001.2585] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytochrome P450 CYP2D6 metabolizes a wide range of pharmaceutical compounds. A CYP2D6 fusion enzyme (CYP2D6F), containing an amino-terminal human CYP2D6 sequence and a carboxyterminal human NADPH-cytochrome P450 oxidoreductase (CPR) moiety, was constructed. High levels of expression were achieved in Escherichia coli (60-100 nmol/liter) and the enzyme was catalytically active with optimal activities achieved in the presence of the antioxidant, GSH. Turnover values for bufuralol 1'-hydroxylation, metoprolol alpha-hydroxylation, O-desmethylation, and dextromethorphan O-demethylation, using membranes expressing the fusion enzyme, were 5.6, 0.4, 0.72, and 6.19 min(-1), respectively. These values were similar to E. coli membranes which coexpressed human CYP2D6 and CPR (CYP2D6/R). The K(m) and k(cat) values for bufuralol metabolism were estimated to be 10.2 microM and 4.1 min(-1), respectively. The enzyme was purified using ion-exchange chromatography, affinity chromatography (2'-5' ADP-Sepharose), and gel filtration. Estimated turnover rates for bufuralol 1'-hydroxylation, metoprolol alpha-hydroxylation, O-desmethylation, and dextromethorphan O-demethylation were 1.2, 0.52, 0.79, and 0.76 min(-1), respectively. Bufuralol 1'-hydroxylase activity by purified CYP2D6F was enhanced by phospholipids and added CPR. The CYP2D6F enzyme was able to stimulate CYP3A4 testosterone 6beta-hydroxylase activity in a reconstitution system indicating that electron transfer may be largely intermolecular. The catalytically self-sufficient CYP2D6F enzyme will facilitate investigations of P450-CPR interactions and the development of new biocatalysts.
Collapse
Affiliation(s)
- Y Y Deeni
- Biomedical Research Centre, University of Dundee, Dundee, DD1 9SY, United Kingdom
| | | | | | | | | | | |
Collapse
|
21
|
Hlavica P, Lewis DF. Allosteric phenomena in cytochrome P450-catalyzed monooxygenations. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4817-32. [PMID: 11559350 DOI: 10.1046/j.1432-1327.2001.02412.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Allosteric regulation of monooxygenase activity is shown to occur with diverse cytochrome P450 isoforms and is characterized by kinetic patterns deviating from the Michaelis-Menten model. Homotropic and heterotropic phenomena are encountered in both substrate activation and productive coupling of the electron donors NADPH-cytochrome P450 reductase and cytochrome b5, and the lipid environment of the system also appears to play a role as an effector. Circumstantial analysis reveals the components of the electron transfer chain to be mutually beneficial in interactions with each other depending on the substrate used and type of cytochrome P450 operative. It is noteworthy that association of diatomic gaseous ligands may be amenable to allosteric regulation as well. Thus, dioxygen binding to cytochrome P450 displays nonhyperbolic kinetic profiles in the presence of certain substrates; the latter, together with redox proteins such as cytochrome b5, can exert efficient control of the abortive breakdown of the oxyferrous intermediates formed. Similarly, substrates may modulate the structural features of the access channel for solutes such as carbon monoxide in specific cytochrome P450 isozymes to either facilitate or impair ligand diffusion to the heme iron. The in vivo importance of allosteric regulation of enzyme activity is discussed in detail.
Collapse
Affiliation(s)
- P Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie der LMU, München, Germany.
| | | |
Collapse
|
22
|
|