1
|
Cruz FT, Rosa DP, Vasconcelos AVB, de Oliveira JS, Bleicher L, Santos AMC. Purification and partial physical-chemical characterization of a new bovine trypsin proteoform (zeta-trypsin). Int J Biol Macromol 2024; 268:131860. [PMID: 38670206 DOI: 10.1016/j.ijbiomac.2024.131860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/01/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Recent advancements in enzyme research have unveiled a new proteoform of bovine trypsin, expanding our understanding of this well-characterized enzyme. While generally similar to other trypsins, this novel proteoform comprises three polypeptide chains, marking a significant difference in activity, kinetic properties, and conformational stability. Compared with the already known bovine trypsin proteoforms, the results showed a lower: activity, kcat and kcat.KM-1 and protein 'foldedness' ratio for the new proteoform. Molecular autolysis, a common feature in trypsin and chymotrypsin, has been explored through comparative physical chemistry properties with other proteoforms. This new proteoform of trypsin not only enriches the existing enzyme repertoire but also promises to shed light on the intricate physiological pathway for enzyme inactivation. Our results suggest that the new trypsin proteoform is one of the likely final pathways for enzyme inactivation in a physiological environment. This discovery opens up new avenues for further research into the functional implications of this new trypsin proteoform.
Collapse
Affiliation(s)
- Fabiano Torres Cruz
- Pos-Graduate Program of Biotechnology - Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Dayanne Pinho Rosa
- Pos-Graduate Program of Biochemistry - Federal University of Espírito Santo, Vitória, ES, Brazil
| | | | - Jamil Silvano de Oliveira
- Department of Biochemistry and Immunology - Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas Bleicher
- Department of Biochemistry and Immunology - Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Pos-Graduate at Biochemistry and Immunology - Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexandre Martins Costa Santos
- Pos-Graduate Program of Biotechnology - Federal University of Espírito Santo, Vitória, ES, Brazil; Pos-Graduate Program of Biochemistry - Federal University of Espírito Santo, Vitória, ES, Brazil.
| |
Collapse
|
2
|
Al-Shabib NA, Khan JM, Malik A, Alamri A, Rehman MT, AlAjmi MF, Husain FM. Probing the interaction mechanisms between sunset yellow dye and trypsin protein leading to amorphous aggregation under low pH conditions. Int J Biol Macromol 2024; 265:130442. [PMID: 38417745 DOI: 10.1016/j.ijbiomac.2024.130442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Protein aggregation poses a significant concern in the field of food sciences, and various factors, such as synthetic food dyes, can contribute to protein aggregation. One such dye, Sunset Yellow (SY), is commonly employed in the food industry. Trypsin was used as a model protein to assess the impact of SY. We employed several biophysical techniques to examine the binding and aggregation mechanisms between SY and trypsin at different pHs. Results from intrinsic fluorescence measurements indicate a stronger interaction between SY and trypsin at pH 2.0 compared to pH 6.0. Turbidity data reveal trypsin aggregation in the presence of 0.05-3.0 mM SY at pH 2.0, while no aggregation was observed at pH 6.0. Kinetic data demonstrate a rapid, lag-phase-free SY-induced aggregation of trypsin. Circular dichroism analysis reveals that trypsin adopts a secondary structure in the presence of SY at pH 6.0, whereas at pH 2.0, the secondary structure was nearly lost with increasing SY concentrations. Furthermore, turbidity and kinetics data suggest that trypsin aggregation depends on trypsin concentrations and pH. Our study highlights potential health risks associated with the consumption of SY, providing insights into its impact on human health and emphasizing the necessity for further research in this field.
Collapse
Affiliation(s)
- Nasser Abdulatif Al-Shabib
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Javed Masood Khan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Alamri
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Md Tabish Rehman
- King Saud University, Department of Pharmacognosy, College of Pharmacy, Riyadh 11451, Saudi Arabia
| | - Mohamed F AlAjmi
- King Saud University, Department of Pharmacognosy, College of Pharmacy, Riyadh 11451, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Dong T, Yu P, Zhao J, Wang J. Site specifically probing the unfolding process of human telomere i-motif DNA using vibrationally enhanced alkynyl stretch. Phys Chem Chem Phys 2024; 26:3857-3868. [PMID: 38224126 DOI: 10.1039/d3cp05328h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The microscopic unfolding process of a cytosine-rich DNA forming i-motif by hemi-protonated base pairs is related to gene regulation. However, the detailed thermal unfolding mechanism and the protonation/deprotonation status of site-specific cytosine in DNA in a physiological environment are still obscure. To address this issue, a vibration-enhanced CC probe tagged on 5'E terminal cytosine of human telomere i-motif DNA was examined using linear and nonlinear infrared (IR) spectroscopies and quantum-chemistry calculations. The CC probe extended into the major groove of the i-motif was found using nonlinear IR results only to introduce a minor steric effect on both steady-state structure and local structure dynamics; however, its IR absorption profile effectively reports the cleavage of the hemi-protonated base pair of C1-C13 upon the unfolding with C1 remaining protonated. The temperature mid-point (Tm) of the local transition reported using the CC tag was slightly lower than the Tm of global transition, and the enthalpy of the former exceeds 60% of the global transition. It is shown that the base-pair unraveling is noncooperative, with outer base pairs breaking first and being likely the rate limiting step. Our results offered an in-depth understanding of the macroscopic unfolding characteristics of the i-motif DNA and provided a nonlinear IR approach to monitoring the local structural transition and dynamics of DNA and its complexes.
Collapse
Affiliation(s)
- Tiantian Dong
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pengyun Yu
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Juan Zhao
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Kang P, Xie C, Fall O, Randrianalisoa J, Qin Z. Computational Investigation of Protein Photoinactivation by Molecular Hyperthermia. J Biomech Eng 2021; 143:031004. [PMID: 33156335 PMCID: PMC7871998 DOI: 10.1115/1.4049017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 10/08/2020] [Indexed: 12/30/2022]
Abstract
To precisely control protein activity in a living system is a challenging yet long-pursued objective in biomedical sciences. Recently, we have developed a new approach named molecular hyperthermia (MH) to photoinactivate protein activity of interest without genetic modification. MH utilizes nanosecond laser pulse to create nanoscale heating around plasmonic nanoparticles to inactivate adjacent protein in live cells. Here we use a numerical model to study important parameters and conditions for MH to efficiently inactivate proteins in nanoscale. To quantify the protein inactivation process, the impact zone is defined as the range where proteins are inactivated by the nanoparticle localized heating. Factors that reduce the MH impact zone include the laser pulse duration, temperature-dependent thermal conductivity (versus constant properties), and nonspherical nanoparticle geometry. In contrast, the impact zone is insensitive to temperature-dependent material density and specific heat, as well as thermal interface resistance based on reported data in the literature. The low thermal conductivity of cytoplasm increases the impact zone. Different proteins with various Arrhenius kinetic parameters have significantly different impact zones. This study provides guidelines to design the protein inactivation process by MH.
Collapse
Affiliation(s)
- Peiyuan Kang
- Department of Mechanical Engineering, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080
| | - Chen Xie
- Department of Mechanical Engineering, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080
| | - Oumar Fall
- Department of Mechanical Engineering, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080;Ecole nationale Supérieure d'Ingénieur de Reims (ESIReims), University of Reims Champagne‐Ardenne, 3 Esplanade Roland Garros, Reims 51100, France
| | - Jaona Randrianalisoa
- Institut de Thermique, Mécanique, Matériaux (ITheMM), EA 7548, Université de Reims Champagne-Ardenne, Campus du Moulin de la Housse, F-51687, Reims, France
| | - Zhenpeng Qin
- Department of Mechanical Engineering, Department of Bioengineering, Center for Advanced Pain Studies, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080;Department of Surgery, University of Texas at Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390
| |
Collapse
|
5
|
Evaluation of biological activities, structural and conformational properties of bovine beta- and alpha-trypsin isoforms in aqueous-organic media. Int J Biol Macromol 2021; 176:291-303. [PMID: 33592263 DOI: 10.1016/j.ijbiomac.2021.02.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 01/01/2023]
Abstract
The study of the biological activity of trypsin isoforms in aqueous-organic media is of great interest to various fields of knowledge and biochemistry applications. Thus enzymatic, structural, and energetic properties of bovine β- and α-trypsin isoforms were compared in aqueous-organic media using 30 mg of each isoform. The results showed that the changes induced on the structure and activity of the same trypsin isoform occur at different concentrations. Better results for activity (ionic strength of 0.11 mol·L-1, at 37 °C and pH 8.0) were found in 0-40% of ethanolic media in which the activity for β-trypsin was about 60% higher than ɑ-trypsin. The ethanolic system does not cause significant changes in the level of secondary structure but the β-trypsin isoform undergoes a major rearrangement. The use of until 60% (v/v) ethanol showed that β-trypsin presents a denaturation process 17% more cooperative. The organic solvent causes redistribution in the supramolecular arrangement of both isoforms: all concentrations used induced the β-trypsin molecules to rearrange into agglomerates. The ɑ-trypsin rearranges into agglomerates up to 60% (v/v) of ethanol and aggregates at 80% (v/v) of ethanol. Both isoforms keep the enzymatic activity up to 60% (v/v) of ethanol.
Collapse
|
6
|
Rosa DP, Pereira EV, Vasconcelos AVB, Cicilini MA, da Silva AR, Lacerda CD, de Oliveira JS, Santoro MM, Coitinho JB, Santos AMC. Determination of structural and thermodynamic parameters of bovine α-trypsin isoform in aqueous-organic media. Int J Biol Macromol 2017; 101:408-416. [DOI: 10.1016/j.ijbiomac.2017.03.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 11/16/2022]
|
7
|
Klukkert M, van de Weert M, Fanø M, Rades T, Leopold CS. Influence of Tableting on the Conformation and Thermal Stability of Trypsin as a Model Protein. J Pharm Sci 2015; 104:4314-4321. [DOI: 10.1002/jps.24672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/13/2015] [Accepted: 09/09/2015] [Indexed: 11/05/2022]
|
8
|
Protein sectors: evolutionary units of three-dimensional structure. Cell 2009; 138:774-86. [PMID: 19703402 DOI: 10.1016/j.cell.2009.07.038] [Citation(s) in RCA: 513] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 07/03/2009] [Accepted: 07/30/2009] [Indexed: 11/23/2022]
Abstract
Proteins display a hierarchy of structural features at primary, secondary, tertiary, and higher-order levels, an organization that guides our current understanding of their biological properties and evolutionary origins. Here, we reveal a structural organization distinct from this traditional hierarchy by statistical analysis of correlated evolution between amino acids. Applied to the S1A serine proteases, the analysis indicates a decomposition of the protein into three quasi-independent groups of correlated amino acids that we term "protein sectors." Each sector is physically connected in the tertiary structure, has a distinct functional role, and constitutes an independent mode of sequence divergence in the protein family. Functionally relevant sectors are evident in other protein families as well, suggesting that they may be general features of proteins. We propose that sectors represent a structural organization of proteins that reflects their evolutionary histories.
Collapse
|
9
|
Sahin E, Kiick KL. Macromolecule-Induced Assembly of Coiled-Coils in Alternating Multiblock Polymers. Biomacromolecules 2009; 10:2740-9. [DOI: 10.1021/bm900474k] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Erinc Sahin
- Department of Chemistry and Biochemistry and Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, and Delaware Biotechnology Institute, 15 Innovation Way, Newark, Delaware 19711
| | - Kristi L. Kiick
- Department of Chemistry and Biochemistry and Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, and Delaware Biotechnology Institute, 15 Innovation Way, Newark, Delaware 19711
| |
Collapse
|
10
|
Top A, Kiick KL, Roberts CJ. Modulation of self-association and subsequent fibril formation in an alanine-rich helical polypeptide. Biomacromolecules 2008; 9:1595-603. [PMID: 18452331 DOI: 10.1021/bm800056r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thermal unfolding, reversible self-association, and irreversible aggregation were investigated for an alanine-rich helical polypeptide, 17-H-6, with sequence [AAAQEAAAAQAAAQAEAAQAAQ] 6. Dynamic light scattering, transmission electron microscopy, and thermal unfolding measurements indicate that 17-H-6 spontaneously and reversibly self-associates at acidic pH and low temperature. The resulting multimers have a compact, globular morphology with an average hydrodynamic radius approximately 10-20 nm and reversibly dissociate to monomers upon an increase to pH 7.4. Both free monomer and 17-H-6 chains within the multimers are alpha-helical and folded at low temperature. Reversible unfolding of the monomer occurs upon heating of solutions at pH 7.4. At pH 2.3, heating first causes incomplete dissociation and unfolding of the constituent chains. Further incubation at elevated temperature induces additional structural and morphological changes and results in fibrils with a beta-sheet 2 degrees structure and a characteristic diameter of 5-10 nm (7 nm mean). The ability to modulate association and aggregation suggests opportunities for this class of polypeptides in nanotechnology and biomedical applications.
Collapse
Affiliation(s)
- Ayben Top
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
| | | | | |
Collapse
|
11
|
Liu S, Kiick KL. Architecture Effects on the Binding of Cholera Toxin by Helical Glycopolypeptides. Macromolecules 2008; 41:764-772. [PMID: 19214239 PMCID: PMC2639716 DOI: 10.1021/ma702128a] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A variety of binding events in biological systems are mediated by multivalent interactions between oligosaccharides and saccharide receptors present on pathogens and cell surfaces. In particular, given the important role of multivalent interaction between proteins and carbohydrates in the initial step of pathogen recognition, many glycosylated molecules and polymers have been synthesized in order to mimic the carbohydrate ligands and to inhibit the binding of the pathogen to its target. In this work, we extend our evaluation of the impact of the architecture of well-defined glycopolypeptides on the inhibition of binding of the cholera toxin B pentamer (CT B(5)) subunit. Here we report the production of two families of α-helical glycopolypeptides which were synthesized via a combination of protein engineering and chemical methods. The presentation of pendant saccharides on the polypeptide backbones, as well as their valencies, can be well controlled via these methods. Control of the backbone conformation, introduced in this report, is also possible via these strategies. The polypeptides and glycopolypeptides were characterized via SDS-PAGE analysis, (1)H NMR, and MALDI-TOF mass spectrometry. Their conformation and hydrodynamic volume were characterized by circular dichroic (CD) spectroscopy and gel permeation chromatography (GPC), respectively. The binding of CT B(5) by these glycopolypeptides was evaluated via direct enzyme-linked immunosorbent assay (DELA). The effects of spacing and conformation were elucidated by comparison of the binding exhibited by helical glycopolypeptides with that of random-coil glycopolypeptides.
Collapse
|
12
|
Luo H, Ye F, Sun T, Yue L, Peng S, Chen J, Li G, Du Y, Xie Y, Yang Y, Shen J, Wang Y, Shen X, Jiang H. In vitro biochemical and thermodynamic characterization of nucleocapsid protein of SARS. Biophys Chem 2005; 112:15-25. [PMID: 15501572 PMCID: PMC7116930 DOI: 10.1016/j.bpc.2004.06.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Revised: 06/23/2004] [Accepted: 06/23/2004] [Indexed: 01/01/2023]
Abstract
The major biochemical and thermodynamic features of nucelocapsid protein of SARS coronavirus (SARS_NP) were characterized by use of non-denatured gel electrophoresis, size-exclusion chromatographic and surface plasmon resonance (SPR) techniques. The results showed that SARS_NP existed in vitro as oligomer, more probably dimer, as the basic functional unit. This protein shows its maximum conformational stability near pH 9.0, and it seems that its oligomer dissociation and protein unfolding occur simultaneously. Thermal-induced unfolding for SARS_NP was totally irreversible. Both the thermal and chemical denaturant-induced denaturation analyses showed that oligomeric SARS_NP unfolds and refolds through a two-state model, and the electrostatic interactions among the charge groups of SARS_NP made a significant contribution to its conformational stability.
Collapse
Affiliation(s)
- Haibin Luo
- Drug Discovery and Design Center, State Key Lab of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
- Graduate School of the Chinese Acadamy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fei Ye
- Drug Discovery and Design Center, State Key Lab of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
- Graduate School of the Chinese Acadamy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tao Sun
- Drug Discovery and Design Center, State Key Lab of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
- Graduate School of the Chinese Acadamy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liduo Yue
- Drug Discovery and Design Center, State Key Lab of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
- Graduate School of the Chinese Acadamy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shuying Peng
- Drug Discovery and Design Center, State Key Lab of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
- Graduate School of the Chinese Acadamy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing Chen
- Drug Discovery and Design Center, State Key Lab of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guowei Li
- Drug Discovery and Design Center, State Key Lab of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Du
- Drug Discovery and Design Center, State Key Lab of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Youhua Xie
- Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yiming Yang
- Drug Discovery and Design Center, State Key Lab of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianhua Shen
- Drug Discovery and Design Center, State Key Lab of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuan Wang
- Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xu Shen
- Drug Discovery and Design Center, State Key Lab of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
- Corresponding author. Tel.: +86 21 50807188; fax: +86 21 50807088.
| | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Lab of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
- Corresponding author. Tel.: +86 21 50807188; fax: +86 21 50807088.
| |
Collapse
|
13
|
Bittar ER, Caldeira FR, Santos AMC, G nther AR, Rogana E, Santoro MM. Characterization of ß-trypsin at acid pH by differential scanning calorimetry. Braz J Med Biol Res 2003; 36:1621-7. [PMID: 14666246 DOI: 10.1590/s0100-879x2003001200003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Trypsin is a serino-protease with a polypeptide chain of 223 amino acid residues and contains six disulfide bridges. It is a globular protein with a predominance of antiparallel -sheet and helix in its secondary structure and has two domains with similar structures. We assessed the stability of -trypsin in the acid pH range using microcalorimetric (differential scanning calorimetry) techniques. Protein concentrations varied in the range of 0.05 to 2.30 mg/ml. Buffer solutions of 50.0 mM -alanine and 20.0 mM CaCl2 at different pH values (from 2.0 to 4.2) and concentrations of sorbitol (1.0 and 2.0 M), urea (0.5 M) or guanidinium hydrochloride (0.5 and 1.0 M) were used. The data suggest that we are studying the same conformational transition of the protein in all experimental situations using pH, sorbitol, urea and guanidinium hydrochloride as perturbing agents. The observed van't Hoff ratios (deltaHcal/deltaHvH) of 1.0 to 0.5 in the pH range of 3.2 to 4.2 suggest protein aggregation. In contrast, deltaHcal/deltaHvH ratios equal to one in the pH range of 2.0 to 3.2 suggest that the protein unfolds as a monomer. At pH 3.00, -trypsin unfolded with Tm = 54 C and deltaH = 101.8 kcal/mol, and the change in heat capacity between the native and unfolded forms of the protein (deltaCp) was estimated to be 2.50 0.07 kcal mol-1 K-1. The stability of -trypsin calculated at 298 K was deltaG D = 5.7 kcal/mol at pH 3.00 and deltaG D = 15.2 kcal/mol at pH 7.00, values in the range expected for a small globular protein.
Collapse
Affiliation(s)
- E R Bittar
- Instituto de Estudos Avan ados em Medicina Veterin ria, Universidade de Uberaba, Uberaba, MG, Brasil
| | | | | | | | | | | |
Collapse
|
14
|
Schlehuber S, Skerra A. Tuning ligand affinity, specificity, and folding stability of an engineered lipocalin variant -- a so-called 'anticalin' -- using a molecular random approach. Biophys Chem 2002; 96:213-28. [PMID: 12034442 DOI: 10.1016/s0301-4622(02)00026-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Anticalins are prepared by reshaping the ligand pocket of a natural lipocalin via protein engineering in order to recognize a prescribed ligand. In this manner, the anticalin DigA with specificity for digoxigenin was previously derived from the bilin-binding protein (BBP), a natural lipocalin from Pieris brassicae. The four peptide loops that form its ligand-binding site were randomized and a cognate variant was selected from the resulting library. Here, we propose a concept for improving the ligand-binding properties of this anticalin in an in vitro affinity maturation process by step-wise randomization of restricted areas of the loop region. Following selection on digoxigenin-binding activity via phage display and colony screening, several DigA variants were thus obtained. The recombinant proteins were thoroughly characterized in terms of ligand affinity and specificity, secondary structure and thermal stability against unfolding. The variant DigA16/19, which carries several new mutations, exhibits clearly improved affinity for digoxigenin, with K(D)=12.4 nM. Hence, it is suitable as a sensitive reagent in biochemical detection experiments, especially when produced as a functional fusion protein with alkaline phosphatase as reporter enzyme. In addition, DigA16/19 possesses enhanced ligand specificity and recognizes part of the linker that was used for fixing the steroid group to a carrier protein. Finally, the digoxigenin-binding anticalins appear to have high physico-chemical stability, with T(m) values in the 70 degrees C range. Our present findings support the notion that anticalins provide a useful class of compact and robust ligand-receptor proteins that can be tailored for practical demands.
Collapse
Affiliation(s)
- Steffen Schlehuber
- Lehrstuhl für Biologische Chemie, Technische Universität München, Freising-Weihenstephan, Germany
| | | |
Collapse
|