1
|
Khalil S, Cavagnero KJ, Williams MR, O'Neill A, Nakatsuji T, Gallo RL. Regulation of Epidermal Ferritin Expression Influences Systemic Iron Homeostasis. J Invest Dermatol 2024; 144:84-95.e3. [PMID: 37544587 DOI: 10.1016/j.jid.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 05/31/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Absorption of dietary iron is largely regulated by the liver hormone hepcidin, which is released under conditions of iron overload and inflammation. Although hepcidin-dependent regulation of iron uptake and circulation is well-characterized, recent studies have suggested that the skin may play an important role in iron homeostasis, including transferrin receptor-mediated epidermal iron uptake and direct hepcidin production by keratinocytes. In this study, we characterized direct keratinocyte responses to conditions of high and low iron. We observed potent iron storage capacity by keratinocytes in vitro and in vivo and the effects of iron on epidermal differentiation and gene expression associated with inflammation and barrier function. In mice, systemic iron was observed to be coupled to epidermal iron content. Furthermore, topical inflammation, as opposed to systemic inflammation, resulted in a primary iron-deficiency phenotype associated with low liver hepcidin. These studies suggest a role for keratinocytes and epidermal iron storage as regulators of iron homeostasis with direct contribution by the cutaneous inflammatory state.
Collapse
Affiliation(s)
- Shadi Khalil
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - Kellen J Cavagnero
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - Michael R Williams
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - Alan O'Neill
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - Teruaki Nakatsuji
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - Richard L Gallo
- Department of Dermatology, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
2
|
Kawamura S, Otani M, Miyamoto T, Abe J, Ihara R, Inawaka K, Fantel AG. Different effects of an N-phenylimide herbicide on heme biosynthesis between human and rat erythroid cells. Reprod Toxicol 2021; 99:27-38. [PMID: 33249232 DOI: 10.1016/j.reprotox.2020.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/28/2020] [Accepted: 11/22/2020] [Indexed: 01/10/2023]
Abstract
Rat developmental toxicity including embryolethality and teratogenicity (mainly ventricular septal defects and wavy ribs) were produced by S-53482, an N-phenylimide herbicide that inhibits protoporphyrinogen oxidase (PPO) common to chlorophyll and heme biosynthesis. The sequence of key biological events in the mode of action has been elucidated as follows: inhibition of PPO interferes with normal heme synthesis, which causes loss of blood cells leading to fetal anemia, embryolethality and the development of malformations. In this study we investigated whether the rat is a relevant model for the assessment of the human hazard of the herbicide. To study effects on heme biosynthesis, human erythroleukemia, human cord blood, and rat erythroleukemia cells were treated with the herbicide during red cell differentiation. Protoporphyrin IX, a marker of PPO inhibition, and heme were determined. We investigated whether synchronous maturation of primitive erythropoiesis, which can contribute to massive losses of embryonic blood, occurs in rats. The population of primitive erythroblasts was observed on gestational days 11 through 14. Heme production was suppressed in rat erythroid cells. In contrast, heme reduction was not seen in both human erythroid cells when PPO was inhibited. Rats underwent synchronous maturation in primitive erythropoiesis. Our results combined with epidemiological findings that patients with deficient PPO are not anemic led us to conclude that human erythroblasts are resistant to the herbicide. It is suggested that the rat would be an inappropriate model for assessing the developmental toxicity of S-53482 in humans as rats are specifically sensitive to PPO inhibition by the herbicide.
Collapse
Affiliation(s)
- Satoshi Kawamura
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka, 554-8558, Japan.
| | - Mitsuhiro Otani
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka, 554-8558, Japan
| | - Taiki Miyamoto
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka, 554-8558, Japan
| | - Jun Abe
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka, 554-8558, Japan
| | - Ryo Ihara
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka, 554-8558, Japan
| | - Kunifumi Inawaka
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka, 554-8558, Japan
| | - Alan G Fantel
- Department of Pediatrics, University of Washington, 1959 NE Pacific St. Box 366320, Seattle, WA 98195-6320, USA
| |
Collapse
|
3
|
Piel RB, Shiferaw MT, Vashisht AA, Marcero JR, Praissman JL, Phillips JD, Wohlschlegel JA, Medlock AE. A Novel Role for Progesterone Receptor Membrane Component 1 (PGRMC1): A Partner and Regulator of Ferrochelatase. Biochemistry 2016; 55:5204-17. [PMID: 27599036 DOI: 10.1021/acs.biochem.6b00756] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heme is an iron-containing cofactor essential for multiple cellular processes and fundamental activities such as oxygen transport. To better understand the means by which heme synthesis is regulated during erythropoiesis, affinity purification coupled with mass spectrometry (MS) was performed to identify putative protein partners interacting with ferrochelatase (FECH), the terminal enzyme in the heme biosynthetic pathway. Both progesterone receptor membrane component 1 (PGRMC1) and progesterone receptor membrane component 2 (PGRMC2) were identified in these experiments. These interactions were validated by reciprocal affinity purification followed by MS analysis and immunoblotting. The interaction between PGRMC1 and FECH was confirmed in vitro and in HEK 293T cells, a non-erythroid cell line. When cells that are recognized models for erythroid differentiation were treated with a small molecule inhibitor of PGRMC1, AG-205, there was an observed decrease in the level of hemoglobinization relative to that of untreated cells. In vitro heme transfer experiments showed that purified PGRMC1 was able to donate heme to apo-cytochrome b5. In the presence of PGRMC1, in vitro measured FECH activity decreased in a dose-dependent manner. Interactions between FECH and PGRMC1 were strongest for the conformation of FECH associated with product release, suggesting that PGRMC1 may regulate FECH activity by controlling heme release. Overall, the data illustrate a role for PGRMC1 in regulating heme synthesis via interactions with FECH and suggest that PGRMC1 may be a heme chaperone or sensor.
Collapse
Affiliation(s)
- Robert B Piel
- Department of Biochemistry and Molecular Biology, Biomedical and Health Sciences Institute, AU/UGA Medical Partnership, University of Georgia , Athens, Georgia 30602, United States
| | - Mesafint T Shiferaw
- Department of Biochemistry and Molecular Biology, Biomedical and Health Sciences Institute, AU/UGA Medical Partnership, University of Georgia , Athens, Georgia 30602, United States
| | - Ajay A Vashisht
- Department of Biological Chemistry, University of California , Los Angeles, California 90095-1737, United States
| | - Jason R Marcero
- Department of Biochemistry and Molecular Biology, Biomedical and Health Sciences Institute, AU/UGA Medical Partnership, University of Georgia , Athens, Georgia 30602, United States
| | - Jeremy L Praissman
- Department of Biochemistry and Molecular Biology, Biomedical and Health Sciences Institute, AU/UGA Medical Partnership, University of Georgia , Athens, Georgia 30602, United States
| | - John D Phillips
- Hematology Division, University of Utah School of Medicine , Salt Lake City, Utah 84132, United States
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California , Los Angeles, California 90095-1737, United States
| | - Amy E Medlock
- Department of Biochemistry and Molecular Biology, Biomedical and Health Sciences Institute, AU/UGA Medical Partnership, University of Georgia , Athens, Georgia 30602, United States
| |
Collapse
|
4
|
Fukuda Y, Cheong PL, Lynch J, Brighton C, Frase S, Kargas V, Rampersaud E, Wang Y, Sankaran VG, Yu B, Ney PA, Weiss MJ, Vogel P, Bond PJ, Ford RC, Trent RJ, Schuetz JD. The severity of hereditary porphyria is modulated by the porphyrin exporter and Lan antigen ABCB6. Nat Commun 2016; 7:12353. [PMID: 27507172 PMCID: PMC4987512 DOI: 10.1038/ncomms12353] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 06/23/2016] [Indexed: 01/10/2023] Open
Abstract
Hereditary porphyrias are caused by mutations in genes that encode haem biosynthetic enzymes with resultant buildup of cytotoxic metabolic porphyrin intermediates. A long-standing open question is why the same causal porphyria mutations exhibit widely variable penetrance and expressivity in different individuals. Here we show that severely affected porphyria patients harbour variant alleles in the ABCB6 gene, also known as Lan, which encodes an ATP-binding cassette (ABC) transporter. Plasma membrane ABCB6 exports a variety of disease-related porphyrins. Functional studies show that most of these ABCB6 variants are expressed poorly and/or have impaired function. Accordingly, homozygous disruption of the Abcb6 gene in mice exacerbates porphyria phenotypes in the Fechm1Pas mouse model, as evidenced by increased porphyrin accumulation, and marked liver injury. Collectively, these studies support ABCB6 role as a genetic modifier of porphyria and suggest that porphyrin-inducing drugs may produce excessive toxicities in individuals with the rare Lan(−) blood type. Accumulation of intermediates of haem biosynthesis, porphyrins, is harmful and usually inherited, but it is unclear how the same mutation may make some individuals more ill than others. Here, the authors show that a porphyrin transporter ABCB6 is a modulator of porphyria, and that patients with functionally defective ABCB6 show more severe symptoms.
Collapse
Affiliation(s)
- Yu Fukuda
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Pak Leng Cheong
- Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - John Lynch
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Cheryl Brighton
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Sharon Frase
- Department of Tissue Cell Biology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Vasileios Kargas
- Department of Structural Biology, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Evadnie Rampersaud
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.,Department of Hematology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Yao Wang
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Bing Yu
- Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Paul A Ney
- New York Blood Center, New York, New York 10065, USA
| | - Mitchell J Weiss
- Department of Hematology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Peter Vogel
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Peter J Bond
- Bioinformatics Institute, 30 Biopolis Street, Singapore 138671, Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Robert C Ford
- Department of Structural Biology, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Ronald J Trent
- Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
5
|
Medlock AE, Shiferaw MT, Marcero JR, Vashisht AA, Wohlschlegel JA, Phillips JD, Dailey HA. Identification of the Mitochondrial Heme Metabolism Complex. PLoS One 2015; 10:e0135896. [PMID: 26287972 PMCID: PMC4545792 DOI: 10.1371/journal.pone.0135896] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/28/2015] [Indexed: 11/21/2022] Open
Abstract
Heme is an essential cofactor for most organisms and all metazoans. While the individual enzymes involved in synthesis and utilization of heme are fairly well known, less is known about the intracellular trafficking of porphyrins and heme, or regulation of heme biosynthesis via protein complexes. To better understand this process we have undertaken a study of macromolecular assemblies associated with heme synthesis. Herein we have utilized mass spectrometry with coimmunoprecipitation of tagged enzymes of the heme biosynthetic pathway in a developing erythroid cell culture model to identify putative protein partners. The validity of these data obtained in the tagged protein system is confirmed by normal porphyrin/heme production by the engineered cells. Data obtained are consistent with the presence of a mitochondrial heme metabolism complex which minimally consists of ferrochelatase, protoporphyrinogen oxidase and aminolevulinic acid synthase-2. Additional proteins involved in iron and intermediary metabolism as well as mitochondrial transporters were identified as potential partners in this complex. The data are consistent with the known location of protein components and support a model of transient protein-protein interactions within a dynamic protein complex.
Collapse
Affiliation(s)
- Amy E. Medlock
- Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, United States of America
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
- GRU-UGA Medical Partnership, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| | - Mesafint T. Shiferaw
- Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, United States of America
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
- GRU-UGA Medical Partnership, University of Georgia, Athens, Georgia, United States of America
| | - Jason R. Marcero
- Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, United States of America
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Ajay A. Vashisht
- Department of Biological Chemistry and the Institute of Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - James A. Wohlschlegel
- Department of Biological Chemistry and the Institute of Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - John D. Phillips
- Division of Hematology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Harry A. Dailey
- Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, United States of America
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
6
|
Hift RJ, Thunell S, Brun A. Drugs in porphyria: From observation to a modern algorithm-based system for the prediction of porphyrogenicity. Pharmacol Ther 2011; 132:158-69. [DOI: 10.1016/j.pharmthera.2011.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 06/01/2011] [Indexed: 02/06/2023]
|
7
|
Song G, Li Y, Cheng C, Zhao Y, Gao A, Zhang R, Joachimiak A, Shaw N, Liu ZJ. Structural insight into acute intermittent porphyria. FASEB J 2008; 23:396-404. [PMID: 18936296 DOI: 10.1096/fj.08-115469] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Acute intermittent porphyria (AIP), an inherited disease of heme biosynthesis, is one of the most common types of porphyria. Reduced activity of the enzyme porphobilinogen deaminase (PBGD), which catalyzes the sequential condensation of 4 molecules of porphobilinogen to yield preuroporphyrinogen, has been linked to the symptoms of AIP. We have determined the 3-dimensional structure of human PBGD at 2.2 A resolution. Analysis of the structure revealed a dipyrromethane cofactor molecule covalently linked to C261, sitting in a positively charged cleft region. In addition to the critical catalytic D99, a number of other residues are seen hydrogen bonded to the cofactor and play a role in catalysis. Sequential entry of 4 pyrrole molecules into the active site is accomplished by movement of the domains around the hinges. H120P mutation resulted in an inactive enzyme, supporting the role of H120 as a hinge residue. Interestingly, some of the mutations of the human PBGD documented in patients suffering from AIP are located far away from the active site. The structure provides insights into the mechanism of action of PBGD at the molecular level and could aid the development of potential drugs for the up-regulation of PBGD activity in AIP.
Collapse
Affiliation(s)
- Gaojie Song
- National Laboratory of Biomacromolecules, Institute of Biophysics, 15 Datun Lu, Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Winkelmann I, Näßl AM, Daniel H, Wenzel U. Proteome response in HT-29 human colorectal cancer cells to two apoptosis-inducing compounds with different mode of action. Int J Cancer 2008; 122:2223-32. [DOI: 10.1002/ijc.23387] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
9
|
Fuchs D, Dirscherl B, Schroot JH, Daniel H, Wenzel U. Proteome analysis suggests that mitochondrial dysfunction in stressed endothelial cells is reversed by a soy extract and isolated isoflavones. J Proteome Res 2007; 6:2132-42. [PMID: 17503794 DOI: 10.1021/pr060547y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Apoptosis is a driving force in atherosclerosis development. A soy extract or a combination of the soy isoflavones genistein and daidzein inhibited apoptosis induced by oxidized LDL in endothelial cells. Proteome analysis revealed that the LDL-induced alterations of numerous proteins were reversed by the extract and the genistein/daidzein mixture but only three protein entities, all functionally linked to mitochondrial dysfunction, were regulated in common by both treatments.
Collapse
Affiliation(s)
- Dagmar Fuchs
- Department of Food and Nutrition, Molecular Nutrition Unit, Technical University of Munich, Am Forum 5, D-85350 Freising, Germany
| | | | | | | | | |
Collapse
|
10
|
Shinjyo N, Kita K. Up-Regulation of Heme Biosynthesis during Differentiation of Neuro2a Cells. ACTA ACUST UNITED AC 2006; 139:373-81. [PMID: 16567402 DOI: 10.1093/jb/mvj040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Heme is an iron-containing tetrapyrrole molecule that functions as a prosthetic group for proteins such as mitochondrial respiratory enzymes. Several studies have suggested that heme has essential functions in the construction and maintenance of the nervous system. In this study, the contents of three biologically important forms of heme (types a, b, and c) and the expression of heme biosynthetic enzymes were examined in differentiating Neuro2a cells. During neuronal differentiation, there were increases in the cellular heme levels and increases in the mRNA levels for the rate-limiting enzymes of heme biosynthesis, such as aminolevulinic acid synthase (ALAS; EC 2.3.1.37) and coproporphyrinogen oxidase (EC 1.3.3.3). With respect to heme contents, heme b increased in the late phase of differentiation, but no apparent increase in heme a or b was observed in the early phase. In contrast, heme c (cytochrome c) markedly increased during the early phase of differentiation. This change preceded the increase in heme b and the up-regulation of the mRNA levels for heme biosynthetic enzymes. This study suggests the up-regulation of heme biosynthesis and differential regulation of the heme a, b, and c levels during neuronal differentiation.
Collapse
Affiliation(s)
- Noriko Shinjyo
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| | | |
Collapse
|
11
|
Tsiftsoglou AS, Tsamadou AI, Papadopoulou LC. Heme as key regulator of major mammalian cellular functions: molecular, cellular, and pharmacological aspects. Pharmacol Ther 2006; 111:327-45. [PMID: 16513178 DOI: 10.1016/j.pharmthera.2005.10.017] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 10/07/2005] [Accepted: 10/07/2005] [Indexed: 11/26/2022]
Abstract
Heme (iron protoporphyrin IX) exists as prosthetic group in several hemoproteins, which include respiration cytochromes, gas sensors, P450 enzymes (CYPs), catalases, peroxidases, nitric oxide synthases (NOS), guanyl cyclases, and even transcriptional factors. Hemin (the oxidized form of iron protoporphyrin IX) on the other hand is an essential regulator of gene expression and growth promoter of hematopoietic progenitor cells. This review is focused on the major developments occurred in this field of heme biosynthesis and catabolism and their implications in our understanding the pathogenesis of heme-related disorders like anemias, acute porphyrias, hematological malignancies (leukemias), and other disorders. Heme is transported into hematopoietic cells and enters the nucleus where it activates gene expression by removing transcriptional potential repressors, like Bach1, from enhancer DNA sequences. Evidence also exists to indicate that heme acts like a signaling ligand in cell respiration and metabolism, stress response adaptive processes, and even transcription of several genes. Impaired heme biosynthesis or heme deficiency lead to hematological disorders, tissue degeneration, and aging, while heme prevents cell damage via activation of heme oxygenase-1 (HO-1) gene. Therefore, heme, besides being a key regulator of mammalian functions, can be also a useful therapeutic agent alone or in combination with other drugs in several heme-related disorders.
Collapse
Affiliation(s)
- Asterios S Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki GR54124, Macedonia, Greece.
| | | | | |
Collapse
|
12
|
Schranzhofer M, Schifrer M, Cabrera JA, Kopp S, Chiba P, Beug H, Müllner EW. Remodeling the regulation of iron metabolism during erythroid differentiation to ensure efficient heme biosynthesis. Blood 2006; 107:4159-67. [PMID: 16424395 DOI: 10.1182/blood-2005-05-1809] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Terminal erythropoiesis is accompanied by extreme demand for iron to ensure proper hemoglobinization. Thus, erythroblasts must modify the "standard" post-transcriptional feedback regulation, balancing expression of ferritin (Fer; iron storage) versus transferrin receptor (TfR1; iron uptake) via specific mRNA binding of iron regulatory proteins (IRPs). Although erythroid differentiation involves high levels of incoming iron, TfR1 mRNA stability must be sustained and Fer mRNA translation must not be activated because iron storage would counteract hemoglobinization. Furthermore, translation of the erythroid-specific form of aminolevulinic acid synthase (ALAS-E) mRNA, catalyzing the first step of heme biosynthesis and regulated similarly as Fer mRNA by IRPs, must be ensured. We addressed these questions using mass cultures of primary murine erythroid progenitors from fetal liver, either undergoing sustained proliferation or highly synchronous differentiation. We indeed observed strong inhibition of Fer mRNA translation and efficient ALAS-E mRNA translation in differentiating erythroblasts. Moreover, in contrast to self-renewing cells, TfR1 stability and IRP mRNA binding were no longer modulated by iron supply. These and additional data stemming from inhibition of heme synthesis with succinylacetone or from iron overload suggest that highly efficient utilization of iron in mitochondrial heme synthesis during normal erythropoiesis alters the regulation of iron metabolism via the IRE/IRP system.
Collapse
Affiliation(s)
- Matthias Schranzhofer
- Department of Medical Biochemistry, Division of Molecular Biology, Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Medical University of Vienna, Dr Bohr-Gasse 9, A-1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
13
|
Schoenfeld RA, Napoli E, Wong A, Zhan S, Reutenauer L, Morin D, Buckpitt AR, Taroni F, Lonnerdal B, Ristow M, Puccio H, Cortopassi GA. Frataxin deficiency alters heme pathway transcripts and decreases mitochondrial heme metabolites in mammalian cells. Hum Mol Genet 2005; 14:3787-99. [PMID: 16239244 DOI: 10.1093/hmg/ddi393] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Deficiency of the frataxin mRNA alters the transcriptome, triggering neuro- and cardiodegeneration in Friedreich's ataxia. We microarrayed murine frataxin-deficient heart tissue, liver tissue and cardiocytes and observed a transcript down-regulation to up-regulation ratio of nearly 2:1 with a mitochondrial localization of transcriptional changes. Combining all mouse and human microarray data for frataxin-deficient cells and tissues, the most consistently decreased transcripts were mitochondrial coproporphyrinogen oxidase (CPOX) of the heme pathway and mature T-cell proliferation 1, a homolog of yeast COX23, which is thought to function as a mitochondrial metallochaperone. Quantitative RT-PCR studies confirmed the significant down-regulation of Isu1, CPOX and ferrochelatase at 10 weeks in mouse hearts. We observed that mutant cells were resistant to aminolevulinate-dependent toxicity, as expected if the heme pathway was inhibited. Consistent with this, we observed increased cellular protoporphyrin IX levels, reduced mitochondrial heme a and heme c levels and reduced activity of cytochrome oxidase, suggesting a defect between protoporphyrin IX and heme a. Fe-chelatase activities were similar in mutants and controls, whereas Zn-chelatase activities were slightly elevated in mutants, supporting the idea of an altered metal-specificity of ferrochelatase. These results suggest that frataxin deficiency causes defects late in the heme pathway. As ataxic symptoms occur in other diseases of heme deficiency, the heme defect we observe in frataxin-deficient cells could be primary to the pathophysiological process.
Collapse
Affiliation(s)
- Robert A Schoenfeld
- Department of Molecular Biosciences, University of California, Davis 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Susa S, Daimon M, Ono H, Li S, Yoshida T, Kato T. Heme inhibits the mitochondrial import of coproporphyrinogen oxidase. Blood 2002; 100:4678-9. [PMID: 12453883 DOI: 10.1182/blood-2002-08-2621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Zoller H, Decristoforo C, Weiss G. Erythroid 5-aminolevulinate synthase, ferrochelatase and DMT1 expression in erythroid progenitors: differential pathways for erythropoietin and iron-dependent regulation. Br J Haematol 2002; 118:619-26. [PMID: 12139757 DOI: 10.1046/j.1365-2141.2002.03626.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To determine whether erythropoietin (EPO) affects haem biosynthesis and iron transport, we studied the effects of EPO on the expression of erythroid 5-aminolevulinate synthase (eALAS), ferrochelatase and divalent metal transporter 1 (DMT-1) in human erythroid progenitor cells, and in the murine and human erythroid cell lines MEL and K562. Cytoplasmic e-ALAS mRNA levels were significantly increased after incubation of cells with EPO for at least 24 h, which could be the result of a transcriptional mechanism. In contrast, ferrochelatase or DMT-1 mRNA expression were not affected. Moreover, EPO also increased e-ALAS enzyme activity after only 4 h of stimulation, when mRNA levels were unchanged. The underlying mechanism was an effect of EPO on e-ALAS mRNA translation, which was under the control of iron regulatory proteins (IRP) 1 and 2. Thereby, EPO weakened the binding affinity of IRP-2 to the iron responsive element (IRE) within e-ALAS mRNA which resulted in the increased expression of e-ALAS IRE-controlled reporter gene constructs, following EPO stimulation. Our results show that EPO directly affected haem biosynthesis by stimulating the transcriptional and post-transcriptional expression of the key enzyme e-ALAS. These data provide new insights into the complex biochemical interaction between iron metabolism, haem biosynthesis and EPO biology.
Collapse
Affiliation(s)
- Heinz Zoller
- Department of Medicine, University Hospital Innsbruck, Anichstrasse 25, A-6020 Innsbruck, Austria
| | | | | |
Collapse
|