1
|
Seifer P, Hay E, Fleischhauer L, Heilig J, Bloch W, Sonntag S, Shmerling D, Clausen-Schaumann H, Aszodi A, Niehoff A, Cohen-Solal M, Paulsson M, Wagener R, Zaucke F. The Matrilin-3 T298M mutation predisposes for post-traumatic osteoarthritis in a knock-in mouse model. Osteoarthritis Cartilage 2021; 29:78-88. [PMID: 33227438 DOI: 10.1016/j.joca.2020.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/04/2020] [Accepted: 09/29/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The human matrilin-3 T303M (in mouse T298M) mutation has been proposed to predispose for osteoarthritis, but due to the lack of an appropriate animal model this hypothesis could not be tested. This study was carried out to identify pathogenic mechanisms in a transgenic mouse line by which the mutation might contribute to disease development. METHODS A mouse line carrying the T298M point mutation in the Matn3 locus was generated and features of skeletal development in ageing animals were characterized by immunohistology, micro computed tomography, transmission electron microscopy and atomic force microscopy. The effect of transgenic matrilin-3 was also studied after surgically induced osteoarthritis. RESULTS The matrilin-3 T298M mutation influences endochondral ossification and leads to larger cartilage collagen fibril diameters. This in turn leads to an increased compressive stiffness of the articular cartilage, which, upon challenge, aggravates osteoarthritis development. CONCLUSIONS The mouse matrilin-3 T298M mutation causes a predisposition for post-traumatic osteoarthritis and the corresponding knock-in mouse line therefore represents a valid model for investigating the pathogenic mechanisms involved in osteoarthritis development.
Collapse
Affiliation(s)
- P Seifer
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - E Hay
- Inserm UMR1132 and Paris Diderot University, Paris, France
| | - L Fleischhauer
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, Munich, Germany; Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - J Heilig
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany; Cologne Center for Musculoskeletal Biomechanics (CCMB), Medical Faculty, University of Cologne, Cologne, Germany
| | - W Bloch
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - S Sonntag
- ETH Phenomics Center (EPIC), Zurich, Switzerland
| | | | - H Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, Munich, Germany
| | - A Aszodi
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, Munich, Germany; Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - A Niehoff
- Cologne Center for Musculoskeletal Biomechanics (CCMB), Medical Faculty, University of Cologne, Cologne, Germany; Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany
| | - M Cohen-Solal
- Inserm UMR1132 and Paris Diderot University, Paris, France
| | - M Paulsson
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - R Wagener
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - F Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim GGmbH, Frankfurt Am Main, Germany.
| |
Collapse
|
2
|
Fibulins and matrilins are novel structural components of the periodontium in the mouse. Arch Oral Biol 2017; 82:216-222. [PMID: 28654783 DOI: 10.1016/j.archoralbio.2017.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 05/16/2017] [Accepted: 06/11/2017] [Indexed: 11/23/2022]
Abstract
Periodontitis refers to inflammatory disease of the periodontal structures (the gingiva, dental cementum, periodontal ligament (PDL) and alveolar bone) that ultimately leads to their destruction. Whereas collagens are well-examined main components of the periodontium, little is known about the other structural proteins that make up this tissue. The aim of this study was to identify new extracellular matrix (ECM) components, including fibulins and matrilins, in the periodontium of mice. After sacrificing 14 mice (Sv/129 strain), jaws were prepared. Each tissue sample contained a molar and its surrounding alveolar bone. Immunohistochemistry was carried out on paraffin-embedded sections. Our results show that mice exhibit fibulin-3, -4 and -5 and matrilin-1, -2, -3 and -4 in PDL and in blood vessels of alveolar bone and PDL as well as in the pericellular matrix of osteocytes and cementocytes. In dental cementum, only fibulin-4 is expressed. For the first time, we show that fibulin-3, -4 and -5 and matrilin-1, -2, -3 and -4 are essential components of the periodontal tissues. Our findings indicate an association of these proteins with collagens and oxytalan fibers that might be of future interest in regenerative periodontitis therapy.
Collapse
|
3
|
Bell PA, Piróg KA, Fresquet M, Thornton DJ, Boot-Handford RP, Briggs MD. Loss of matrilin 1 does not exacerbate the skeletal phenotype in a mouse model of multiple epiphyseal dysplasia caused by a Matn3 V194D mutation. ACTA ACUST UNITED AC 2012; 64:1529-39. [PMID: 22083516 PMCID: PMC3374853 DOI: 10.1002/art.33486] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Objective Mutations in matrilin 3 can result in multiple epiphyseal dysplasia (MED), a disease characterized by delayed and irregular bone growth and early-onset osteoarthritis. Although intracellular retention of the majority of mutant matrilin 3 was previously observed in a murine model of MED caused by a Matn3 V194D mutation, some mutant protein was secreted into the extracellular matrix. Thus, it was proposed that secretion of mutant matrilin 3 may be dependent on the formation of hetero-oligomers with matrilin 1. The aim of this study was to investigate the hypothesis that deletion of matrilin 1 would abolish the formation of matrilin 1/matrilin 3 hetero-oligomers, eliminate the secretion of mutant matrilin 3, and influence disease severity. Methods Mice with a Matn3 V194D mutation were crossed with Matn1-null mice, generating mice that were homozygous for V194D and null for matrilin 1. This novel mouse was used for in-depth phenotyping, while cartilage and chondrocytes were studied both histochemically and biochemically. Results Endochondral ossification was not disrupted any further in mice with a double V194D mutation compared with mice with a single mutation. A similar proportion of mutant matrilin 3 was present in the extracellular matrix, and the amount of retained mutant matrilin 3 was not noticeably increased. Retained mutant matrilin 3 formed disulfide-bonded aggregates and caused the co-retention of matrilin 1. Conclusion We showed that secretion of matrilin 3 V194D mutant protein is not dependent on hetero-oligomerization with matrilin 1, and that the total ablation of matrilin 1 expression has no impact on disease severity in mice with MED. Mutant matrilin 3 oligomers form non-native disulfide-bonded aggregates through the misfolded A domain.
Collapse
|
4
|
Klatt AR, Becker AKA, Neacsu CD, Paulsson M, Wagener R. The matrilins: Modulators of extracellular matrix assembly. Int J Biochem Cell Biol 2011; 43:320-30. [DOI: 10.1016/j.biocel.2010.12.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 01/30/2023]
|
5
|
Fresquet M, Jowitt TA, Stephen LA, Ylöstalo J, Briggs MD. Structural and functional investigations of Matrilin-1 A-domains reveal insights into their role in cartilage ECM assembly. J Biol Chem 2010; 285:34048-61. [PMID: 20729554 PMCID: PMC2962504 DOI: 10.1074/jbc.m110.154443] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Matrilin-1 is expressed predominantly in cartilage and co-localizes with matrilin-3 with which it can form hetero-oligomers. We recently described novel structural and functional features of the matrilin-3 A-domain (M3A) and demonstrated that it bound with high affinity to type II and IX collagens. Interactions preferentially occurred in the presence of Zn2+ suggesting that matrilin-3 has acquired a requirement for specific metal ions for activation and/or molecular associations. To understand the interdependence of matrilin-1/-3 hetero-oligomers in extracellular matrix (ECM) interactions, we have extended these studies to include the two matrilin-1 A-domains (i.e. M1A1 and M1A2 respectively). In this study we have identified new characteristics of the matrilin-1 A-domains by describing their glycosylation state and the effect of N-glycan chains on their structure, thermal stability, and protein-protein interactions. Initial characterization revealed that N-glycosylation did not affect secretion of these two proteins, nor did it alter their folding characteristics. However, removal of the glycosylation decreased their thermal stability. We then compared the effect of different cations on binding between both M1A domains and type II and IX collagens and showed that Zn2+ also supports their interactions. Finally, we have demonstrated that both M1A1 domains and biglycan are essential for the association of the type II·VI collagen complex. We predict that a potential role of the matrilin-1/-3 hetero-oligomer might be to increase multivalency, and therefore the ability to connect various ECM components. Differing affinities could act to regulate the integrated network, thus coordinating the organization of the macromolecular structures in the cartilage ECM.
Collapse
Affiliation(s)
- Maryline Fresquet
- Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | | | |
Collapse
|
6
|
Eliasson GJ, Verbruggen G, Stefansson SE, Ingvarsson T, Jonsson H. Hand radiology characteristics of patients carrying the T303M mutation in the gene for matrilin‐3. Scand J Rheumatol 2009; 35:138-42. [PMID: 16641049 DOI: 10.1080/03009740500303215] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To determine whether the recently described hand osteoarthritis (HOA)-associated T(303)M mutation in the gene for matrilin-3 (MATN3) is associated with specific radiological changes on hand radiographs. METHOD Standard hand radiographs from 26 HOA patients carrying the T(303)M missense mutation in the MATN3 gene (T(303)M patients) were compared with those from 52 HOA controls matched for sex, age, and clinical disease severity. Two blinded readers scored the radiographs, using the Verbruggen-Veys anatomical scoring system for the interphalangeal and metacarpophalangeal joints and the OARSI atlas scoring system for the first carpometacarpal (CMC1) joints. A scoring system based on the latter was used for the scaphoid-trapezoid-trapezoideum (STT) joints. RESULTS No particular distinguishing features were found in the T(303)M patients and the prevalence of erosive and cystic changes was similar to the control group. As a group, however, the T(303)M patients had more severe thumb-base affection, particularly in the STT joint. Thus, definite radiological OA in both CMC1 and STT joints and higher STT scores compared with CMC1 were significantly more common in patients carrying the T(303)M mutation. Radiological scores for joint-space narrowing (CMC1 and STT) and osteophytes (STT) were also significantly higher in the T(303)M patients. CONCLUSION Patients carrying the T(303)M mutation in the gene for matrilin-3 express a form of HOA that is radiologically indistinguishable from idiopathic HOA in individual patients but they have more severe thumb-base involvement, particularly in the STT joint. This is the first described genetic mutation that is associated with a common form of osteoarthritis.
Collapse
|
7
|
Wilson R, Bateman JF. Cartilage proteomics: Challenges, solutions and recent advances. Proteomics Clin Appl 2008; 2:251-63. [DOI: 10.1002/prca.200780007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
8
|
Mann HH, Sengle G, Gebauer JM, Eble JA, Paulsson M, Wagener R. Matrilins mediate weak cell attachment without promoting focal adhesion formation. Matrix Biol 2007; 26:167-74. [PMID: 17156989 DOI: 10.1016/j.matbio.2006.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 10/17/2006] [Accepted: 10/23/2006] [Indexed: 10/23/2022]
Abstract
The matrilins form a family of non-collagenous adaptor proteins in the extracellular matrix. The extracellular ligand interactions of matrilins have been studied in some detail, while the potential interplay between matrilins and cells has been largely neglected. Except for matrilin-4, all matrilins mediate cell attachment, but only for matrilin-1 and -3 the binding is clearly dose dependent and seen already at moderate coating concentrations. Even so, much higher concentrations of matrilin-1 or -3 than of fibronectin are required for cell attachment to reach plateau values. Integrins contribute to the matrilin-mediated cell attachment, but the binding does not lead to formation of focal contacts and reorganisation of the actin cytoskeleton. Cells deficient in beta1 integrins are able to adhere, although weaker, and matrilins do not bind the soluble integrin alpha1beta1 and alpha2beta1 ectodomains. Cell surface proteoglycans may promote the attachment, as cells deficient in glycosaminoglycan biosynthesis adhere less well to matrilin-3. Even so, exogenous glycosaminoglycans are not able to compete for the attachment of HaCaT cells to matrilins.
Collapse
Affiliation(s)
- Henning H Mann
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Lammi MJ, Häyrinen J, Mahonen A. Proteomic analysis of cartilage- and bone-associated samples. Electrophoresis 2006; 27:2687-701. [PMID: 16739228 DOI: 10.1002/elps.200600004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The skeleton of the human body is built of cartilage and bone, which are tissues that contain extensive amounts of extracellular matrix (ECM). In bone, inorganic mineral hydroxyapatite forms 50-70% of the whole weight of the tissue. Although the organic matrix of bone consists of numerous proteins, 90% of it is composed of type I collagen. In cartilage, ECM forms a major fraction of the tissue, type II collagen and aggrecans being the most abundant macromolecules. It is obvious that the high content of ECM components causes analytical problems in the proteomic analysis of cartilage and bone, analogous to those in the analysis of low-abundance proteins present in serum. The massive contents of carbohydrates present in cartilage proteoglycans, and hydroxyapatite in bone, further complicate the situation. However, the development of proteomic tools makes them more and more tempting also for research of musculoskeletal tissues. Application of proteomic techniques to the research of chondrocytes, osteoblasts, osteocytes, and osteoclasts in cell cultures can immediately benefit from the present knowledge. Here we make an overview to previous proteomic research of cartilage- and bone-associated samples and evaluate the future prospects of applying proteomic techniques to investigate key events, such as cellular signal transduction, in cartilage- and bone-derived cells.
Collapse
Affiliation(s)
- Mikko J Lammi
- Department of Anatomy, Institute of Biomedicine, University of Kuopio, Finland.
| | | | | |
Collapse
|
10
|
Ko YP, Kobbe B, Paulsson M, Wagener R. Zebrafish (Danio rerio) matrilins: shared and divergent characteristics with their mammalian counterparts. Biochem J 2005; 386:367-79. [PMID: 15588228 PMCID: PMC1134802 DOI: 10.1042/bj20041486] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have cloned the cDNAs of the zebrafish (Danio rerio) members of the matrilin family of extracellular adaptor proteins. In contrast to mammals, no orthologue of matrilin-2 was found in zebrafish, either by RT (reverse-transcriptase) PCR using degenerated primers or by screening the databases (Ensembl and NCBI); however, two forms of matrilin-3, matrilin-3a and -3b, were present. The identity with the mammalian matrilins is from more than 70% for the VWA (von Willebrand factor A)-like domains to only 28% for the coiled-coil domains of matrilin-3a and -3b. In all zebrafish matrilins we found a greater variety of splice variants than in mammals, with splicing mainly affecting the number of EGF (epidermal growth factor)-like repeats. The exon-intron organization is nearly identical with that of mammals, and also the characteristic AT-AC intron interrupting the exons coding for the coiled-coil domain is conserved. In the matrilin-3b gene a unique exon codes for a proline- and serine/threonine-rich domain, possibly having mucin-like properties. The matrilin-1 and -3a genes were mapped to chromosome 19 and 20 respectively by the radiation hybrid method. The temporal and spatial expression of zebrafish matrilins is similar to that seen in the mouse. Zebrafish matrilin-4 is highly expressed as early as 24 hpf (h post fertilization), whereas the other matrilins show peak expression at 72 hpf. By immunostaining of whole mounts and sections, we found that matrilin-1 and -3a show predominantly skeletal staining, whereas matrilin-4 is more widespread, with the protein also being present in loose connective tissues and epithelia.
Collapse
Affiliation(s)
- Ya-Ping Ko
- *Centre for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, D-50931 Cologne, Germany
| | - Birgit Kobbe
- *Centre for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, D-50931 Cologne, Germany
| | - Mats Paulsson
- *Centre for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, D-50931 Cologne, Germany
- †Centre for Molecular Medicine, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, D-50931 Cologne, Germany
| | - Raimund Wagener
- *Centre for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, D-50931 Cologne, Germany
- To whom correspondence should be addressed (email )
| |
Collapse
|
11
|
Wagener R, Ehlen HWA, Ko YP, Kobbe B, Mann HH, Sengle G, Paulsson M. The matrilins--adaptor proteins in the extracellular matrix. FEBS Lett 2005; 579:3323-9. [PMID: 15943978 DOI: 10.1016/j.febslet.2005.03.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2005] [Indexed: 11/27/2022]
Abstract
The matrilins form a four-member family of modular, multisubunit matrix proteins, which are expressed in cartilage but also in many other forms of extracellular matrix. They participate in the formation of fibrillar or filamentous structures and are often associated with collagens. It appears that they mediate interactions between collagen-containing fibrils and other matrix constituents, such as aggrecan. This adaptor function may be modulated by physiological proteolysis that causes the loss of single subunits and thereby a decrease in binding avidity. Attempts to study matrilin function by gene inactivation in mouse have been frustrating and so far not yielded pronounced phenotypes, presumably because of the extensive redundancy within the family allowing compensation by one family member for another. However, mutations in matrilin-3 in humans cause different forms of chondrodysplasias and perhaps also hand osteoarthritis. As loss of matrilin-3 is not critical in mouse, these phenotypes are likely to be caused by dominant negative effects.
Collapse
Affiliation(s)
- Raimund Wagener
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, D-50931 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Ko Y, Kobbe B, Nicolae C, Miosge N, Paulsson M, Wagener R, Aszódi A. Matrilin-3 is dispensable for mouse skeletal growth and development. Mol Cell Biol 2004; 24:1691-9. [PMID: 14749384 PMCID: PMC344189 DOI: 10.1128/mcb.24.4.1691-1699.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Matrilin-3 belongs to the matrilin family of extracellular matrix (ECM) proteins and is primarily expressed in cartilage. Mutations in the gene encoding human matrilin-3 (MATN-3) lead to autosomal dominant skeletal disorders, such as multiple epiphyseal dysplasia (MED), which is characterized by short stature and early-onset osteoarthritis, and bilateral hereditary microepiphyseal dysplasia, a variant form of MED characterized by pain in the hip and knee joints. To assess the function of matrilin-3 during skeletal development, we have generated Matn-3 null mice. Homozygous mutant mice appear normal, are fertile, and show no obvious skeletal malformations. Histological and ultrastructural analyses reveal endochondral bone formation indistinguishable from that of wild-type animals. Northern blot, immunohistochemical, and biochemical analyses indicated no compensatory upregulation of any other member of the matrilin family. Altogether, our findings suggest functional redundancy among matrilins and demonstrate that the phenotypes of MED disorders are not caused by the absence of matrilin-3 in cartilage ECM.
Collapse
Affiliation(s)
- Yaping Ko
- Center for Biochemistry, Medical Faculty, University of Cologne, D-50931 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Newman B, Wallis GA. Skeletal dysplasias caused by a disruption of skeletal patterning and endochondral ossification. Clin Genet 2003; 63:241-51. [PMID: 12702153 DOI: 10.1034/j.1399-0004.2003.00046.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Identification of a number of the genes that cause skeletal dysplasias has helped clinicians to provide accurate diagnoses, genetic counseling, and pre-natal diagnosis for this complex group of disorders. This review considers how some of the recent advances in human and murine genetics have led to an increased understanding of normal bone development and, in particular, the processes of skeletal patterning and endochondral ossification.
Collapse
Affiliation(s)
- B Newman
- Adult Genetics Department, Toronto General Hospital, Ontario, Canada M5G 2C4.
| | | |
Collapse
|
14
|
Yuan GH, Masuko-Hongo K, Kato T, Nishioka K. Immunologic intervention in the pathogenesis of osteoarthritis. ARTHRITIS AND RHEUMATISM 2003; 48:602-11. [PMID: 12632410 DOI: 10.1002/art.10768] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Guo-Hua Yuan
- Arthritis Research Center, Institute of Medical Science, St. Marianna University, Kawasaki, Kanagawa, Japan
| | | | | | | |
Collapse
|
15
|
Frank S, Schulthess T, Landwehr R, Lustig A, Mini T, Jenö P, Engel J, Kammerer RA. Characterization of the matrilin coiled-coil domains reveals seven novel isoforms. J Biol Chem 2002; 277:19071-9. [PMID: 11896063 DOI: 10.1074/jbc.m202146200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Matrilins constitute a family of four oligomeric extracellular proteins that are involved in the development and homeostasis of cartilage and bone. To reveal their homo- and heterotypic oligomerization propensities, we analyzed the four human matrilin coiled-coil domains by biochemical and biophysical methods. These studies not only confirmed the homo- and heterotypic oligomerization states reported for the full-length proteins but revealed seven novel matrilin isoforms. Specific heterotrimeric interactions of variable chain stoichiometries were observed between matrilin-1 and matrilin-2, matrilin-1 and matrilin-4, and matrilin-2 and matrilin-4. In addition, matrilin-1 formed two different specific heterotetramers with matrilin-3. Interestingly, a distinct heterotrimer consisting of three different chains was formed between matrilin-1, matrilin-2, and matrilin-4. No interactions, however, were observed between matrilin-2 and matrilin-3 or between matrilin-3 and matrilin-4. Both homo- and heterotypic oligomers folded into parallel disulfide-linked structures, although coiled-coil formation was not dependent on disulfide bridge formation. Our results indicate that the heterotypic preferences seen for the matrilin coiled-coil domains are the result of the packing of the hydrophobic core rather than ionic interactions. Mass spectrometry revealed that the concentrations of the individual chains statistically determined the stoichiometry of the heteromers, suggesting that formation of the different matrillin chain combinations is controlled by expression levels.
Collapse
Affiliation(s)
- Sabine Frank
- Department of Biophysical Chemistry, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The matrilins are a recently discovered family of non-collagenous extracellular matrix proteins. During embryogenesis, all matrilins are expressed in skeletal tissues. Additionally, matrilin-2 and -4 are expressed in the dermis and in connective tissues of internal organs, e.g. of the lung and kidney. After birth, the expression of matrilin-1 and -3 remains specific for cartilage and bone whereas matrilin-2 and -4 display a broader tissue distribution and could be detected in epithelial, muscle, and nervous tissue as well as in loose and dense connective tissue. In epiphyseal cartilage of growing long bones, matrilin-1 and -3 are present in all cartilage regions, in contrast to matrilin-2, which is expressed in the proliferative and the upper hypertrophic zones. Similarly matrilin-4 was detected all over the epiphyseal cartilage, with the weakest expression in the hypertrophic zone. Although it was shown that matrilin-1 and -3 can form hetero-oligomers and are often co-localized in tissue, clear differences in their spatial distribution could be demonstrated by double-immunolabelling. During joint development matrilin-2 and matrilin-4 are present at the developing joint surface, while in articular cartilage of 6-week-old mice all matrilins are only weakly expressed.
Collapse
Affiliation(s)
- Andreas R Klatt
- Institute for Biochemistry II, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, D-50931 Cologne, Germany
| | | | | |
Collapse
|
17
|
Pullig O, Weseloh G, Klatt AR, Wagener R, Swoboda B. Matrilin-3 in human articular cartilage: increased expression in osteoarthritis. Osteoarthritis Cartilage 2002; 10:253-63. [PMID: 11950247 DOI: 10.1053/joca.2001.0508] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Matrilin-3 is a member of the recently described matrilin family of extracellular matrix proteins containing von Willebrand factor A-like domains. The matrilin-3 subunit can form homo-tetramers as well as hetero-oligomers together with subunits of matrilin-1 (cartilage matrix protein). It has a restricted tissue distribution and is strongly expressed in growing skeletal tissues. Detailed information on expression and distribution of extracellular matrix proteins is important to understand cartilage function in health and in disease like osteoarthritis (OA). METHODS Normal and osteoarthritic cartilage were systematically analysed for matrilin-3 expression, using immunohistochemistry, Western blot analysis, in situ hybridization, and quantitative PCR. RESULTS Our results indicate that matrilin-3 is a mandatory component of mature articular cartilage with its expression being restricted to chondrocytes from the tangential zone and the upper middle cartilage zone. Osteoarthritic cartilage samples with only moderate morphological osteoarthritic degenerations have elevated levels of matrilin-3 mRNA. In parallel, we found an increased deposition of matrilin-3 protein in the cartilage matrix. Matrilin-3 staining was diffusely distributed in the cartilage matrix, with no cellular staining being detectable. In cartilage samples with minor osteoarthritic lesions, matrilin-3 deposition was restricted to the middle zone and to the upper deep zone. A strong correlation was found between enhanced matrilin-3 gene and protein expression and the extent of tissue damage. Sections with severe osteoarthritic degeneration showed the highest amount of matrilin-3 mRNA, strong signals in in situ hybridization, and prominent protein deposition in the middle and deep cartilage zone. CONCLUSION We conclude that matrilin-3 is an integral component of human articular cartilage matrix and that the enhanced expression of matrilin-3 in OA may be a cellular response to the modified microenvironment in the disease.
Collapse
Affiliation(s)
- O Pullig
- Division of Orthopaedic Rheumatology, Department of Orthopaedics, University of Erlangen-Nuremberg, Rathsberger Str. 57, D-91054 Erlangen, Germany.
| | | | | | | | | |
Collapse
|