1
|
Feng L, Wei S, Li Y. Thaumatin-like Proteins in Legumes: Functions and Potential Applications-A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:1124. [PMID: 38674533 PMCID: PMC11055134 DOI: 10.3390/plants13081124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Thaumatin-like proteins (TLPs) comprise a complex and evolutionarily conserved protein family that participates in host defense and several developmental processes in plants, fungi, and animals. Importantly, TLPs are plant host defense proteins that belong to pathogenesis-related family 5 (PR-5), and growing evidence has demonstrated that they are involved in resistance to a variety of fungal diseases in many crop plants, particularly legumes. Nonetheless, the roles and underlying mechanisms of the TLP family in legumes remain unclear. The present review summarizes recent advances related to the classification, structure, and host resistance of legume TLPs to biotic and abiotic stresses; analyzes and predicts possible protein-protein interactions; and presents their roles in phytohormone response, root nodule formation, and symbiosis. The characteristics of TLPs provide them with broad prospects for plant breeding and other uses. Searching for legume TLP genetic resources and functional genes, and further research on their precise function mechanisms are necessary.
Collapse
Affiliation(s)
- Lanlan Feng
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Shaowei Wei
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Yin Li
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
| |
Collapse
|
2
|
Li K, Qiao K, Xiong J, Guo H, Zhang Y. Nutritional Values and Bio-Functional Properties of Fungal Proteins: Applications in Foods as a Sustainable Source. Foods 2023; 12:4388. [PMID: 38137192 PMCID: PMC10742821 DOI: 10.3390/foods12244388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
From the preparation of bread, cheese, beer, and condiments to vegetarian meat products, fungi play a leading role in the food fermentation industry. With the shortage of global protein resources and the decrease in cultivated land, fungal protein has received much attention for its sustainability. Fungi are high in protein, rich in amino acids, low in fat, and almost cholesterol-free. These properties mean they could be used as a promising supplement for animal and plant proteins. The selection of strains and the fermentation process dominate the flavor and quality of fungal-protein-based products. In terms of function, fungal proteins exhibit better digestive properties, can regulate blood lipid and cholesterol levels, improve immunity, and promote gut health. However, consumer acceptance of fungal proteins is low due to their flavor and safety. Thus, this review puts forward prospects in terms of these issues.
Collapse
Affiliation(s)
- Ku Li
- Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd., 168 Chengdu Road, Yichang 443003, China
| | - Kaina Qiao
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| | - Jian Xiong
- Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd., 168 Chengdu Road, Yichang 443003, China
| | - Hui Guo
- Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd., 168 Chengdu Road, Yichang 443003, China
| | - Yuyu Zhang
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| |
Collapse
|
3
|
Isolation, Purification, and Antitumor Activity of a Novel Active Protein from Antrodia cinnamomea Liquid Fermentation Mycelia. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Antrodia cinnamomea, a rare medicinal fungus endemic to Taiwan, contains numerous active components and displays strong antitumor and anti-inflammatory effects. We isolated and purified a novel A. cinnamomea active protein (termed ACAP) from liquid fermentation mycelia and evaluated its antitumor activity. A homogeneous protein-eluted fraction was obtained by anion exchange chromatography and gel filtration chromatography, and ACAP was identified based on the antitumor activity screening of this fraction. An in vitro assay of three tumor cell lines (HeLa, Hep G2, and Hepa 1-6) revealed significant antiproliferative effects of ACAP at low concentrations, with IC50 values of 13.10, 10.70, and 18.69 µg/mL, respectively. Flow cytometric analysis showed that ACAP induced late apoptosis of Hep G2 cells. The apoptosis rate of 50 µg/mL ACAP-treated cells (60%) was significantly (p < 0.01) more than that of the control. A Western blotting assay of apoptotic pathway proteins showed that ACAP significantly upregulated p53 and downregulated caspase-3 expression levels. Our findings indicate that ACAP has strong antitumor activity and the potential for development as a therapeutic agent and/or functional food.
Collapse
|
4
|
Dougherty K, Hudak KA. Phylogeny and domain architecture of plant ribosome inactivating proteins. PHYTOCHEMISTRY 2022; 202:113337. [PMID: 35934106 DOI: 10.1016/j.phytochem.2022.113337] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/01/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Ribosome inactivating proteins (RIPs) are rRNA N-glycosylases (EC 3.2.2.22) best known for hydrolyzing an adenine base from the conserved sarcin/ricin loop of ribosomal RNA. Protein translation is inhibited by ribosome depurination; therefore, RIPs are generally considered toxic to cells. The expression of some RIPs is upregulated by biotic and abiotic stress, though the connection between RNA depurination and defense response is not well understood. Despite their prevalence in approximately one-third of flowering plant orders, our knowledge of RIPs stems primarily from biochemical analyses of individuals or genomics-scale analyses of small datasets from a limited number of species. Here, we performed an unbiased search for proteins with RIP domains and identified several-fold more RIPs than previously known - more than 800 from 120 species, many with novel associated domains and physicochemical characteristics. Based on protein domain configuration, we established 15 distinct groups, suggesting diverse functionality. Surprisingly, most of these RIPs lacked a signal peptide, indicating they may be localized to the nucleocytoplasm of cells, raising questions regarding their toxicity against conspecific ribosomes. Our phylogenetic analysis significantly extends previous models for RIP evolution in plants, predicting an original single-domain RIP that later evolved to acquire a signal peptide and different protein domains. We show that RIPs are distributed throughout 21 plant orders with many species maintaining genes for more than one RIP group. Our analyses provide the foundation for further characterization of these new RIP types, to understand how these enzymes function in plants.
Collapse
Affiliation(s)
- Kyra Dougherty
- Department of Biology, York University, Toronto, Canada.
| | | |
Collapse
|
5
|
Ren Z, Zhao J, Cao X, Wang F. Tandem fusion of albumin-binding domains promoted soluble expression and stability of recombinant trichosanthin in vitro and in vivo. Protein Expr Purif 2022; 200:106147. [PMID: 35917982 DOI: 10.1016/j.pep.2022.106147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 10/16/2022]
Abstract
Trichosanthin (TCS), as a type 1 ribosome-inactivating protein, has a very high cytoplasmic activity in vitro and can quickly kill cancer cells. However, it is easily filtered and cleared by the kidney, which results in the short half-life and severely limits its application. In this study, we constructed several recombinant proteins by fusing the albumin binding domain mutant ABD035(abbreviated as ABD) to the N- or C-terminus of TCS to endow the recombinant TCS fusion protein with a longer half-life property binding with endogenous human serum albumin (HSA) via ABD to effectively exert its anti-tumor activity in vivo. Pull down, Dynamic light scattering and ELISA assays all showed that TCS fused with two ABD sequences at the C-terminus of TCS, has stronger binding capacity to HSA in vitro than TCS with one ABD. In vivo studies in BALB/C mice were performed and the elimination half-life of TCS-ABD-ABD is about 15-fold longer compared to TCS and anti-tumor activity is about 30% higher than that of TCS alone in BALB/C mouse experiments. Moreover, we found that TCS with two ABDs in tandem have the highest soluble expression level, more than 5 times higher than that of TCS, and the yield of purified protein of TCS-ABD-ABD was as high as 68.9 mg/L culture solution, which was about 7-fold higher than that of TCS. Furthermore, MTT assay showed that the anti-tumor activity of TCS-ABD-ABD was significantly higher than TCS fused with only one ABD sequence, indicating that the repeated ABD sequences facilitated the biological activity of TCS. In this paper, the fusion of the albumin-binding domain in tandem with TCS can effectively improve its stability in vivo and also significantly increase its soluble expression, expanding the application of the albumin-binding domain in the high soluble expression and stability of protein drugs.
Collapse
Affiliation(s)
- ZeFeng Ren
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jian Zhao
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - XueWei Cao
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - FuJun Wang
- New Drug R&D Center, Zhejiang Fonow Medicine Co., Ltd. 209 West Hulian Road, Dongyang, 322100, Zhejiang, China; Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China; Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
6
|
Ribotoxic Proteins, Known as Inhibitors of Protein Synthesis, from Mushrooms and Other Fungi According to Endo's Fragment Detection. Toxins (Basel) 2022; 14:toxins14060403. [PMID: 35737065 PMCID: PMC9227437 DOI: 10.3390/toxins14060403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 12/15/2022] Open
Abstract
rRNA N-glycosylases (EC 3.2.2.22) remove a specific adenine (A4324, rat 28S rRNA) in the sarcin ricin loop (SRL) involved into ribosome interaction with elongation factors, causing the inhibition of translation, for which they are known as plant 'ribosome inactivating proteins' (RIPs). However, protein synthesis inactivation could be the result of other enzymes, which often have rRNA as the target. In this scenario, Endo's assay is the most used method to detect the enzymes that are able to hydrolyze a phosphodiester bond or cleave a single N-glycosidic bond (rRNA N-glycosylases). Indeed, the detection of a diagnostic fragment from rRNA after enzymatic action, with or without acid aniline, allows one to discriminate between the N-glycosylases or hydrolases, which release the β-fragment after acid aniline treatment or α-fragment without acid aniline treatment, respectively. This assay is of great importance in the mushroom kingdom, considering the presence of enzymes that are able to hydrolyze phosphodiester bonds (e.g., ribonucleases, ribotoxins and ribotoxin-like proteins) or to remove a specific adenine (rRNA N-glycosylases). Thus, here we used the β-fragment experimentally detected by Endo's assay as a hallmark to revise the literature available on enzymes from mushrooms and other fungi, whose action consists of protein biosynthesis inhibition.
Collapse
|
7
|
Lu JQ, Wong KB, Shaw PC. A Sixty-Year Research and Development of Trichosanthin, a Ribosome-Inactivating Protein. Toxins (Basel) 2022; 14:178. [PMID: 35324675 PMCID: PMC8950148 DOI: 10.3390/toxins14030178] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Tian Hua Fen, a herbal powder extract that contains trichosanthin (TCS), was used as an abortifacient in traditional Chinese medicine. In 1972, TCS was purified to alleviate the side effects. Because of its clinical applications, TCS became one of the most active research areas in the 1960s to the 1980s in China. These include obtaining the sequence information in the 1980s and the crystal structure in 1995. The replication block of TCS on human immunodeficiency virus in lymphocytes and macrophages was found in 1989 and started a new chapter of its development. Clinical studies were subsequently conducted. TCS was also found to have the potential for gastric and colorectal cancer treatment. Studies on its mechanism showed TCS acts as an rRNA N-glycosylase (EC 3.2.2.22) by hydrolyzing and depurinating A-4324 in α-sarcin/ricin loop on 28S rRNA of rat ribosome. Its interaction with acidic ribosomal stalk proteins was revealed in 2007, and its trafficking in mammalian cells was elucidated in the 2000s. The adverse drug reactions, such as inducing immune responses, short plasma half-life, and non-specificity, somehow became the obstacles to its usage. Immunotoxins, sequence modification, or coupling with polyethylene glycerol and dextran were developed to improve the pharmacological properties. TCS has nicely shown the scientific basis of traditional Chinese medicine and how its research and development have expanded the knowledge and applications of ribosome-inactivating proteins.
Collapse
Affiliation(s)
- Jia-Qi Lu
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (J.-Q.L.); (K.-B.W.)
| | - Kam-Bo Wong
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (J.-Q.L.); (K.-B.W.)
| | - Pang-Chui Shaw
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (J.-Q.L.); (K.-B.W.)
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
8
|
Lu JQ, Shi WW, Xiao MJ, Tang YS, Zheng YT, Shaw PC. Lyophyllin, a Mushroom Protein from the Peptidase M35 Superfamily Is an RNA N-Glycosidase. Int J Mol Sci 2021; 22:ijms222111598. [PMID: 34769028 PMCID: PMC8584072 DOI: 10.3390/ijms222111598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) hydrolyze the N-glycosidic bond and depurinate a specific adenine residue (A-4324 in rat 28S ribosomal RNA, rRNA) in the conserved α-sarcin/ricin loop (α-SRL) of rRNA. In this study, we have purified and characterized lyophyllin, an unconventional RIP from Lyophyllum shimeji, an edible mushroom. The protein resembles peptidase M35 domain of peptidyl-Lys metalloendopeptidases. Nevertheless, protein either from the mushroom or in recombinant form possessed N-glycosidase and protein synthesis inhibitory activities. A homology model of lyophyllin was constructed. It was found that the zinc binding pocket of this protein resembles the catalytic cleft of a classical RIP, with key amino acids that interact with the adenine substrate in the appropriate positions. Mutational studies showed that E122 may play a role in stabilizing the positively charged oxocarbenium ion and H121 for protonating N-3 of adenine. The tyrosine residues Y137 and Y104 may be used for stacking the target adenine ring. This work first shows a protein in the peptidase M35 superfamily based on conserved domain search possessing N-glycosidase activity.
Collapse
Affiliation(s)
- Jia-Qi Lu
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (J.-Q.L.); (M.-J.X.); (Y.-S.T.)
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei-Wei Shi
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen 518107, China;
| | - Meng-Jie Xiao
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (J.-Q.L.); (M.-J.X.); (Y.-S.T.)
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yun-Sang Tang
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (J.-Q.L.); (M.-J.X.); (Y.-S.T.)
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms, National Kunming High Level Biosafety Research Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China;
| | - Pang-Chui Shaw
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (J.-Q.L.); (M.-J.X.); (Y.-S.T.)
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Correspondence:
| |
Collapse
|
9
|
Cytotoxic potential of bioactive seed proteins from Mallotus philippensis against various cancer cell lines. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01974-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Serna-Arbeláez MS, Florez-Sampedro L, Orozco LP, Ramírez K, Galeano E, Zapata W. Natural Products with Inhibitory Activity against Human Immunodeficiency Virus Type 1. Adv Virol 2021; 2021:5552088. [PMID: 34194504 PMCID: PMC8181102 DOI: 10.1155/2021/5552088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Infections caused by human immunodeficiency virus (HIV) are considered one of the main public health problems worldwide. Antiretroviral therapy (ART) is the current modality of treatment for HIV-1 infection. It comprises the combined use of several drugs and can decrease the viral load and increase the CD4+ T cell count in patients with HIV-1 infection, thereby proving to be an effective modality. This therapy significantly decreases the rate of morbidity and mortality owing to acquired immunodeficiency syndrome (AIDS) and prolongs and improves the quality of life of infected patients. However, nonadherence to ART may increase viral resistance to antiretroviral drugs and transmission of drug-resistant strains of HIV. Therefore, it is necessary to continue research for compounds with anti-HIV-1 activity, exhibiting a potential for the development of an alternative or complementary therapy to ART with low cost and fewer side effects. Natural products and their derivatives represent an excellent option owing to their therapeutic potential against HIV. Currently, the derivatives of natural products available as anti-HIV-1 agents include zidovudine, an arabinonucleoside derivative of the Caribbean marine sponge (Tectitethya crypta), which inhibits the reverse transcriptase of the virus. This was the first antiviral agent approved for treatment of HIV infection. Additionally, bevirimat (isolated from Syzygium claviflorum) and calanolide A (isolated from Calophyllum sp.) are inhibitors of viral maturation and reverse transcription process, respectively. In the present review, we aimed to describe the wide repertoire of natural compounds exhibiting anti-HIV-1 activity that can be considered for designing new therapeutic strategies to curb the HIV pandemic.
Collapse
Affiliation(s)
- Maria S. Serna-Arbeláez
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
- Grupo de Investigacion en Ciencias Animales-GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Laura Florez-Sampedro
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Lina P. Orozco
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Katherin Ramírez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Elkin Galeano
- Productos Naturales Marinos, Departamento de Farmacia, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Wildeman Zapata
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| |
Collapse
|
11
|
Bio-funcional components in mushrooms, a health opportunity: Ergothionine and huitlacohe as recent trends. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104326] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
12
|
Citores L, Iglesias R, Ferreras JM. Antiviral Activity of Ribosome-Inactivating Proteins. Toxins (Basel) 2021; 13:80. [PMID: 33499086 PMCID: PMC7912582 DOI: 10.3390/toxins13020080] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are rRNA N-glycosylases from plants (EC 3.2.2.22) that inactivate ribosomes thus inhibiting protein synthesis. The antiviral properties of RIPs have been investigated for more than four decades. However, interest in these proteins is rising due to the emergence of infectious diseases caused by new viruses and the difficulty in treating viral infections. On the other hand, there is a growing need to control crop diseases without resorting to the use of phytosanitary products which are very harmful to the environment and in this respect, RIPs have been shown as a promising tool that can be used to obtain transgenic plants resistant to viruses. The way in which RIPs exert their antiviral effect continues to be the subject of intense research and several mechanisms of action have been proposed. The purpose of this review is to examine the research studies that deal with this matter, placing special emphasis on the most recent findings.
Collapse
Affiliation(s)
| | | | - José M. Ferreras
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (L.C.); (R.I.)
| |
Collapse
|
13
|
Díaz-Godínez G, Díaz R. Fungal Productions of Biological Active Proteins. Fungal Biol 2021. [DOI: 10.1007/978-3-030-64406-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Kour H, Kour S, Sharma Y, Singh S, Sharma I, Kour D, Yadav AN. Bioprospecting of Industrially Important Mushrooms. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
15
|
TLPdb: A Resource for Thaumatin-Like Proteins. Protein J 2020; 39:301-307. [PMID: 32696292 DOI: 10.1007/s10930-020-09909-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Antifungal proteins and peptides have drawn the attention of numerous plant biologists and Clinicians, owing to their potential value in protecting commercial crops as well as preventing fungal infections in humans. Various proteins and peptides, such as glucanases, chitinases, chitinase-like proteins, lectins, peroxidases, defensins, and lipid transfer proteins have antifungal activities. Thaumatin is a protein from a West African plant Thaumatococcus danielli that is sweet in taste but does not exhibit antifungal activities. Despite the structural similarities between thaumatins and thaumatin-like proteins (TLPs), TLPs are not sweet in taste, unlike thaumatins. We developed a thaumatin-like protein database of various organisms. TLPs are pathogenesis-related proteins (PR) with molecular masses of 20-26 kDa. The amino acid residues of TLPs involved in an antifungal activity remain obscure and make it hard to receive comprehensive information on TLPs. The biggest problem in the wine industry is white haze, an undesirable feature of high-quality wine. Hence, the problem may be figured out with the easy accessibility of amino acid sequences and to generate infest resistant crops. Overall, we aimed to produce a freely accessible TLP database ( https://tlpdb.cftri.com ) that would provide substantive information in understanding the mechanistic facet of TLPs. Briefly, TLPdb contains sequences, structures, and amino acid compositions of validated, published TLP protein sequences (from the plant, fungal as well as animal sources). Thus, this work may yield valuable information that may be useful in understanding the mechanistic aspects of TLP activity and in the evolution of antifungal proteins and fungal resistant crops. TLPdb is a comprehensive thaumatin-like protein resource database of various organisms. The database can serve as a unique Bioinformatics tool for understanding the TLPs. This further may help in understanding and the development of fungal resistant crops. TLPdb is freely available at https://tlpdb.cftri.com .
Collapse
|
16
|
Kaur R, Sharma P, Gupta GK, Ntie-Kang F, Kumar D. Structure-Activity-Relationship and Mechanistic Insights for Anti-HIV Natural Products. Molecules 2020; 25:E2070. [PMID: 32365518 PMCID: PMC7249135 DOI: 10.3390/molecules25092070] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 12/26/2022] Open
Abstract
Acquired Immunodeficiency Syndrome (AIDS), which chiefly originatesfroma retrovirus named Human Immunodeficiency Virus (HIV), has impacted about 70 million people worldwide. Even though several advances have been made in the field of antiretroviral combination therapy, HIV is still responsible for a considerable number of deaths in Africa. The current antiretroviral therapies have achieved success in providing instant HIV suppression but with countless undesirable adverse effects. Presently, the biodiversity of the plant kingdom is being explored by several researchers for the discovery of potent anti-HIV drugs with different mechanisms of action. The primary challenge is to afford a treatment that is free from any sort of risk of drug resistance and serious side effects. Hence, there is a strong demand to evaluate drugs derived from plants as well as their derivatives. Several plants, such as Andrographis paniculata, Dioscorea bulbifera, Aegle marmelos, Wistaria floribunda, Lindera chunii, Xanthoceras sorbifolia and others have displayed significant anti-HIV activity. Here, weattempt to summarize the main results, which focus on the structures of most potent plant-based natural products having anti-HIV activity along with their mechanisms of action and IC50 values, structure-activity-relationships and important key findings.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Sri Sai College of Pharmacy, Manawala, Amritsar 143001, India; (R.K.); (P.S.)
| | - Pooja Sharma
- Sri Sai College of Pharmacy, Manawala, Amritsar 143001, India; (R.K.); (P.S.)
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Girish K. Gupta
- Department of Pharmaceutical Chemistry, Sri Sai College of Pharmacy, Badhani, Pathankot 145001, India;
| | - Fidele Ntie-Kang
- Department of Chemistry, Faculty of Science, University of Buea, P.O. Box 63 Buea, Cameroon
- Institute for Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062 Dresden, Germany
| | - Dinesh Kumar
- Sri Sai College of Pharmacy, Manawala, Amritsar 143001, India; (R.K.); (P.S.)
| |
Collapse
|
17
|
Wong JH, Bao H, Ng TB, Chan HHL, Ng CCW, Man GCW, Wang H, Guan S, Zhao S, Fang EF, Rolka K, Liu Q, Li C, Sha O, Xia L. New ribosome-inactivating proteins and other proteins with protein synthesis-inhibiting activities. Appl Microbiol Biotechnol 2020; 104:4211-4226. [PMID: 32193575 DOI: 10.1007/s00253-020-10457-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
Abstract
Ribosome-inactivating proteins (RIPs) consist of three varieties. Type 1 RIPs are single-chained and approximately 30-kDa in molecular weight. Type 2 RIPs are double-chained and composed of a type 1 RIP chain and a lectin chain. Type III RIPs, such as maize b-32 barley and JIP60 which are produced as single-domain proenzymes, possess an N-terminal domain corresponding to the A domain of RIPs and fused to a C-terminal domain. In addition to the aforementioned three types of RIPs originating from flowering plants, there are recently discovered proteins and peptides with ribosome-inactivating and protein synthesis inhibitory activities but which are endowed with characteristics such as molecular weights distinctive from those of the regular RIPs. These new/unusual RIPs discussed in the present review encompass metazoan RIPs from Anopheles and Culex mosquitos, antimicrobial peptides derived from RIP of the pokeweed Phytolacca dioica, maize RIP (a type III RIP derived from a precursor form), RIPs from the garden pea and the kelp. In addition, RIPs with a molecular weight smaller than those of regular type 1 RIPs are produced by plants in the Cucurbitaceae family including the bitter gourd, bottle gourd, sponge gourd, ridge gourd, wax gourd, hairy gourd, pumpkin, and Chinese cucumber. A small type II RIP from camphor tree (Cinnamomum camphora) seeds and a snake gourd type II RIP with its catalytic chain cleaved into two have been reported. RIPs produced from mushrooms including the golden needle mushroom, king tuber mushroom, straw mushroom, and puffball mushroom are also discussed in addition to a type II RIP from the mushroom Polyporus umbellatus. Bacterial (Spiroplasma) RIPs associated with the fruitfly, Shiga toxin, and Streptomyces coelicolor RIP are also dealt with. The aforementioned proteins display a diversity of molecular weights, amino acid sequences, and mechanisms of action. Some of them are endowed with exploitable antipathogenic activities.
Collapse
Affiliation(s)
- Jack Ho Wong
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China.
- State Key Laboratory of Respiratory Disease for Allergy, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China.
| | - Hui Bao
- State Key Laboratory of Respiratory Disease for Allergy, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | | | | | - Gene Chi Wai Man
- Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hexiang Wang
- Department of Microbiology, China Agricultural University, Beijing, China
| | - Suzhen Guan
- Department of Social Medicine, College of Public Health, Xinjiang Medical University, Urumqi, China
| | - Shuang Zhao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, and Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing, China
| | - Evandro Fei Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| | - Krzysztof Rolka
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk, Poland
| | - Qin Liu
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Chunman Li
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Ou Sha
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Lixin Xia
- State Key Laboratory of Respiratory Disease for Allergy, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China.
| |
Collapse
|
18
|
Wong JH, Ng TB, Wang H, Cheung RCF, Ng CCW, Ye X, Yang J, Liu F, Ling C, Chan K, Ye X, Chan WY. Antifungal Proteins with Antiproliferative Activity on Cancer Cells and HIV-1 Enzyme Inhibitory Activity from Medicinal Plants and Medicinal Fungi. Curr Protein Pept Sci 2019; 20:265-276. [PMID: 29895244 DOI: 10.2174/1389203719666180613085704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/10/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022]
Abstract
A variety of fungi, plants, and their different tissues are used in Traditional Chinese Medicine to improve health, and some of them are recommended for dietary therapy. Many of these plants and fungi contain antifungal proteins and peptides which suppress spore germination and hyphal growth in phytopathogenic fungi. The aim of this article is to review antifungal proteins produced by medicinal plants and fungi used in Chinese medicine which also possess anticancer and human immunodeficiency virus-1 (HIV-1) enzyme inhibitory activities.
Collapse
Affiliation(s)
- Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing, China
| | - Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Charlene Cheuk Wing Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiuyun Ye
- National Engineering Laboratory for High-Efficiency Enzyme Expression and College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China
| | - Jie Yang
- National Engineering Laboratory for High-Efficiency Enzyme Expression and College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China
| | - Fang Liu
- Department of Microbiology, Nankai University, Tianjin, China
| | - Chen Ling
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida 32611, FL, United States
| | - Ki Chan
- Biomedical and Tissue Engineering Research Group, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, China
| | - Xiujuan Ye
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, and Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wai Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
19
|
Zhou R, Liu ZK, Zhang YN, Wong JH, Ng TB, Liu F. Research Progress of Bioactive Proteins from the Edible and Medicinal Mushrooms. Curr Protein Pept Sci 2019; 20:196-219. [DOI: 10.2174/1389203719666180613090710] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/10/2018] [Accepted: 05/25/2018] [Indexed: 01/04/2023]
Abstract
For centuries, mushrooms have been widely used as traditional Chinese medicine in Asia.
Apart from polysaccharides and some small-molecule components, such as flavones, polyphenols and
terpenes, mushrooms produce a large number of pharmaceutically active proteins, which have become
popular sources of natural antitumor, antimicrobial, immunoenhancing agents. These bioactive proteins
include lectins, laccases, Ribosome Inactivating Proteins (RIPs), nucleases, and Fungal Immunomodulatory
Proteins (FIPs). The review is to summarize the characterstics of structure and bioactivities involved
in antitumor, antiviral, antifungal, antibacterial and immunoenhancing activities of proteins from
edible mushrooms, to better understand their mechanisms, and to direct research.
Collapse
Affiliation(s)
- Rong Zhou
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Zhao Kun Liu
- Department of History, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Ye Ni Zhang
- Department of Microbiology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Fang Liu
- Department of Microbiology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, 300071, China
| |
Collapse
|
20
|
Zou YJ, Wang HX, Zhang JX. A Novel Peroxidase from Fresh Fruiting Bodies of the Mushroom Pleurotus pulmonarius. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9784-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Min B, Kim S, Oh YL, Kong WS, Park H, Cho H, Jang KY, Kim JG, Choi IG. Genomic discovery of the hypsin gene and biosynthetic pathways for terpenoids in Hypsizygus marmoreus. BMC Genomics 2018; 19:789. [PMID: 30382831 PMCID: PMC6211417 DOI: 10.1186/s12864-018-5159-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/11/2018] [Indexed: 11/17/2022] Open
Abstract
Background Hypsizygus marmoreus (Beech mushroom) is a popular ingredient in Asian cuisine. The medicinal effects of its bioactive compounds such as hypsin and hypsiziprenol have been reported, but the genetic basis or biosynthesis of these components is unknown. Results In this study, we sequenced a reference strain of H. marmoreus (Haemi 51,987–8). We evaluated various assembly strategies, and as a result the Allpaths and PBJelly produced the best assembly. The resulting genome was 42.7 Mbp in length and annotated with 16,627 gene models. A putative gene (Hypma_04324) encoding the antifungal and antiproliferative hypsin protein with 75% sequence identity with the previously known N-terminal sequence was identified. Carbohydrate active enzyme analysis displayed the typical feature of white-rot fungi where auxiliary activity and carbohydrate-binding modules were enriched. The genome annotation revealed four terpene synthase genes responsible for terpenoid biosynthesis. From the gene tree analysis, we identified that terpene synthase genes can be classified into six clades. Four terpene synthase genes of H. marmoreus belonged to four different groups that implies they may be involved in the synthesis of different structures of terpenes. A terpene synthase gene cluster was well-conserved in Agaricomycetes genomes, which contained known biosynthesis and regulatory genes. Conclusions Genome sequence analysis of this mushroom led to the discovery of the hypsin gene. Comparative genome analysis revealed the conserved gene cluster for terpenoid biosynthesis in the genome. These discoveries will further our understanding of the biosynthesis of medicinal bioactive molecules in this edible mushroom. Electronic supplementary material The online version of this article (10.1186/s12864-018-5159-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Byoungnam Min
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-Gu, Seoul, 02841, Korea
| | - Seunghwan Kim
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju, 54874, Korea
| | - Youn-Lee Oh
- Mushroom Division, National Institute of Horticultural and Herbal Science (NHHS), Rural Development Administration (RDA), Eumseong, 27709, Korea
| | - Won-Sik Kong
- Mushroom Division, National Institute of Horticultural and Herbal Science (NHHS), Rural Development Administration (RDA), Eumseong, 27709, Korea
| | - Hongjae Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-Gu, Seoul, 02841, Korea
| | - Heejung Cho
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju, 54874, Korea
| | - Kab-Yeul Jang
- Mushroom Division, National Institute of Horticultural and Herbal Science (NHHS), Rural Development Administration (RDA), Eumseong, 27709, Korea
| | - Jeong-Gu Kim
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju, 54874, Korea.
| | - In-Geol Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-Gu, Seoul, 02841, Korea.
| |
Collapse
|
22
|
The potential applications of mushrooms against some facets of atherosclerosis: A review. Food Res Int 2018; 105:517-536. [DOI: 10.1016/j.foodres.2017.11.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/08/2017] [Accepted: 11/19/2017] [Indexed: 12/16/2022]
|
23
|
Zhu F, Zhou YK, Ji ZL, Chen XR. The Plant Ribosome-Inactivating Proteins Play Important Roles in Defense against Pathogens and Insect Pest Attacks. FRONTIERS IN PLANT SCIENCE 2018; 9:146. [PMID: 29479367 PMCID: PMC5811460 DOI: 10.3389/fpls.2018.00146] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/25/2018] [Indexed: 05/20/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are toxic N-glycosidases that depurinate eukaryotic and prokaryotic rRNAs, thereby arresting protein synthesis during translation. RIPs are widely found in various plant species and within different tissues. It is demonstrated in vitro and in transgenic plants that RIPs have been connected to defense by antifungal, antibacterial, antiviral, and insecticidal activities. However, the mechanism of these effects is still not completely clear. There are a number of reviews of RIPs. However, there are no reviews on the biological functions of RIPs in defense against pathogens and insect pests. Therefore, in this report, we focused on the effect of RIPs from plants in defense against pathogens and insect pest attacks. First, we summarize the three different types of RIPs based on their physical properties. RIPs are generally distributed in plants. Then, we discuss the distribution of RIPs that are found in various plant species and in fungi, bacteria, algae, and animals. Various RIPs have shown unique bioactive properties including antibacterial, antifungal, antiviral, and insecticidal activity. Finally, we divided the discussion into the biological roles of RIPs in defense against bacteria, fungi, viruses, and insects. This review is focused on the role of plant RIPs in defense against bacteria, fungi, viruses, and insect attacks. The role of plant RIPs in defense against pathogens and insects is being comprehended currently. Future study utilizing transgenic technology approaches to study the mechanisms of RIPs will undoubtedly generate a better comprehending of the role of plant RIPs in defense against pathogens and insects. Discovering additional crosstalk mechanisms between RIPs and phytohormones or reactive oxygen species (ROS) against pathogen and insect infections will be a significant subject in the field of biotic stress study. These studies are helpful in revealing significance of genetic control that can be beneficial to engineer crops tolerance to biotic stress.
Collapse
|
24
|
Hajfathalian M, Ghelichi S, García-Moreno PJ, Moltke Sørensen AD, Jacobsen C. Peptides: Production, bioactivity, functionality, and applications. Crit Rev Food Sci Nutr 2017; 58:3097-3129. [PMID: 29020461 DOI: 10.1080/10408398.2017.1352564] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Production of peptides with various effects from proteins of different sources continues to receive academic attention. Researchers of different disciplines are putting increasing efforts to produce bioactive and functional peptides from different sources such as plants, animals, and food industry by-products. The aim of this review is to introduce production methods of hydrolysates and peptides and provide a comprehensive overview of their bioactivity in terms of their effects on immune, cardiovascular, nervous, and gastrointestinal systems. Moreover, functional and antioxidant properties of hydrolysates and isolated peptides are reviewed. Finally, industrial and commercial applications of bioactive peptides including their use in nutrition and production of pharmaceuticals and nutraceuticals are discussed.
Collapse
Affiliation(s)
- Mona Hajfathalian
- a Division of Food Technology, National Food Institute , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Sakhi Ghelichi
- a Division of Food Technology, National Food Institute , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark.,b Department of Seafood Science and Technology, Faculty of Fisheries and Environmental Science , Gorgan University of Agricultural Sciences and Natural Resources , Gorgan , Iran
| | - Pedro J García-Moreno
- a Division of Food Technology, National Food Institute , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Ann-Dorit Moltke Sørensen
- a Division of Food Technology, National Food Institute , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Charlotte Jacobsen
- a Division of Food Technology, National Food Institute , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| |
Collapse
|
25
|
Lapadula WJ, Ayub MJ. Ribosome Inactivating Proteins from an evolutionary perspective. Toxicon 2017; 136:6-14. [PMID: 28651991 DOI: 10.1016/j.toxicon.2017.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 01/13/2023]
Abstract
Ribosome Inactivating Proteins (RIPs) are rRNA N-glycosidases that inhibit protein synthesis through the elimination of a single adenine residue from 28S rRNA. Many of these toxins have been characterized in depth from a biochemical and molecular point of view. In addition, their potential use in medicine as highly selective toxins is being explored. In contrast, the evolutionary history of RIP encoding genes has remained traditionally underexplored. In recent years, accumulation of large genomic data has fueled research on this issue and revealed unexpected information about the origin and evolution of RIP toxins. In this review we summarize the current evidence available on the occurrence of different evolutionary mechanisms (gene duplication and losses, horizontal gene transfer, synthesis de novo and domain combination) involved in the evolution of the RIP gene family. Finally, we propose a revised nomenclature for RIP genes based on their evolutionary history.
Collapse
Affiliation(s)
- Walter Jesús Lapadula
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina.
| | - Maximiliano Juri Ayub
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina.
| |
Collapse
|
26
|
Omar R, Yadav A. A mechanistic study of anti-HIV activities of antifungal peptides. CAN J CHEM 2017. [DOI: 10.1139/cjc-2017-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HIV patients are constantly at risk of developing internal fungal infection and are thus regularly prescribed antifungal medications. Several classes of antifungal agents have been developed to combat ever increasing cases of resistant strains of fungi. Azoles, despite being the most popular clinical choice, are not devoid of side effects. Many antimicrobial peptides have also been tested in search of safe, nontoxic antifungals but none succeeded as a commercial alternative. Recent research attempts show continued interest in these compounds and the complexities associated. Some experimental observations indicate involvement of these antimicrobial peptides in enhancing the efficacy of anti-HIV agents. We present here an intertwined approach to deal with two fatal diseases, internal fungal infection and HIV infection. Several naturally occurring antimicrobial peptides have been studied for their possible interaction with the viral RNA primer binding site (template) through interactions other than the base pair – base pair type. Peptides have been prepared and docked into viral template utilizing extra precision, flexible ligand docking. Implicit solvent was added around the complex and MMGBSA interaction energies were computed. Druggability aspects were explored by calculating ADME-related properties. A peptidomimetic compound has been strategically designed to introduce some druggability features in the peptide maintaining its viral template inhibition capability. The designed peptidomimetic lead compound may help in obtaining nontoxic anti-HIV agents in the future. This is the first study to suggest a plausible explanation for the anti-HIV activity of antifungal peptides at the molecular level and corroborate experimental findings of synergistic effects of these peptides on anti-HIV agents.
Collapse
Affiliation(s)
- Ruchi Omar
- Department of Chemistry, University Institute of Engineering and Technology, Chhatrapati Shahuji Maharaj University, Kanpur 208024, India
- Department of Chemistry, University Institute of Engineering and Technology, Chhatrapati Shahuji Maharaj University, Kanpur 208024, India
| | - Arpita Yadav
- Department of Chemistry, University Institute of Engineering and Technology, Chhatrapati Shahuji Maharaj University, Kanpur 208024, India
- Department of Chemistry, University Institute of Engineering and Technology, Chhatrapati Shahuji Maharaj University, Kanpur 208024, India
| |
Collapse
|
27
|
Sivanandhan S, Khusro A, Paulraj MG, Ignacimuthu S, Al-Dhabi NA. Biocontrol Properties of Basidiomycetes: An Overview. J Fungi (Basel) 2017; 3:E2. [PMID: 29371521 PMCID: PMC5715959 DOI: 10.3390/jof3010002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 01/12/2023] Open
Abstract
In agriculture, there is an urgent need for alternate ecofriendly products to control plant diseases. These alternate products must possess preferable characteristics such as new modes of action, cost effectiveness, biodegradability, and target specificity. In the current scenario, studies on macrofungi have been an area of importance for scientists. Macrofungi grow prolifically and are found in many parts of the world. Basidiomycetes (mushrooms) flourish ubiquitously under warm and humid climates. Basidiomycetes are rich sources of natural antibiotics. The secondary metabolites produced by them possess antimicrobial, antitumor, and antioxidant properties. The present review discusses the potential role of Basidiomycetes as anti-phytofungal, anti-phytobacterial, anti-phytoviral, mosquito larvicidal, and nematicidal agents.
Collapse
Affiliation(s)
| | - Ameer Khusro
- Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai 600034, Tamil Nadu, India.
| | - Michael Gabriel Paulraj
- Entomology Research Institute, Loyola College, Nungambakkam, Chennai 600034, Tamil Nadu, India.
| | - Savarimuthu Ignacimuthu
- Entomology Research Institute, Loyola College, Nungambakkam, Chennai 600034, Tamil Nadu, India.
- The International Scientific Partnership Program (ISPP), King Saud University, Riyadh 11451, Saudi Arabia.
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. BOX 2454, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
28
|
Making Use of Genomic Information to Explore the Biotechnological Potential of Medicinal Mushrooms. MEDICINAL AND AROMATIC PLANTS OF THE WORLD 2017. [DOI: 10.1007/978-981-10-5978-0_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Ng TB, Cheung RCF, Wong JH, Chan YS, Dan X, Pan W, Wang H, Guan S, Chan K, Ye X, Liu F, Xia L, Chan WY. Fungal proteinaceous compounds with multiple biological activities. Appl Microbiol Biotechnol 2016; 100:6601-6617. [PMID: 27338574 DOI: 10.1007/s00253-016-7671-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 11/30/2022]
Abstract
Fungi comprise organisms like molds, yeasts and mushrooms. They have been used as food or medicine for a long time. A large number of fungal proteins or peptides with diverse biological activities are considered as antibacterial, antifungal, antiviral and anticancer agents. They encompass proteases, ribosome inactivating proteins, defensins, hemolysins, lectins, laccases, ribonucleases, immunomodulatory proteins, and polysaccharopeptides. The target of the present review is to update the status of the various bioactivities of these fungal proteins and peptides and discuss their therapeutic potential.
Collapse
Affiliation(s)
- Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Yau Sang Chan
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, School of Medicine, Shenzhen University, Nanhai Ave 3688, 518060, Shenzhen, Guangdong, People's Republic of China
| | - Xiuli Dan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenliang Pan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing, 100193, China
| | - Suzhen Guan
- Department of Social Medicine, College of Public Health, Xinjiang Medical University, Urumqi, 830011, China
| | - Ki Chan
- Biomedical and Tissue Engineering Research Group, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Hong Kong, China
| | - Xiuyun Ye
- College of Biological Sciences and Technology, Fuzhou University, Fuzhou, Fujian, China.,Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou, Fujian, China
| | - Fang Liu
- Department of Microbiology, Nankai University, Tianjin, China
| | - Lixin Xia
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, School of Medicine, Shenzhen University, Nanhai Ave 3688, 518060, Shenzhen, Guangdong, People's Republic of China
| | - Wai Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
30
|
Ng TB, Cheung RCF, Wong JH, Chan WY. Proteins, peptides, polysaccharides, and nucleotides with inhibitory activity on human immunodeficiency virus and its enzymes. Appl Microbiol Biotechnol 2015; 99:10399-414. [PMID: 26411457 DOI: 10.1007/s00253-015-6997-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/04/2015] [Accepted: 09/08/2015] [Indexed: 12/15/2022]
Abstract
Human immunodeficiency virus (HIV), the causative agent of acquired immune deficiency syndrome, has claimed innumerable lives in the past. Many biomolecules which suppress HIV replication and also other biomolecules that inhibit enzymes essential to HIV replication have been reported. Proteins including a variety of milk proteins, ribosome-inactivating proteins, ribonucleases, antifungal proteins, and trypsin inhibitors; peptides comprising cathelicidins, defensins, synthetic peptides, and others; polysaccharides and polysaccharopeptides; nucleosides, nucleotides, and ribozymes, demonstrated anti-HIV activity. In many cases, the mechanism of anti-HIV action has been elucidated. Strategies have been devised to augment the anti-HIV potency of these compounds.
Collapse
Affiliation(s)
- Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, New Territories, China.
| | - Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, New Territories, China
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, New Territories, China
| | - Wai Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, New Territories, China.
| |
Collapse
|
31
|
Yan J, Yuan SS, Jiang LL, Ye XJ, Ng TB, Wu ZJ. Plant antifungal proteins and their applications in agriculture. Appl Microbiol Biotechnol 2015; 99:4961-81. [PMID: 25971197 DOI: 10.1007/s00253-015-6654-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/26/2015] [Accepted: 04/27/2015] [Indexed: 11/24/2022]
Abstract
Fungi are far more complex organisms than viruses or bacteria and can develop numerous diseases in plants that cause loss of a substantial portion of the crop every year. Plants have developed various mechanisms to defend themselves against these fungi which include the production of low-molecular-weight secondary metabolites and proteins and peptides with antifungal activity. In this review, families of plant antifungal proteins (AFPs) including defensins, lectins, and several others will be summarized. Moreover, the application of AFPs in agriculture will also be analyzed.
Collapse
Affiliation(s)
- Juan Yan
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China,
| | | | | | | | | | | |
Collapse
|
32
|
Schrot J, Weng A, Melzig MF. Ribosome-inactivating and related proteins. Toxins (Basel) 2015; 7:1556-615. [PMID: 26008228 PMCID: PMC4448163 DOI: 10.3390/toxins7051556] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/23/2015] [Accepted: 04/28/2015] [Indexed: 01/15/2023] Open
Abstract
Ribosome-inactivating proteins (RIPs) are toxins that act as N-glycosidases (EC 3.2.2.22). They are mainly produced by plants and classified as type 1 RIPs and type 2 RIPs. There are also RIPs and RIP related proteins that cannot be grouped into the classical type 1 and type 2 RIPs because of their different sizes, structures or functions. In addition, there is still not a uniform nomenclature or classification existing for RIPs. In this review, we give the current status of all known plant RIPs and we make a suggestion about how to unify those RIPs and RIP related proteins that cannot be classified as type 1 or type 2 RIPs.
Collapse
Affiliation(s)
- Joachim Schrot
- Institute of Pharmacy, Freie Universitaet Berlin, Koenigin-Luise-Str. 2 + 4, 14195 Berlin, Germany.
| | - Alexander Weng
- Institute of Pharmacy, Freie Universitaet Berlin, Koenigin-Luise-Str. 2 + 4, 14195 Berlin, Germany.
| | - Matthias F Melzig
- Institute of Pharmacy, Freie Universitaet Berlin, Koenigin-Luise-Str. 2 + 4, 14195 Berlin, Germany.
| |
Collapse
|
33
|
Domashevskiy AV, Goss DJ. Pokeweed antiviral protein, a ribosome inactivating protein: activity, inhibition and prospects. Toxins (Basel) 2015; 7:274-98. [PMID: 25635465 PMCID: PMC4344624 DOI: 10.3390/toxins7020274] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/07/2015] [Accepted: 01/23/2015] [Indexed: 01/30/2023] Open
Abstract
Viruses employ an array of elaborate strategies to overcome plant defense mechanisms and must adapt to the requirements of the host translational systems. Pokeweed antiviral protein (PAP) from Phytolacca americana is a ribosome inactivating protein (RIP) and is an RNA N-glycosidase that removes specific purine residues from the sarcin/ricin (S/R) loop of large rRNA, arresting protein synthesis at the translocation step. PAP is thought to play an important role in the plant's defense mechanism against foreign pathogens. This review focuses on the structure, function, and the relationship of PAP to other RIPs, discusses molecular aspects of PAP antiviral activity, the novel inhibition of this plant toxin by a virus counteraction-a peptide linked to the viral genome (VPg), and possible applications of RIP-conjugated immunotoxins in cancer therapeutics.
Collapse
MESH Headings
- Animals
- Binding Sites
- Endoribonucleases/chemistry
- Fungal Proteins/chemistry
- Genome, Viral
- Humans
- Protein Isoforms
- RNA Caps/chemistry
- RNA Caps/genetics
- RNA Caps/metabolism
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Ribosome Inactivating Proteins, Type 1/chemistry
- Ribosome Inactivating Proteins, Type 1/genetics
- Ribosome Inactivating Proteins, Type 1/metabolism
- Ribosome Inactivating Proteins, Type 1/pharmacology
- Ribosomes/chemistry
- Ribosomes/metabolism
- Ricin/chemistry
Collapse
Affiliation(s)
- Artem V Domashevskiy
- John Jay College of Criminal Justice, Department of Sciences, City University of New York, 524 West 59th Street, New York, NY 10019, USA.
| | - Dixie J Goss
- Department of Chemistry, Hunter College, City University of New York and the Graduate Center, 695 Park Avenue, New York, NY 10065, USA.
| |
Collapse
|
34
|
Lapadula WJ, Sánchez Puerta MV, Juri Ayub M. Revising the taxonomic distribution, origin and evolution of ribosome inactivating protein genes. PLoS One 2013; 8:e72825. [PMID: 24039805 PMCID: PMC3764214 DOI: 10.1371/journal.pone.0072825] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 07/13/2013] [Indexed: 11/24/2022] Open
Abstract
Ribosome inactivating proteins are enzymes that depurinate a specific adenine residue in the alpha-sarcin-ricin loop of the large ribosomal RNA, being ricin and Shiga toxins the most renowned examples. They are widely distributed in plants and their presence has also been confirmed in a few bacterial species. According to this taxonomic distribution, the current model about the origin and evolution of RIP genes postulates that an ancestral RIP domain was originated in flowering plants, and later acquired by some bacteria via horizontal gene transfer. Here, we unequivocally detected the presence of RIP genes in fungi and metazoa. These findings, along with sequence and phylogenetic analyses, led us to propose an alternative, more parsimonious, hypothesis about the origin and evolutionary history of the RIP domain, where several paralogous RIP genes were already present before the three domains of life evolved. This model is in agreement with the current idea of the Last Universal Common Ancestor (LUCA) as a complex, genetically redundant organism. Differential loss of paralogous genes in descendants of LUCA, rather than multiple horizontal gene transfer events, could account for the complex pattern of RIP genes across extant species, as it has been observed for other genes.
Collapse
Affiliation(s)
- Walter J. Lapadula
- Área de Biología Molecular, Departamento de Bioquímica y Ciencias Biológicas, UNSL and Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), San Luis, Argentina
| | - María Virginia Sánchez Puerta
- Instituto de Ciencias Básicas, IBAM-CONICET and Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Maximiliano Juri Ayub
- Área de Biología Molecular, Departamento de Bioquímica y Ciencias Biológicas, UNSL and Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), San Luis, Argentina
- * E-mail:
| |
Collapse
|
35
|
Loss-Morais G, Turchetto-Zolet AC, Etges M, Cagliari A, Körbes AP, Maraschin FDS, Margis-Pinheiro M, Margis R. Analysis of castor bean ribosome-inactivating proteins and their gene expression during seed development. Genet Mol Biol 2013; 36:74-86. [PMID: 23569411 PMCID: PMC3615529 DOI: 10.1590/s1415-47572013005000005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/21/2012] [Indexed: 01/26/2023] Open
Abstract
Ribosome-inactivating proteins (RIPs) are enzymes that inhibit protein synthesis after depurination of a specific adenine in rRNA. The RIP family members are classified as type I RIPs that contain an RNA-N-glycosidase domain and type II RIPs that contain a lectin domain (B chain) in addition to the glycosidase domain (A chain). In this work, we identified 30 new plant RIPs and characterized 18 Ricinus communis RIPs. Phylogenetic and functional divergence analyses indicated that the emergence of type I and II RIPs probably occurred before the monocot/eudicot split. We also report the expression profiles of 18 castor bean genes, including those for ricin and agglutinin, in five seed stages as assessed by quantitative PCR. Ricin and agglutinin were the most expressed RIPs in developing seeds although eight other RIPs were also expressed. All of the RIP genes were most highly expressed in the stages in which the endosperm was fully expanded. Although the reason for the large expansion of RIP genes in castor beans remains to be established, the differential expression patterns of the type I and type II members reinforce the existence of biological functions other than defense against predators and herbivory.
Collapse
Affiliation(s)
- Guilherme Loss-Morais
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Pan WL, Wong JH, Fang EF, Chan YS, Ye XJ, Ng TB. Differential inhibitory potencies and mechanisms of the type I ribosome inactivating protein marmorin on estrogen receptor (ER)-positive and ER-negative breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:987-96. [PMID: 23274857 DOI: 10.1016/j.bbamcr.2012.12.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 11/24/2012] [Accepted: 12/18/2012] [Indexed: 11/18/2022]
Abstract
Breast cancer is the second most common cancer with a high incidence rate worldwide. One of the promising therapeutic approaches on breast cancer is to use the drugs that target the estrogen receptor (ER). In the present investigation, marmorin, a type I ribosome inactivating protein from the mushroom Hypsizigus marmoreus, inhibited the survival of breast cancer in vitro and in vivo. It evinced more potent cytotoxicity toward estrogen receptor (ER)-positive MCF7 breast cancer cells than ER-negative MDA-MB-231 cells. Further study disclosed that marmorin undermined the expression level of estrogen receptor α (ERα) and significantly inhibited the proliferation of MCF7 cells induced by 17β-estradiol. Knockdown of ERα in MCF7 cells significantly attenuated the inhibitory effect of marmorin on proliferation, suggesting that the ERα-mediated pathway was implicated in the suppressive action of marmorin on ER-positive breast cancer cells. Moreover, marmorin induced time-dependent apoptosis in both MCF7 and MDA-MB-231 cells. It brought about G2/M-phase arrest, mitochondrial membrane potential depolarization and caspase-9 activation in MCF7 cells, and to a lesser extent in MDA-MB-231 cells. Marmorin triggered the death receptor apoptotic pathway (e.g. caspase-8 activation) and endoplasmic reticulum stress (ERS, as evidenced by phosphorylation of PERK and IRE1α, cleavage of caspase-12, and up-regulation of CHOP expression) in both MCF7 and MDA-MB-231 cells. In summary, marmorin exhibited inhibitory effect on breast cancer partially via diminution of ERα and apoptotic pathways mediated by mitochondrial, death receptor and ERS. The results advocate that marmorin is a potential candidate for breast cancer therapy.
Collapse
Affiliation(s)
- Wen Liang Pan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
37
|
A laccase with HIV-1 reverse transcriptase inhibitory activity from the broth of mycelial culture of the mushroom Lentinus tigrinus. J Biomed Biotechnol 2012; 2012:536725. [PMID: 22536022 PMCID: PMC3321470 DOI: 10.1155/2012/536725] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/05/2012] [Indexed: 12/02/2022] Open
Abstract
A 59 kDa laccase with inhibitory activity against HIV-1 reverse transcriptase (IC50 = 2.4 μM) was isolated from the broth of mycelial culture of the mushroom Lentinus tigrinus. The isolation procedure involved ion exchange chromatography on DEAE-cellulose and CM-cellulose, and gel filtration by fast protein liquid chromatography on Superdex 75. The laccase was adsorbed on both types of ion exchangers. About 95-fold purification was achieved with a 25.9% yield of the enzyme. The procedure resulted in a specific enzyme activity of 76.6 U/mg. Its N-terminal amino acid sequence was GIPDLHDLTV, which showed little similarity to other mushroom laccase and other Lentinus tigrinus strain laccase. Its characteristics were different from previously reported laccase of other Lentinus tigrinus strain. Maximal laccase activity was observed at a pH of 4 and at a temperature of 60°C, respectively. This study yielded the information about the potentially exploitable activities of Lentinus tigrinus laccase.
Collapse
|
38
|
Lapadula WJ, Sanchez-Puerta MV, Juri Ayub M. Convergent evolution led ribosome inactivating proteins to interact with ribosomal stalk. Toxicon 2012; 59:427-32. [DOI: 10.1016/j.toxicon.2011.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/29/2011] [Accepted: 12/30/2011] [Indexed: 10/14/2022]
|
39
|
Purification and characterization of a novel laccase from the edible mushroom Hericium coralloides. J Microbiol 2012; 50:72-8. [DOI: 10.1007/s12275-012-1372-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 08/03/2011] [Indexed: 11/26/2022]
|
40
|
Xu X, Yan H, Chen J, Zhang X. Bioactive proteins from mushrooms. Biotechnol Adv 2011; 29:667-74. [DOI: 10.1016/j.biotechadv.2011.05.003] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 04/20/2011] [Accepted: 05/08/2011] [Indexed: 12/23/2022]
|
41
|
Ye XJ, Ng TB, Wu ZJ, Xie LH, Fang EF, Wong JH, Pan WL, Wing SSC, Zhang YB. Protein from red cabbage (Brassica oleracea) seeds with antifungal, antibacterial, and anticancer activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:10232-10238. [PMID: 21830763 DOI: 10.1021/jf201874j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A 30 kDa antifungal protein was purified from red cabbage ( Brassica oleracea ) seeds. It exhibited a molecular mass and N-terminal amino acid sequence disinct from those of previously isolated Brassica antifungal proteins. The protocol used entailed ion exchange chromatography on Q-Sepharose and SP-Sepharose followed by fast protein liquid chromatography on Mono S. The protein hindered mycelial growth in Mycosphaerella arachidicola (with an IC50=5 μM), Setospaeria turcica, and Bipolaris maydis. It also inhibited the yeast Candida albicans with an IC50=96 μM. It exerted its antifungal action by permeabilizing the fungal membrane as evidenced by staining with Sytox green. The antifungal activity was stable from pH 3 to 11 and from 0 to 65 °C. It manifested antibacterial activity against Pseudomonas aeruginosa (IC50=53 μM). Furthermore, after 48 h of culture, it suppressed proliferation of nasopharyngeal cancer and hepatoma cells with IC50=50 and 90 μM, respectively.
Collapse
Affiliation(s)
- Xiu-Juan Ye
- Institute of Plant Virology, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
He XM, Ji N, Xiang XC, Luo P, Bao JK. Purification, characterization, and molecular cloning of a novel antifungal lectin from the roots of Ophioglossum pedunculosum. Appl Biochem Biotechnol 2011; 165:1458-72. [PMID: 21947760 DOI: 10.1007/s12010-011-9367-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 09/01/2011] [Indexed: 10/17/2022]
Abstract
A novel mannan-specific lectin was isolated from the roots of a traditional Chinese herbal medicine, Ophioglossum pedunculosum through ion-exchange chromatography and gel filtration. With a molecular mass of 19,835.7 Da demonstrated by MALDI-TOF analysis, this novel agglutinin was designated as O. pedunculosum agglutinin (OPA), specifically agglutinating human O erythrocytes and rabbit erythrocytes. The hemagglutination could be strongly inhibited by mannan and thyroglobulin, the activity of which was stable in pH range of 4.0-8.0 and at temperatures below 50 °C. Chemical modification studies indicated that tryptophan and arginine residues were essential for its hemagglutinating activity. Meanwhile, it showed antifungal activities toward Sclerotium rolfsii and Fusarium graminearum. In addition, to amplify cDNA of OPA by 3'/5'-rapid amplification of cDNA ends (RACE), the N-terminal 30 amino acids sequence of OPA was determined, and degenerate primers were designed. The obtained full-length cDNA of OPA contained 885 bp with an open-reading frame of 600 bp encoding a precursor protein of 199 amino acids, while the mature protein had 170 amino acids.
Collapse
Affiliation(s)
- Xue-Mei He
- School of Life Sciences, Sichuan University, Chengdu 610064, China
| | | | | | | | | |
Collapse
|
43
|
Hu DD, Zhang RY, Zhang GQ, Wang HX, Ng TB. A laccase with antiproliferative activity against tumor cells from an edible mushroom, white common Agrocybe cylindracea. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:374-379. [PMID: 20739163 DOI: 10.1016/j.phymed.2010.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 06/02/2010] [Accepted: 07/12/2010] [Indexed: 05/29/2023]
Abstract
A laccase, with HIV-1 reverse transcriptase inhibitory activity (IC(50)=12.7 μM) and antiproliferative activity against HepG2 cells (IC(50)=5.6 μM) and MCF7 cells (IC(50)=6.5 μM), was purified from fresh fruiting bodies of the edible white common Agrocybe cylindracea mushroom. The laccase, which had a novel N-terminal sequence, displayed a molecular mass of 58 kDa within the range reported for most other mushroom laccases. The purification protocol entailed ion exchange chromatography on DEAE-cellulose, SP-Sepharose, and Q-Sepharose and gel filtration on Superdex 75. The laccase was adsorbed on DEAE-cellulose and Q-Sepharose, but unadsorbed on SP-Sepharose. Its optimum pH was pH 3-4 and its optimum temperature was 50°C. The activity of the isolated laccase differed from one substrate to another. The ranking was ABTS>N,N-dimethyl-1,4-phenylenediamine>hydroquinone>catechol>2-methylcatechol>pyrogallol.
Collapse
Affiliation(s)
- D D Hu
- State Key Laboratory for Agrobiotechnology, Department of Microbiology, China Agricultural University, Beijing, China
| | | | | | | | | |
Collapse
|
44
|
Zhao JK, Zhao YC, Li SH, Wang HX, Ng TB. Isolation and characterization of a novel thermostable lectin from the wild edible mushroom Agaricus arvensis. J Basic Microbiol 2011; 51:304-11. [DOI: 10.1002/jobm.201000267] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 09/16/2010] [Indexed: 11/10/2022]
|
45
|
Lam SK, Ng TB. First report of an antifungal amidase from Peltophorum pterocarpum. [corrected]. Biomed Chromatogr 2010; 24:458-64. [PMID: 19688818 DOI: 10.1002/bmc.1312] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A 60 kDa antifungal amidase was purified from Peltophorum pterocarpum [corrected] seeds using an isolation procedure that entailed ion-exchange chromatography on Q-Sepharose, ion-exchange chromatography on DEAE-cellulose and FPLC-gel filtration on Superdex 75. Unlike most other antifungal proteins isolated previously, it was adsorbed on Q-Sepharose and DEAE-cellulose. The isolated protein, designated as peltopterin, exhibited an N-terminal amino acid sequence closely resembling those of amidases. It exhibited amidase activity and digested iodoacetamide with an optimum pH and temperature at pH 9 and 50 degrees C, respectively. It also hydrolyzed acrylamide and urea. It impeded mycelial growth in Rhizotonia solani with an IC(50) of 0.65 microm. Chitin deposition at hyphal tips in R. solani was observed by staining with Congo red after incubation with peltopterin. Its antifungal activity was stable throughout pH 0-14 and 25-100 degrees C. It potently inhibited HIV-1 reverse transcriptase with an IC(50) of 27 nm.
Collapse
Affiliation(s)
- Sze Kwan Lam
- The Chinese University of Hong Kong, Shatin, New Territories, China
| | | |
Collapse
|
46
|
Wong JH, Ng TB, Cheung RCF, Ye XJ, Wang HX, Lam SK, Lin P, Chan YS, Fang EF, Ngai PHK, Xia LX, Ye XY, Jiang Y, Liu F. Proteins with antifungal properties and other medicinal applications from plants and mushrooms. Appl Microbiol Biotechnol 2010; 87:1221-35. [DOI: 10.1007/s00253-010-2690-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 05/17/2010] [Accepted: 05/17/2010] [Indexed: 10/19/2022]
|
47
|
Han CH, Zhang GQ, Wang HX, Ng TB. Schizolysin, a hemolysin from the split gill mushroom Schizophyllum commune. FEMS Microbiol Lett 2010; 309:115-21. [PMID: 20618854 DOI: 10.1111/j.1574-6968.2010.02022.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Abstract A monomeric hemolysin with a molecular mass of 29 kDa was isolated from fresh fruiting bodies of the split gill mushroom Schizophyllum commune. The hemolysin was purified by successive adsorption on DEAE-cellulose, carboxymethyl-cellulose and Q-Sepharose and finally gel filtration on Superdex 75. This demonstrated the N-terminal sequence ATNYNKCPGA, different from those of previously reported fungal and bacterial hemolysins. The hemolysin was stable up to 40 degrees C. Only partial activity remained at 50 and 60 degrees C. Activity was indiscernible at 70 degrees C. A pH of 6.0 was optimal for activity. The hemolytic activity was most potently inhibited by dithiothreitol, sucrose and raffinose, followed by cellobiose, maltose, rhamnose, inulin, lactose, fructose and inositol. The metal ions Cu(2+), Mg(2+), Zn(2+), Al(3+) and Fe(3+) significantly, and Pb(2+) to a lesser extent, curtailed the activity of the hemolysin. The hemolysin inhibited HIV-1 reverse transcriptase with an IC(50) of 1.8 microM.
Collapse
Affiliation(s)
- Chun-Hua Han
- State Key Laboratory for Agrobiotechnology, Department of Microbiology, China Agricultural University, Beijing, China
| | | | | | | |
Collapse
|
48
|
Zhang RY, Zhang GQ, Hu DD, Wang HX, Ng TB. A Novel Ribonuclease with Antiproliferative Activity from Fresh Fruiting Bodies of the Edible Mushroom Lyophyllum shimeiji. Biochem Genet 2010; 48:658-68. [DOI: 10.1007/s10528-010-9347-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 02/24/2010] [Indexed: 11/30/2022]
|
49
|
Zhang GQ, Wang YF, Zhang XQ, Ng TB, Wang HX. Purification and characterization of a novel laccase from the edible mushroom Clitocybe maxima. Process Biochem 2010. [DOI: 10.1016/j.procbio.2009.12.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Differential abilities of the mushroom ribosome-inactivating proteins hypsin and velutin to perturb normal development of cultured mouse embryos. Toxicol In Vitro 2010; 24:1250-7. [PMID: 20149862 DOI: 10.1016/j.tiv.2010.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 12/29/2009] [Accepted: 02/04/2010] [Indexed: 11/20/2022]
Abstract
The teratogenicity of two fungal ribosome-inactivating proteins, hypsin from Hypsizigus mamoreus and velutin from Flammulina velutipes, was examined in this investigation using microinjection and postimplantation whole-embryo culture. The results demonstrated that hypsin induced abnormal embryonic development at 2.5 microM during the organogenesis period from E8.5 to E9.5. As its dosage increased, there was an increase in the total number of abnormal embryos, a drop in the final somite number, and a rise of abnormal structures. Structural abnormalities were detected: open cranial neural tube, abnormal branchial arches, absence of forelimb buds and twisted body axis. The otic and optic placodes were, however, less affected. Histological study of the abnormal embryos revealed a correlation of increased cell death with abnormal structures, suggesting that induction of cell death by hypsin may account for its teratogenicity. In contrast, velutin did not exert any adverse influence on mouse development.
Collapse
|