1
|
Lázaro B, Sarrias A, Tadeo FJ, Marc Martínez-Láinez J, Fernández A, Quandt E, Depares B, Dürr-Mayer T, Jessen H, Jiménez J, Clotet J, Bru S. Optimized biochemical method for human Polyphosphate quantification. Methods 2025; 234:211-222. [PMID: 39761865 DOI: 10.1016/j.ymeth.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/29/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
Polyphosphate (polyP), a biopolymer composed of phosphates, impacts a wide range of biological functions and pathological conditions in all organisms. However, polyP's intricate physiology and structure in human cells have remained elusive, largely due to the lack of a reliable quantification method including its extraction. In this study, we assess critical points in the whole process: extraction, purification, and quantification polyP from human cell lines. We developed a highly efficient method that extracts between 3 and 100 times more polyP than previously achieved. Supported by Nuclear Magnetic Resonance (NMR), our approach confirms that mammalian polyP is primarily a linear unbranched polymer. We applied the optimized method to commonly used human cell lines, uncovering important variations of intracellular polyP that correlate with the expression levels of specific polyP converting enzymes. This study underscores the importance of employing several techniques for polyP characterization in parallel and provides a valuable and standardized tool for further exploration in this field.
Collapse
Affiliation(s)
- Blanca Lázaro
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya. 08195 Barcelona, Spain
| | - Ana Sarrias
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya. 08195 Barcelona, Spain
| | - Francisco J Tadeo
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya. 08195 Barcelona, Spain
| | - Joan Marc Martínez-Láinez
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya. 08195 Barcelona, Spain
| | - Ainhoa Fernández
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya. 08195 Barcelona, Spain
| | - Eva Quandt
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya. 08195 Barcelona, Spain
| | - Blanca Depares
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya. 08195 Barcelona, Spain
| | - Tobias Dürr-Mayer
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Henning Jessen
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Javier Jiménez
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya. 08195 Barcelona, Spain
| | - Josep Clotet
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya. 08195 Barcelona, Spain.
| | - Samuel Bru
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya. 08195 Barcelona, Spain.
| |
Collapse
|
2
|
Mura M, Carucci C, Caddeo E, Sovová Š, Piludu M, Pekař M, Jachimska B, Parsons DF, Salis A. Specific buffer effects on the formation of BSA protein corona around amino-functionalized mesoporous silica nanoparticles. J Colloid Interface Sci 2025; 677:540-547. [PMID: 39106779 DOI: 10.1016/j.jcis.2024.07.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/13/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
The effect of buffer species on biomolecules and biomolecule-nanoparticle interactions is a phenomenon that has been either neglected, or not understood. Here, we study the formation of a BSA protein corona (PC) around amino-functionalized mesoporous silica nanoparticles (MSN-NH2) in the presence of different buffers (Tris, BES, cacodylate, phosphate, and citrate) at the same pH (7.15) and different concentrations (10, 50, and 100 mM). We find that BSA adsorption is buffer specific, with the adsorbed amount of BSA being 4.4 times higher in the presence of 100 mM Tris (184 ± 3 mg/g) than for 100 mM citrate (42 ± 2 mg/g). That is a considerable difference that cannot be explained by conventional theories. The results become clearer if the interaction energies between BSA and MSN-NH2, considering the electric double layer (EEDL) and the van der Waals (EvdW) terms, are evaluated. The buffer specific PC derives from buffer specific zeta potentials that, for MSN-NH2, are positive with Tris and negative with citrate buffers. A reversed sign of zeta potentials can be obtained by considering polarizability-dependent dispersion forces acting together with electrostatics to give the buffer specific outcome. These results are relevant not only to our understanding of the formation of the PC but may also apply to other bio- and nanosystems in biological media.
Collapse
Affiliation(s)
- Monica Mura
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Cristina Carucci
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Elena Caddeo
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Šárka Sovová
- Faculty of Chemistry, Brno University of Technology, Purkynova 464/118, 612 00 Brno, Czechia
| | - Marco Piludu
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Miloslav Pekař
- Faculty of Chemistry, Brno University of Technology, Purkynova 464/118, 612 00 Brno, Czechia
| | - Barbara Jachimska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Krakow, Poland
| | - Drew F Parsons
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Andrea Salis
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy.
| |
Collapse
|
3
|
Muca R, Antos D. Protein association on multimodal chromatography media. J Chromatogr A 2023; 1691:463827. [PMID: 36731331 DOI: 10.1016/j.chroma.2023.463827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
The phenomenon of protein-protein association on multimodal chromatography resins was described for two different case study examples. The adsorption pattern of single-component solutions of calcium-rich alpha-lactalbumin (aLaCa) and calcium-depleted alpha-lactalbumin (aLa) and their mixtures with bovine serum albumin was determined on a multimodal anion-exchange chromatography medium. In single-component solutions, both aLaCa and aLa exhibited identical adsorption behavior at low resin loadings, whereas at high loadings the adsorption strength of aLa markedly exceeded that of alaCa. In binary mixtures, the adsorption of BSA enhanced at high concentrations of aLa or aLaCa in the adsorbed phase. The unusual adsorption patterns observed were attributed to the tendency of the proteins for molecular association in the adsorbed phase in single and binary solutions. The phenomena was examined for different pH of the solution: pH 6, 7, 8, and different solvent environments: phosphate buffer (PB), bis tris buffer (BT), 100 mM NaCl in BT and bis tris propane buffer (BTP). The strongest effect was observed for PB and for 100 mM NaCl in BT. Its occurrence was also evidenced for other case study example, i.e., adsorption of single-component solutions and binary mixtures of a monoclonal antibody (mAb) and lysozyme (LYZ) on a multimodal cation-exchange chromatography medium. The enhancement of adsorption of mAb was observed at high concentrations of LYZ in the adsorbed phase. To quantify the underlying effects, a mechanistic model was used, which accounted for both protein association and exclusion resulting from attractive and repulsive protein-protein iterations in the adsorbed phase.
Collapse
Affiliation(s)
- Renata Muca
- Department of Chemical and Process Engineering, Rzeszów University of Technology, Powstańców Warszawy Ave. 6, Rzeszów 35-959, Poland
| | - Dorota Antos
- Department of Chemical and Process Engineering, Rzeszów University of Technology, Powstańców Warszawy Ave. 6, Rzeszów 35-959, Poland.
| |
Collapse
|
4
|
The melting curves of calf thymus-DNA are buffer specific. J Colloid Interface Sci 2023; 630:193-201. [DOI: 10.1016/j.jcis.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
|
5
|
Ridwan M, Shrestha BR, Maharjan N, Mishra H. Zwitterions Layer at but Do Not Screen Electrified Interfaces. J Phys Chem B 2022; 126:1852-1860. [PMID: 35194995 PMCID: PMC8900129 DOI: 10.1021/acs.jpcb.1c10388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/07/2022] [Indexed: 11/29/2022]
Abstract
The role of ionic electrostatics in colloidal processes is well-understood in natural and applied contexts; however, the electrostatic contribution of zwitterions, known to be present in copious amounts in extremophiles, has not been extensively explored. In response, we studied the effects of glycine as a surrogate zwitterion, ion, and osmolyte on the electrostatic forces between negatively charged mica-mica and silica-silica interfaces. Our results reveal that while zwitterions layer at electrified interfaces and contribute to solutions' osmolality, they do not affect at all the surface potentials, the electrostatic surface forces (magnitude and range), and solutions' ionic conductivity across 0.3-30 mM glycine concentration. We infer that the zwitterionic structure imposes an inseparability among positive and negative charges and that this inseparability prevents the buildup of a counter-charge at interfaces. These elemental experimental results pinpoint how zwitterions enable extremophiles to cope with the osmotic stress without affecting finely tuned electrostatic force balance.
Collapse
Affiliation(s)
- Muhammad
Ghifari Ridwan
- Environmental Science and
Engineering (EnSE) Program, Biological and Environmental Science and
Engineering (BESE) Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Interfacial Lab (iLab), Water
Desalination and Reuse Center (WDRC), King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Buddha Ratna Shrestha
- Environmental Science and
Engineering (EnSE) Program, Biological and Environmental Science and
Engineering (BESE) Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Interfacial Lab (iLab), Water
Desalination and Reuse Center (WDRC), King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Nischal Maharjan
- Environmental Science and
Engineering (EnSE) Program, Biological and Environmental Science and
Engineering (BESE) Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Interfacial Lab (iLab), Water
Desalination and Reuse Center (WDRC), King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | | |
Collapse
|
6
|
Buffer formulation affects the interaction between lysozyme and polymeric nanoparticles. J Colloid Interface Sci 2017; 504:78-85. [DOI: 10.1016/j.jcis.2017.05.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 11/21/2022]
|
7
|
Shokri E, Hosseini M, Faridbod F, Rahaie M. Synthesis and Assessment of DNA/Silver Nanoclusters Probes for Optimal and Selective Detection of Tristeza Virus Mild Strains. J Fluoresc 2016; 26:1795-803. [DOI: 10.1007/s10895-016-1871-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/14/2016] [Indexed: 12/22/2022]
|
8
|
Hoffmann K, Łakomska I, Wiśniewska J, Kaczmarek-Kędziera A, Wietrzyk J. Acetate platinum(II) compound with 5,7-ditertbutyl-1,2,4-triazolo[1,5-a]pyrimidine that overcomes cisplatin resistance: structural characterization, in vitro cytotoxicity, and kinetic studies. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1070954] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Kamil Hoffmann
- Bioinorganic Chemistry Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Iwona Łakomska
- Bioinorganic Chemistry Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Joanna Wiśniewska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | | | - Joanna Wietrzyk
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
9
|
Ferreira CMH, Pinto ISS, Soares EV, Soares HMVM. (Un)suitability of the use of pH buffers in biological, biochemical and environmental studies and their interaction with metal ions – a review. RSC Adv 2015. [DOI: 10.1039/c4ra15453c] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The present work reviews, discusses and update the metal complexation characteristics of thirty one buffers commercially available. Additionally, their impact on the biological systems is also presented and discussed.
Collapse
Affiliation(s)
- Carlos M. H. Ferreira
- REQUIMTE/LAQV
- Department of Chemical Engineering
- Faculty of Engineering
- University of Porto
- Porto
| | - Isabel S. S. Pinto
- REQUIMTE/LAQV
- Department of Chemical Engineering
- Faculty of Engineering
- University of Porto
- Porto
| | - Eduardo V. Soares
- Bioengineering Laboratory
- Chemical Engineering Department
- ISEP-School of Engineering of Polytechnic Institute of Porto
- Porto
- Portugal
| | - Helena M. V. M. Soares
- REQUIMTE/LAQV
- Department of Chemical Engineering
- Faculty of Engineering
- University of Porto
- Porto
| |
Collapse
|
10
|
Metrick MA, Temple JE, MacDonald G. The effects of buffers and pH on the thermal stability, unfolding and substrate binding of RecA. Biophys Chem 2013; 184:29-36. [DOI: 10.1016/j.bpc.2013.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/06/2013] [Accepted: 08/06/2013] [Indexed: 10/26/2022]
|
11
|
Hemed NM, Inberg A, Shacham-Diamand Y. On the stability of silicon field effect capacitors with phosphate buffered saline electrolytic gate and self assembled monolayer gate insulator. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.08.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Long M, Thornthwaite DW, Rogers SH, Livens FR, Rannard SP. Controlled synthesis of radiolabelled amine methacrylate water-soluble polymers with end-groups of varying hydrophobicity and studies of adsorption behaviour. Polym Chem 2012. [DOI: 10.1039/c1py00397f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radioactive initiators of increasing hydrophobicity, including fluorescent initiators, have been used to conduct the ambient ATRP of poly(2-(diethylamino)ethyl methacrylate) and the behaviour of the resultant polymers has been monitored with respect to surface adsorption using radio-techniques; considerable effects of end group type were observed.
Collapse
Affiliation(s)
- Mark Long
- Unilever Research and Development Port Sunlight Laboratories
- Bebington
- UK
| | | | - Suzanne H. Rogers
- Unilever Research and Development Port Sunlight Laboratories
- Bebington
- UK
| | | | | |
Collapse
|
13
|
New Insights into Buffer-Ionic Salt Interactions: Solubilities, Transfer Gibbs Energies, and Transfer Molar Volumes of TAPS and TAPSO from Water to Aqueous Electrolyte Solutions. J SOLUTION CHEM 2010. [DOI: 10.1007/s10953-010-9611-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
14
|
Banerjee T, Dubey P, Mukhopadhyay R. Compacting effect of BBR3464, a new-generation trisplatinum anticancer agent, on DNA. Biochimie 2010; 92:846-51. [DOI: 10.1016/j.biochi.2010.01.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 01/18/2010] [Indexed: 11/26/2022]
|
15
|
Taha M, Lee MJ. Interactions of TRIS [tris(hydroxymethyl)aminomethane] and related buffers with peptide backbone: Thermodynamic characterization. Phys Chem Chem Phys 2010; 12:12840-50. [DOI: 10.1039/c0cp00253d] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Seng HL, Ong HKA, Rahman RNZRA, Yamin BM, Tiekink ER, Tan KW, Maah MJ, Caracelli I, Ng CH. Factors affecting nucleolytic efficiency of some ternary metal complexes with DNA binding and recognition domains. Crystal and molecular structure of Zn(phen)(edda). J Inorg Biochem 2008; 102:1997-2011. [DOI: 10.1016/j.jinorgbio.2008.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 07/26/2008] [Accepted: 07/28/2008] [Indexed: 10/21/2022]
|
17
|
Banerjee T, Mukhopadhyay R. Structural effects of nogalamycin, an antibiotic antitumour agent, on DNA. Biochem Biophys Res Commun 2008; 374:264-8. [DOI: 10.1016/j.bbrc.2008.07.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 07/03/2008] [Indexed: 11/28/2022]
|
18
|
Bonnet I, Biebricher A, Porté PL, Loverdo C, Bénichou O, Voituriez R, Escudé C, Wende W, Pingoud A, Desbiolles P. Sliding and jumping of single EcoRV restriction enzymes on non-cognate DNA. Nucleic Acids Res 2008; 36:4118-27. [PMID: 18544605 PMCID: PMC2475641 DOI: 10.1093/nar/gkn376] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The restriction endonuclease EcoRV can rapidly locate a short recognition site within long non-cognate DNA using 'facilitated diffusion'. This process has long been attributed to a sliding mechanism, in which the enzyme first binds to the DNA via nonspecific interaction and then moves along the DNA by 1D diffusion. Recent studies, however, provided evidence that 3D translocations (hopping/jumping) also help EcoRV to locate its target site. Here we report the first direct observation of sliding and jumping of individual EcoRV molecules along nonspecific DNA. Using fluorescence microscopy, we could distinguish between a slow 1D diffusion of the enzyme and a fast translocation mechanism that was demonstrated to stem from 3D jumps. Salt effects on both sliding and jumping were investigated, and we developed numerical simulations to account for both the jump frequency and the jump length distribution. We deduced from our study the 1D diffusion coefficient of EcoRV, and we estimated the number of jumps occurring during an interaction event with nonspecific DNA. Our results substantiate that sliding alternates with hopping/jumping during the facilitated diffusion of EcoRV and, furthermore, set up a framework for the investigation of target site location by other DNA-binding proteins.
Collapse
Affiliation(s)
- Isabelle Bonnet
- Laboratoire Kastler Brossel, ENS, UPMC-Paris 6, CNRS UMR 8552, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Stellwagen E, Prantner JD, Stellwagen NC. Do zwitterions contribute to the ionic strength of a solution? Anal Biochem 2007; 373:407-9. [PMID: 18022379 DOI: 10.1016/j.ab.2007.10.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 10/24/2007] [Accepted: 10/24/2007] [Indexed: 11/27/2022]
Abstract
Capillary electrophoresis has been used to determine whether zwitterions contribute to the ionic strength of a solution, by measuring the mobility of a double-stranded DNA oligomer in cacodylate-buffered solutions containing various concentrations of the ionic salt tetraethylammonium chloride (TEA(+)Cl(-)) or the zwitterion tricine(+/-). The mobility of the DNA decreased as the square root of ionic strength, as expected from the Debye-Hückel-Onsager theory of electrophoresis, when TEA(+)Cl(-) was added to the buffer. However, the mobility was independent of the concentration of added tricine(+/-). Hence, zwitterions do not contribute to the ionic strength of a solution.
Collapse
Affiliation(s)
- Earle Stellwagen
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
20
|
Stellwagen E, Stellwagen NC. Quantitative analysis of cation binding to the adenosine nucleotides using the variable ionic strength method: validation of the Debye-Hückel-Onsager theory of electrophoresis in the absence of counterion binding. Electrophoresis 2007; 28:1053-62. [PMID: 17295422 DOI: 10.1002/elps.200600487] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The free solution mobilities of the adenosine nucleotides 5'-adenosine triphosphate (ATP), 5'-adenosine diphosphate (ADP), 5'-adenosine monophosphate (AMP), and 3'-5'-cyclic AMP (cAMP) have been measured in diethylmalonate buffers containing a wide variety of monovalent cations. The mobilities of all nucleotides increase gradually with the increase in intrinsic conductivity of the cation in the BGE. However, at a given conductivity, the mobilities observed for ATP, ADP, and AMP in BGEs containing alkali metal ions and other cations are lower than these observed in BGEs containing tetraalkylammonium ions. Since the mobility of cAMP is independent of the cation in the BGE, the results suggest that the relatively low mobilities observed for ATP, ADP, and AMP in BGEs containing cations other than a tetraalkylammonium ion are due to cation binding, reducing the effective net charge of the nucleotide and thereby reducing the observed mobility. To measure the binding quantitatively, the mobilities of the nucleotides were measured as a function of ionic strength. The mobilities of ATP, ADP, and AMP decrease nonlinearly with the square root of ionic strength (I(1/2)) in BGEs containing an alkali metal ion or Tris(+). By contrast, the mobilities decrease linearly with I(1/2) in BGEs containing a nonbinding quaternary ammonium ion, as expected from Debye-Hückel-Onsager (DHO) theory. The mobility of cAMP, a nonbinding analyte, decreases linearly with I(1/2), regardless of the cation in the BGE. Hence, a nonlinear decrease of the mobility of an analyte with I(1/2) appears to be a hallmark of counterion binding. The curved mobility profiles observed for ATP, ADP, and AMP in BGEs containing an alkali metal ion or Tris(+) were analyzed by nonlinear curve fitting, using difference mobility profiles to correct for the effect of the physical properties of BGE on the observed mobilities. The calculated apparent dissociation constants range from 22 to 344 mM, depending on the particular cation-nucleotide pair. Similar values have been obtained by other investigators, using different methods. Interestingly, Tris(+) and Li(+) bind to the adenosine nucleotides with approximately equal affinities, suggesting that positively charged Tris(+) buffer ions can compete with alkali metal ions in Tris-buffered solutions.
Collapse
Affiliation(s)
- Earle Stellwagen
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
21
|
Sidorova NY, Muradymov S, Rau DC. Differences in hydration coupled to specific and nonspecific competitive binding and to specific DNA Binding of the restriction endonuclease BamHI. J Biol Chem 2006; 281:35656-66. [PMID: 17008319 DOI: 10.1074/jbc.m608018200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using the osmotic stress technique together with a self-cleavage assay we measure directly differences in sequestered water between specific and nonspecific DNA-BamHI complexes as well as the numbers of water molecules released coupled to specific complex formation. The difference between specific and nonspecific binding free energy of the BamHI scales linearly with solute osmolal concentration for seven neutral solutes used to set water activity. The observed osmotic dependence indicates that the nonspecific DNA-BamHI complex sequesters some 120-150 more water molecules than the specific complex. The weak sensitivity of the difference in number of waters to the solute identity suggests that these waters are sterically inaccessible to solutes. This result is in close agreement with differences in the structures determined by x-ray crystallography. We demonstrate additionally that when the same solutes that were used in competition experiments are used to probe changes accompanying the binding of free BamHI to its specific DNA sequence, the measured number of water molecules released in the binding process is strikingly solute-dependent (with up to 10-fold difference between solutes). This result is expected for reactions resulting in a large change in a surface exposed area.
Collapse
Affiliation(s)
- Nina Y Sidorova
- Laboratory of Physical and Structural Biology, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
22
|
Evstigneev MP, Khomich VV, Davies DB. Self-association of daunomycin antibiotic in various buffer solutions. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2006. [DOI: 10.1134/s003602440605013x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Buchmueller KL, Weeks KM. Tris-borate is a poor counterion for RNA: a cautionary tale for RNA folding studies. Nucleic Acids Res 2004; 32:e184. [PMID: 15601995 PMCID: PMC545480 DOI: 10.1093/nar/gnh182] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Native polyacrylamide gel electrophoresis is a powerful approach for visualizing RNA folding states and folding intermediates. Tris-borate has a high-buffering capacity and is therefore widely used in electrophoresis-based investigations of RNA structure and folding. However, the effectiveness of Tris-borate as a counterion for RNA has not been systematically investigated. In a recirculated Hepes/KCl buffer, the catalytic core of the bI5 group I intron RNA undergoes a conformational collapse characterized by a bulk transition midpoint, or Mg1/2, of approximately 3 mM, consistent with extensive independent biochemical experiments. In contrast, in Tris-borate, RNA collapse has a much smaller apparent Mg1/2, equal to 0.1 mM, because in this buffer the RNA undergoes a different, large amplitude, folding transition at low Mg2+ concentrations. Analysis of structural neighbors using a short-lived, RNA-tethered, photocrosslinker indicates that the global RNA structure eventually converges in the two buffer systems, as the divalent ion concentration approaches approximately 1 mM Mg2+. The weak capacity of Tris-borate to stabilize RNA folding may reflect relatively unfavorable interactions between the bulky Tris-borate ion and RNA or partial coordination of RNA functional groups by borate. Under some conditions, Tris-borate is a poor counterion for RNA and its use merits careful evaluation in RNA folding studies.
Collapse
Affiliation(s)
- Karen L Buchmueller
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | | |
Collapse
|
24
|
Abstract
Type II restriction endonucleases have emerged as important paradigms for the study of protein-nucleic acid interactions. This is due to their ability to catalyse phosphodiester bond cleavage with very large rate enhancements while also maintaining exquisite sequence selectivities. The principles and methods developed to analyze site-specific binding and catalysis for restriction endonucleases can be applied to other enzymes which also operate on nucleic acids. This paper reviews biochemical and structural approaches to characterization of these enzymes, with particular attention to the multiple crucial roles of divalent metal ions, the possibilities for use of alternative substrates in binding and catalytic experiments, the strategies for exploring the detailed chemistry of phosphoryl transfer, and the use of X-ray crystallography to provide descriptions of conformational pathways at specific, nonspecific, and noncognate DNA sites.
Collapse
Affiliation(s)
- John J Perona
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, USA.
| |
Collapse
|
25
|
Wenner JR, Williams MC, Rouzina I, Bloomfield VA. Salt dependence of the elasticity and overstretching transition of single DNA molecules. Biophys J 2002; 82:3160-9. [PMID: 12023240 PMCID: PMC1302105 DOI: 10.1016/s0006-3495(02)75658-0] [Citation(s) in RCA: 244] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
As double-stranded DNA is stretched to its B-form contour length, models of polymer elasticity can describe the dramatic increase in measured force. When the molecule is stretched beyond this contour length, it shows a highly cooperative overstretching transition. We have measured the elasticity and overstretching transition as a function of monovalent salt concentration by stretching single DNA molecules in an optical tweezers apparatus. As the sodium ion concentration was decreased from 1000 to 2.57 mM, the persistence length of DNA increased from 46 to 59 nm, while the elastic stretch modulus remained approximately constant. These results are consistent with the model of Podgornik, et al. (2000, J. Chem. Phys. 113:9343-9350) using an effective DNA length per charge of 0.67 nm. As the monovalent salt concentration was decreased over the same range, the overstretching transition force decreased from 68 to 52 pN. This reduction in force is attributed to a decrease in the stability of the DNA double helix with decreasing salt concentration. Although, as was shown previously, the hydrogen bonds holding DNA strands in a helical conformation break as DNA is overstretched, these data indicate that both DNA strands remain close together during the transition.
Collapse
Affiliation(s)
- Jay R Wenner
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | | | | | | |
Collapse
|
26
|
Pingoud A, Jeltsch A. Structure and function of type II restriction endonucleases. Nucleic Acids Res 2001; 29:3705-27. [PMID: 11557805 PMCID: PMC55916 DOI: 10.1093/nar/29.18.3705] [Citation(s) in RCA: 440] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2001] [Revised: 03/23/2001] [Accepted: 06/07/2001] [Indexed: 11/13/2022] Open
Abstract
More than 3000 type II restriction endonucleases have been discovered. They recognize short, usually palindromic, sequences of 4-8 bp and, in the presence of Mg(2+), cleave the DNA within or in close proximity to the recognition sequence. The orthodox type II enzymes are homodimers which recognize palindromic sites. Depending on particular features subtypes are classified. All structures of restriction enzymes show a common structural core comprising four beta-strands and one alpha-helix. Furthermore, two families of enzymes can be distinguished which are structurally very similar (EcoRI-like enzymes and EcoRV-like enzymes). Like other DNA binding proteins, restriction enzymes are capable of non-specific DNA binding, which is the prerequisite for efficient target site location by facilitated diffusion. Non-specific binding usually does not involve interactions with the bases but only with the DNA backbone. In contrast, specific binding is characterized by an intimate interplay between direct (interaction with the bases) and indirect (interaction with the backbone) readout. Typically approximately 15-20 hydrogen bonds are formed between a dimeric restriction enzyme and the bases of the recognition sequence, in addition to numerous van der Waals contacts to the bases and hydrogen bonds to the backbone, which may also be water mediated. The recognition process triggers large conformational changes of the enzyme and the DNA, which lead to the activation of the catalytic centers. In many restriction enzymes the catalytic centers, one in each subunit, are represented by the PD. D/EXK motif, in which the two carboxylates are responsible for Mg(2+) binding, the essential cofactor for the great majority of enzymes. The precise mechanism of cleavage has not yet been established for any enzyme, the main uncertainty concerns the number of Mg(2+) ions directly involved in cleavage. Cleavage in the two strands usually occurs in a concerted fashion and leads to inversion of configuration at the phosphorus. The products of the reaction are DNA fragments with a 3'-OH and a 5'-phosphate.
Collapse
Affiliation(s)
- A Pingoud
- Institut für Biochemie (FB 08), Justus-Liebig-Universität, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany.
| | | |
Collapse
|
27
|
Sidorova NY, Rau DC. Linkage of EcoRI dissociation from its specific DNA recognition site to water activity, salt concentration, and pH: separating their roles in specific and non-specific binding. J Mol Biol 2001; 310:801-16. [PMID: 11453689 DOI: 10.1006/jmbi.2001.4781] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have measured the dependencies of both the dissociation rate of specifically bound EcoRI endonuclease and the ratio of non-specific and specific association constants on water activity, salt concentration, and pH in order to distinguish the contributions of these solution components to specific and non-specific binding. For proteins such as EcoRI that locate their specific recognition site efficiently by diffusing along non-specific DNA, the specific site dissociation rate can be separated into two steps: an equilibrium between non-specific and specific binding of the enzyme to DNA, and the dissociation of non-specifically bound protein. We demonstrated previously that the osmotic dependence of the dissociation rate is dominated by the equilibrium between specific and non-specific binding that is independent of the osmolyte nature. The remaining osmotic sensitivity linked to the dissociation of non-specifically bound protein depends significantly on the particular osmolyte used, indicating a change in solute-accessible surface area. In contrast, the dissociation of non-specifically bound enzyme accounts for almost all the pH and salt-dependencies. We observed virtually no pH-dependence of the equilibrium between specific and non-specific binding measured by the competition assay. The observed weak salt-sensitivity of the ratio of specific and non-specific association constants is consistent with an osmotic, rather than electrostatic, action. The seeming lack of a dependence on viscosity suggests the rate-limiting step in dissociation of non-specifically bound protein is a discrete conformational change rather than a general diffusion of the protein away from the DNA.
Collapse
Affiliation(s)
- N Y Sidorova
- Laboratory of Physical and Structural Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
28
|
Stellwagen NC, Bossi A, Gelfi C, Righetti PG. DNA and buffers: are there any noninteracting, neutral pH buffers? Anal Biochem 2000; 287:167-75. [PMID: 11078596 DOI: 10.1006/abio.2000.4848] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The interaction of DNA with various neutral pH, amine-based buffers has been analyzed by free solution capillary electrophoresis, using a mixture of a plasmid-sized DNA molecule and a small DNA oligonucleotide as the reporter system. The two DNAs migrate as separate, nearly Gaussian-shaped peaks in 20-80 mM TAE (TAE, Tris-acetate-EDTA; Tris, tris[hydroxymethyl]aminomethane) buffer. The separation between the peaks gradually increases with increasing TAE buffer concentration because of differences in solvent friction between large and small DNA molecules. The two DNAs form complexes with the borate ions in TBE (Tris-borate-EDTA) buffer, with mobilities that depend on the DNA/borate ratio. In 45 mM TBE buffer, the two DNAs comigrate as a single sharp peak, with a mobility that is faster than either of the constituent DNAs in the same buffer. Hence, the mixed DNA-borate complex is stabilized by the binding of additional borate ions, possibly forming bridges between the different DNAs. The mixed DNA-borate complex is gradually dissociated into its component DNAs by increasing the TBE concentration, possibly because the borate binding sites become saturated at high buffer concentrations. Other neutral pH, amine-based buffers, such as Mops (3-[N-morpholino]propanesulfonic acid), Hepes (N-[2-hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid]), Bes (N,N-bis[2-hydroxyethyl]-2-aminoethanesulfonic acid), Tes (N-tris[hydroxymethyl]methyl-2-aminoethanesulfonic acid), and tricine (N-tris[hydroxymethyl]methylglycine) also form complexes with DNA, giving distorted peaks in the electropherograms. The combined results indicate that borate buffers and most neutral pH, amine-based buffers interact with DNA.
Collapse
Affiliation(s)
- N C Stellwagen
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | |
Collapse
|
29
|
Abstract
The free solution electrophoretic mobility of DNA differs significantly in different buffers, suggesting that DNA-buffer interactions are present in certain buffer systems. Here, capillary and gel electrophoresis data are combined to show that the Tris ions in Tris-acetate-EDTA (TAE) buffers are associated with the DNA helix to approximately the same extent as sodium ions. The borate ions in Tris-borate-EDTA (TBE) buffers interact with DNA to form highly charged DNA-borate complexes, which are stable both in free solution and in polyacrylamide gels. DNA-borate complexes are not observed in agarose gels, because of the competition of the agarose gel fibers for the borate residues. The resulting agarose-borate complexes increase the negative charge of the agarose gel fibers, leading to an increased electroendosmotic flow of the solvent in agarose-TBE gels. The combined results indicate that the buffers in which DNA is studied cannot automatically be assumed to be innocuous.
Collapse
Affiliation(s)
- N C Stellwagen
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
30
|
Abstract
Investigations of DNA binding proteins frequently measure pH and salt dependence, but relatively few studies measure protein binding in high concentrations of small molecules often found in vivo. We have measured kinetics of the restriction enzyme EcoRV in concentrated solutions of three small cosolvents that produce osmotic pressures from 0.25 to 2.5 mol/kg (6 to 62 atm or water activity of 0.995 to 0.956). We have correlated DNA cleavage and binding parameters with four solution parameters (dielectric constant, viscosity, water concentration, and water activity). We found that the responses of maximum velocity (Vmax) and the dissociation constant for nonspecific binding (Kd,ns) best correlate with water activity. The Michaelis constant (Km) correlates with both water activity and solution viscosity, the latter due to the highly dilute reactant concentrations, which make enzyme-substrate combination diffusion limited. Dielectric constant does not influence any of the kinetic parameters, which is consistent with a view that protein and DNA are preferentially hydrated, and excluded solutes cannot affect the local dielectric constant.
Collapse
Affiliation(s)
- J R Wenner
- Department of Biochemistry, University of Minnesota, St. Paul 55108, USA
| | | |
Collapse
|