1
|
Sawayama R, Minoda M, Kojima H, Okabe T, Isayama Y, Kato K, Nishimasu H, Urano Y, Komatsu T. Application of Intramolecular O-to-N Phosphoryl Transfer Reaction to Design Fluorogenic Probes to Detect Activities of Enzymes That Metabolize Short Peptides and Acylamino Acids. ACS Sens 2025; 10:664-670. [PMID: 39903855 DOI: 10.1021/acssensors.4c03402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
We propose the design strategy of fluorogenic probes of proteases/peptidases and acylamino acid hydrolases utilizing an intramolecular O-to-N phosphoryl transfer reaction, in which the main chain of peptides or amino acids is retained from the natural substrate but the side chain was designed to attach the fluorophore. The strategy is useful to design fluorogenic probes for peptidases/proteases that do not prefer the main chain modification and acylamino acid hydrolases. We have developed the fluorogenic substrates for GGT5, GGCT, and PM20D1 and have performed the screening of PM20D1 inhibitors/activators to characterize the compounds that modify the activity of PM20D1.
Collapse
Affiliation(s)
- Risako Sawayama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mayano Minoda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hirotatsu Kojima
- Drug Discovery Initiative, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayoshi Okabe
- Drug Discovery Initiative, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yukari Isayama
- Mechanistic Immunology Research Unit, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kazuki Kato
- Mechanistic Immunology Research Unit, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hiroshi Nishimasu
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Inamori Research Institute for Science, 620 Suiginya-cho, Shimogyo-ku, Kyoto 600-8411, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toru Komatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Onyenaka C, Idowu KA, Ha NP, Graviss EA, Olaleye OA. Anti-Tuberculosis Potential of OJT008 against Active and Multi-Drug-Resistant Mycobacterium Tuberculosis: In Silico and In Vitro Inhibition of Methionine Aminopeptidase. Int J Mol Sci 2023; 24:17142. [PMID: 38138972 PMCID: PMC10742973 DOI: 10.3390/ijms242417142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Despite the recent progress in the diagnosis of tuberculosis (TB), the chemotherapeutic management of TB continues to be challenging. Mycobacterium tuberculosis (Mtb), the etiological agent of TB, is classified as the 13th leading cause of death globally. In addition, 450,000 people were reported to develop multi-drug-resistant TB globally. The current project focuses on targeting methionine aminopeptidase (MetAP), an essential protein for the viability of Mtb. MetAP is a metalloprotease that catalyzes the excision of the N-terminal methionine (NME) during protein synthesis, allowing the enzyme to be an auspicious target for the development of novel therapeutic agents for the treatment of TB. Mtb possesses two MetAP1 isoforms, MtMetAP1a and MtMetAP1c, which are vital for Mtb viability and, hence, a promising chemotherapeutic target for Mtb therapy. In this study, we cloned and overexpressed recombinant MtMetAP1c. We investigated the in vitro inhibitory effect of the novel MetAP inhibitor, OJT008, on the cobalt ion- and nickel ion-activated MtMetAP1c, and the mechanism of action was elucidated through an in silico approach. The compound's potency against replicating and multi-drug-resistant (MDR) Mtb strains was also investigated. The induction of the overexpressed recombinant MtMetAP1c was optimized at 8 h with a final concentration of 1 mM Isopropyl β-D-1-thiogalactopyranoside. The average yield from 1 L of Escherichia coli culture for MtMetAP1c was 4.65 mg. A preliminary MtMetAP1c metal dependency screen showed optimum activation with nickel and cobalt ions occurred at 100 µM. The half-maximal inhibitory concentration (IC50) values of OJT008 against MtMetAP1c activated with CoCl2 and NiCl2 were 11 µM and 40 µM, respectively. The in silico study showed OJT008 strongly binds to both metal-activated MtMetAP1c, as evidenced by strong molecular interactions and a higher binding score, thereby corroborating our result. This in silico study validated the pharmacophore's metal specificity. The potency of OJT008 against both active and MDR Mtb was <0.063 µg/mL. Our study reports OJT008 as an inhibitor of MtMetAP1c, which is potent at low micromolar concentrations against both active susceptible and MDR Mtb. These results suggest OJT008 is a potential lead compound for the development of novel small molecules for the therapeutic management of TB.
Collapse
Affiliation(s)
- Collins Onyenaka
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA (K.A.I.)
| | - Kehinde A. Idowu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA (K.A.I.)
| | - Ngan P. Ha
- Center for Infectious Disease Research, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Edward A. Graviss
- Center for Infectious Disease Research, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Omonike A. Olaleye
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA (K.A.I.)
- Center for Infectious Disease Research, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
3
|
Xie J, Rice MA, Chen Z, Cheng Y, Hsu EC, Chen M, Song G, Cui L, Zhou K, Castillo JB, Zhang CA, Shen B, Chin FT, Kunder CA, Brooks JD, Stoyanova T, Rao J. In Vivo Imaging of Methionine Aminopeptidase II for Prostate Cancer Risk Stratification. Cancer Res 2021; 81:2510-2521. [PMID: 33637565 DOI: 10.1158/0008-5472.can-20-2969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/31/2020] [Accepted: 02/24/2021] [Indexed: 11/16/2022]
Abstract
Prostate cancer is one of the most common malignancies worldwide, yet limited tools exist for prognostic risk stratification of the disease. Identification of new biomarkers representing intrinsic features of malignant transformation and development of prognostic imaging technologies are critical for improving treatment decisions and patient survival. In this study, we analyzed radical prostatectomy specimens from 422 patients with localized disease to define the expression pattern of methionine aminopeptidase II (MetAP2), a cytosolic metalloprotease that has been identified as a druggable target in cancer. MetAP2 was highly expressed in 54% of low-grade and 59% of high-grade cancers. Elevated levels of MetAP2 at diagnosis were associated with shorter time to recurrence. Controlled self-assembly of a synthetic small molecule enabled design of the first MetAP2-activated PET imaging tracer for monitoring MetAP2 activity in vivo. The nanoparticles assembled upon MetAP2 activation were imaged in single prostate cancer cells with post-click fluorescence labeling. The fluorine-18-labeled tracers successfully differentiated MetAP2 activity in both MetAP2-knockdown and inhibitor-treated human prostate cancer xenografts by micro-PET/CT scanning. This highly sensitive imaging technology may provide a new tool for noninvasive early-risk stratification of prostate cancer and monitoring the therapeutic effect of MetAP2 inhibitors as anticancer drugs. SIGNIFICANCE: This study defines MetAP2 as an early-risk stratifier for molecular imaging of aggressive prostate cancer and describes a MetAP2-activated self-assembly small-molecule PET tracer for imaging MetAP2 activity in vivo.
Collapse
Affiliation(s)
- Jinghang Xie
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Meghan A Rice
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California
| | - Zixin Chen
- Department of Chemistry, Stanford University, Stanford, California
| | - Yunfeng Cheng
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - En-Chi Hsu
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California
| | - Min Chen
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Guosheng Song
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Liyang Cui
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Kaixiang Zhou
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Jessa B Castillo
- Department of Radiology, Cyclotron and Radiochemistry Facility, Stanford University School of Medicine, Stanford, California
| | - Chiyuan A Zhang
- Department of Urology, Stanford University School of Medicine, Stanford, California
| | - Bin Shen
- Department of Radiology, Cyclotron and Radiochemistry Facility, Stanford University School of Medicine, Stanford, California
| | - Frederick T Chin
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California.,Department of Radiology, Cyclotron and Radiochemistry Facility, Stanford University School of Medicine, Stanford, California
| | - Christian A Kunder
- Department of Urology, Stanford University School of Medicine, Stanford, California
| | - James D Brooks
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California.,Department of Urology, Stanford University School of Medicine, Stanford, California
| | - Tanya Stoyanova
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California.
| | - Jianghong Rao
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California. .,Department of Chemistry, Stanford University, Stanford, California
| |
Collapse
|
4
|
Arif A, Mohammed K, Nadeem MS. Biochemical and in silico evaluation of recombinant E. coli aminopeptidase and in vitro processed human interferon α-2b. Turk J Biol 2018; 42:240-249. [PMID: 30814886 PMCID: PMC6353284 DOI: 10.3906/biy-1801-83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Escherichia coli is an extensively used host for the production of recombinant proteins, making its N-terminal methionine aminopeptidase (MAP) an attractive candidate for studies on posttranslational protein processing. The present study describes the recombinant production and properties of MAP from the DH5α strain of E. coli. The soluble and active enzyme was produced in E. coli BL21 (DE3) RIL - codon plus cells under a T7 promoter system and purified by anion-exchange chromatography. It exhibited a molecular weight of 29,200.94 Da by MALDI-TOF analysis. The purified enzyme showed specific activity of 1.64 U/mg with methionylp-nitroanilide and 1.51 U/mg with synthetic tetrapeptide substrate 'MGMM' in a discontinuous HPLC-based assay. In vitro studies showed the processing of up to 36% of Met-INFα-2b in 40 min. In silico studies revealed that the ES-complex formation between the enzyme and interferon has a ΔG -683.07 kJ/mol. Molecular docking results showed that the processed INFα-2b has greater binding affinity with IFNAR2 receptor as indicated by ΔG -784.53 kJ/mol, significantly lower than that of methionine containing INFα-2b (ΔG -717.63 kJ/mol). These findings emphasize the functional superiority or better efficacy of N-terminal methionine processed recombinant interferon.
Collapse
Affiliation(s)
- Amina Arif
- Faculty of Life Sciences, University of Central Punjab , Lahore , Pakistan
| | - Kaleemuddin Mohammed
- Department of Biochemistry, Faculty of Science, King Abdulaziz University , Jeddah , Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University , Jeddah , Saudi Arabia
| |
Collapse
|
5
|
John SF, Aniemeke E, Ha NP, Chong CR, Gu P, Zhou J, Zhang Y, Graviss EA, Liu JO, Olaleye OA. Characterization of 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone as a novel inhibitor of methionine aminopeptidases from Mycobacterium tuberculosis. Tuberculosis (Edinb) 2016; 101S:S73-S77. [PMID: 27856197 DOI: 10.1016/j.tube.2016.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mycobacterium tuberculosis (Mtb) and the Human Immunodeficiency Virus (HIV) pose a major public health threat. The 2015 World Health Organization (WHO) report estimates that one in three HIV deaths is due to Mtb, the causative agent of Tuberculosis (TB). The lethal synergy between these two pathogens leads to a decline in the immune function of infected individuals as well as a rise in morbidity and mortality rates. The deadly interaction between TB and HIV, along with the heightened emergence of drug resistance, drug-drug interactions, reduced drug efficacy and increased drug toxicity, has made the therapeutic management of co-infected individuals a major challenge. Hence, the development of new drug targets and/or new drug leads are imperative for the effective therapeutic management of co-infected patients. Here, we report the characterization of 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone (311), a known inhibitor of HIV-1 replication and transcription as a new inhibitor of methionine aminopeptidases (MetAPs) from Mycobacterium tuberculosis: MtMetAP1a and MtMetAP1c. MetAP is a metalloprotease that removes the N-terminal methionine during protein synthesis. The essential role of MetAP in microbes makes it a promising chemotherapeutic target. We demonstrated that 311 is a potent and selective inhibitor of MtMetAP1a and MtMetAP1c. Furthermore, we found that 311 is active against replicating and aged non-growing Mtb at low micromolar concentrations. These results suggest that 311 is a promising lead for the development of novel class of therapeutic agents with dual inhibition of TB and HIV for the treatment of TB-HIV co-infection.
Collapse
Affiliation(s)
- Sarah F John
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Emmanuel Aniemeke
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Ngan P Ha
- Department of Pathology and Genomic Medicine, The Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Curtis R Chong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Peihua Gu
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jiangbing Zhou
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Edward A Graviss
- Department of Pathology and Genomic Medicine, The Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | - Omonike A Olaleye
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA.
| |
Collapse
|
6
|
Masood MM, Pillalamarri VK, Irfan M, Aneja B, Jairajpuri MA, Zafaryab M, Rizvi MMA, Yadava U, Addlagatta A, Abid M. Diketo acids and their amino acid/dipeptidic analogues as promising scaffolds for the development of bacterial methionine aminopeptidase inhibitors. RSC Adv 2015. [DOI: 10.1039/c5ra03354c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Diketo acids and their peptidic analogues were designed and synthesised as bacterial MetAP inhibitors. In the enzymatic assay, the representative compound 5e showed excellent inhibition of bacterial MetAPs with no cytotoxicity.
Collapse
|
7
|
Discovery and SAR studies of methionine–proline anilides as dengue virus NS2B-NS3 protease inhibitors. Bioorg Med Chem Lett 2013; 23:6549-54. [DOI: 10.1016/j.bmcl.2013.10.071] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/10/2013] [Accepted: 10/31/2013] [Indexed: 01/05/2023]
|
8
|
Wangtrakuldee P, Byrd MS, Campos CG, Henderson MW, Zhang Z, Clare M, Masoudi A, Myler PJ, Horn JR, Cotter PA, Hagen TJ. Discovery of Inhibitors of Burkholderia pseudomallei Methionine Aminopeptidase with Antibacterial Activity. ACS Med Chem Lett 2013; 4. [PMID: 24376907 DOI: 10.1021/ml400034m] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Evaluation of a series of MetAP inhibitors in an in vitro enzyme activity assay led to the first identification of potent molecules that show significant growth inhibition against Burkholderia pseudomallei. Nitroxoline analogs show excellent inhibition potency in the BpMetAP1 enzyme activity assay with the lowest IC50 of 30 nM, and inhibit the growth of B. pseudomallei and B. thailandensis at concentrations ≥ 31 μM.
Collapse
Affiliation(s)
- Phumvadee Wangtrakuldee
- Department
of Chemistry and
Biochemistry, Northern Illinois University, 1425 West Lincoln Highway, DeKalb, Illinois 60115-2828, United
States
| | - Matthew S. Byrd
- Department of Microbiology
and
Immunology, University of North Carolina, 116 Manning Drive, Chapel Hill, North Carolina 27599, United States
| | - Cristine G. Campos
- Department of Microbiology
and
Immunology, University of North Carolina, 116 Manning Drive, Chapel Hill, North Carolina 27599, United States
| | - Michael W. Henderson
- Department of Microbiology
and
Immunology, University of North Carolina, 116 Manning Drive, Chapel Hill, North Carolina 27599, United States
| | - Zheng Zhang
- Department
of Chemistry and
Biochemistry, Northern Illinois University, 1425 West Lincoln Highway, DeKalb, Illinois 60115-2828, United
States
| | - Michael Clare
- Clare Associates LLC, 5154 West Brown Street, Skokie, Illinois 60077,
United States
| | - Ali Masoudi
- Seattle Biomedical Research Institute, 307 Westlake Avenue N, Seattle,
Washington 98109-5219, United States, and Department of Global Health
and Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington 98195,
United States
| | - Peter J. Myler
- Seattle Biomedical Research Institute, 307 Westlake Avenue N, Seattle,
Washington 98109-5219, United States, and Department of Global Health
and Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington 98195,
United States
| | - James R. Horn
- Department
of Chemistry and
Biochemistry, Northern Illinois University, 1425 West Lincoln Highway, DeKalb, Illinois 60115-2828, United
States
| | - Peggy A. Cotter
- Department of Microbiology
and
Immunology, University of North Carolina, 116 Manning Drive, Chapel Hill, North Carolina 27599, United States
| | - Timothy J. Hagen
- Department
of Chemistry and
Biochemistry, Northern Illinois University, 1425 West Lincoln Highway, DeKalb, Illinois 60115-2828, United
States
| |
Collapse
|
9
|
Chen M, Ma X, Chen X, Jiang M, Song H, Guo Z. Identification of a hotdog fold thioesterase involved in the biosynthesis of menaquinone in Escherichia coli. J Bacteriol 2013; 195:2768-75. [PMID: 23564174 PMCID: PMC3697248 DOI: 10.1128/jb.00141-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/02/2013] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli is used as a model organism for elucidation of menaquinone biosynthesis, for which a hydrolytic step from 1,4-dihydroxy-2-naphthoyl-coenzyme A (DHNA-CoA) to 1,4-dihydroxy-2-naphthoate is still unaccounted for. Recently, a hotdog fold thioesterase has been shown to catalyze this conversion in phylloquinone biosynthesis, suggesting that its closest homolog, YbgC in Escherichia coli, may be the DHNA-CoA thioesterase in menaquinone biosynthesis. However, this possibility is excluded by the involvement of YbgC in the Tol-Pal system and its complete lack of hydrolytic activity toward DHNA-CoA. To identify the hydrolytic enzyme, we have performed an activity-based screen of all nine Escherichia coli hotdog fold thioesterases and found that YdiI possesses a high level of hydrolytic activity toward DHNA-CoA, with high substrate specificity, and that another thioesterase, EntH, from siderophore biosynthesis exhibits a moderate, much lower DHNA-CoA thioesterase activity. Deletion of the ydiI gene from the bacterial genome results in a significant decrease in menaquinone production, which is little affected in ΔybgC and ΔentH mutants. These results support the notion that YdiI is the DHNA-CoA thioesterase involved in the biosynthesis of menaquinone in the model bacterium.
Collapse
Affiliation(s)
- Minjiao Chen
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
10
|
Zhang P, Yang X, Zhang F, Gabelli SB, Wang R, Zhang Y, Bhat S, Chen X, Furlani M, Amzel LM, Liu JO, Ma D. Pyridinylpyrimidines selectively inhibit human methionine aminopeptidase-1. Bioorg Med Chem 2013; 21:2600-17. [PMID: 23507151 DOI: 10.1016/j.bmc.2013.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/03/2013] [Accepted: 02/11/2013] [Indexed: 11/17/2022]
Abstract
Cellular protein synthesis is initiated with methionine in eukaryotes with few exceptions. Methionine aminopeptidases (MetAPs) which catalyze the process of N-terminal methionine excision are essential for all organisms. In mammals, type 2 MetAP (MetAP2) is known to be important for angiogenesis, while type 1 MetAP (MetAP1) has been shown to play a pivotal role in cell proliferation. Our previous high-throughput screening of a commercial compound library uncovered a novel class of inhibitors for both human MetAP1 (HsMetAP1) and human MetAP2 (HsMetAP2). This class of inhibitors contains a pyridinylpyrimidine core. To understand the structure-activity relationship (SAR) and to search for analogues of 2 with greater potency and higher HsMetAP1-selectivity, a total of 58 analogues were acquired through either commercial source or by in-house synthesis and their inhibitory activities against HsMetAP1 and HsMetAP2 were determined. Through this systematic medicinal chemistry analysis, we have identified (1) 5-chloro-6-methyl-2-pyridin-2-ylpyrimidine as the minimum element for the inhibition of HsMetAP1; (2) 5'-chloro as the favored substituent on the pyridine ring for the enhanced potency against HsMetAP1; and (3) long C4 side chains as the essentials for higher HsMetAP1-selectivity. At the end of our SAR campaign, 25b, 25c, 26d and 30a-30c are among the most selective and potent inhibitors of purified HsMetAP1 reported to date. In addition, we also performed crystallographic analysis of one representative inhibitor (26d) in complex with N-terminally truncated HsMetAP1.
Collapse
Affiliation(s)
- Pengtao Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bhat S, Olaleye O, Meyer KJ, Shi W, Zhang Y, Liu JO. Analogs of N'-hydroxy-N-(4H,5H-naphtho[1,2-d]thiazol-2-yl)methanimidamide inhibit Mycobacterium tuberculosis methionine aminopeptidases. Bioorg Med Chem 2012; 20:4507-13. [PMID: 22704656 PMCID: PMC3495175 DOI: 10.1016/j.bmc.2012.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/03/2012] [Accepted: 05/11/2012] [Indexed: 12/28/2022]
Abstract
Our previous target validation studies established that inhibition of methionine aminopeptidases (MtMetAP, type 1a and 1c) from Mycobacterium tuberculosis (Mtb) is an effective approach to suppress Mtb growth in culture. A novel class of MtMetAP1c inhibitors comprising of N'-hydroxy-N-(4H,5H-naphtho[1,2-d]thiazol-2-yl)methanimidamide (4c) was uncovered through a high-throughput screen (HTS). A systematic structure-activity relationship study (SAR) yielded variants of the hit, 4b, 4h, and 4k, bearing modified A- and B-rings as potent inhibitors of both MtMetAPs. Except methanimidamide 4h that showed a moderate Mtb inhibition, a desirable minimum inhibitory concentration (MIC) was not obtained with the current set of MtMetAP inhibitors. However, the SAR data generated thus far may prove valuable for further tuning of this class of inhibitors as effective anti-tuberculosis agents.
Collapse
Affiliation(s)
- Shridhar Bhat
- Department of Pharmacology & Molecular Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Omonike Olaleye
- Department of Pharmacology & Molecular Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kirsten J. Meyer
- Department of Pharmacology & Molecular Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Wanliang Shi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ying Zhang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jun O. Liu
- Department of Pharmacology & Molecular Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
12
|
Bhat S, Shim JS, Zhang F, Chong CR, Liu JO. Substituted oxines inhibit endothelial cell proliferation and angiogenesis. Org Biomol Chem 2012; 10:2979-92. [PMID: 22391578 DOI: 10.1039/c2ob06978d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two substituted oxines, nitroxoline (5) and 5-chloroquinolin-8-yl phenylcarbamate (22), were identified as hits in a high-throughput screen aimed at finding new anti-angiogenic agents. In a previous study, we have elucidated the molecular mechanism of antiproliferative activity of nitroxoline in endothelial cells, which comprises of a dual inhibition of type 2 human methionine aminopeptidase (MetAP2) and sirtuin 1 (SIRT1). Structure-activity relationship study (SAR) of nitroxoline offered many surprises where minor modifications yielded oxine derivatives with increased potency against human umbilical vein endothelial cells (HUVEC), but with entirely different as yet unknown mechanisms. For example, 5-nitrosoquinolin-8-ol (33) inhibited HUVEC growth with sub-micromolar IC(50), but did not affect MetAP2 or MetAP1, and it only showed weak inhibition against SIRT1. Other sub-micromolar inhibitors were derivatives of 5-aminoquinolin-8-ol (34) and 8-sulfonamidoquinoline (32). A sulfamate derivative of nitroxoline (48) was found to be more potent than nitroxoline with the retention of activities against MetAP2 and SIRT1. The bioactivity of the second hit, micromolar HUVEC and MetAP2 inhibitor carbamate 22 was improved further with an SAR study culminating in carbamate 24 which is a nanomolar inhibitor of HUVEC and MetAP2.
Collapse
Affiliation(s)
- Shridhar Bhat
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
13
|
Olaleye O, Raghunand TR, Bhat S, Chong C, Gu P, Zhou J, Zhang Y, Bishai WR, Liu JO. Characterization of clioquinol and analogues as novel inhibitors of methionine aminopeptidases from Mycobacterium tuberculosis. Tuberculosis (Edinb) 2011; 91 Suppl 1:S61-5. [PMID: 22115541 PMCID: PMC11059541 DOI: 10.1016/j.tube.2011.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis claims about five thousand lives daily world-wide, while one-third of the world is infected with dormant tuberculosis. The increased emergence of multi- and extensively drug-resistant strains of M. tuberculosis (Mtb) has heightened the need for novel antimycobacterial agents. Here, we report the discovery of 7-bromo-5-chloroquinolin-8-ol (CLBQ14)-a congener of clioquinol (CQ) as a potent and selective inhibitor of two methionine aminopeptidases (MetAP) from M. tuberculosis: MtMetAP1a and MtMetAP1c. MetAP is a metalloprotease that removes the N-terminal methionine during protein synthesis. N-terminal methionine excision (NME) is a universally conserved process required for the post-translational modification of a significant part of the proteome. The essential role of MetAP in microbes makes it a promising target for the development of new therapeutics. Using a target-based approach in a high-throughput screen, we identified CLBQ14 as a novel MtMetAP inhibitor with higher specificity for both MtMetAP1s relative to their human counterparts. We also found that CLBQ14 is potent against replicating and aged non-growing Mtb at low micro molar concentrations. Furthermore, we observed that the antimycobacterial activity of this pharmacophore correlates well with in vitro enzymatic inhibitory activity. Together, these results revealed a new mode of action of clioquinol and its congeners and validated the therapeutic potential of this pharmacophore for TB chemotherapy.
Collapse
Affiliation(s)
- Omonike Olaleye
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
- Present address: College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004
| | - Tirumalai R. Raghunand
- Center for Tuberculosis Research, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
- Present address: Center for Cellular and Molecular Biology, Hyderabad, India
| | - Shridhar Bhat
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Curtis Chong
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Present address: Dana Farber Cancer Institute, Harvard Medical School, Boston, MA. Boston, MA 02215-5450, USA
| | - Peihua Gu
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jiangbing Zhou
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - William R. Bishai
- Center for Tuberculosis Research, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Jun O. Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
14
|
Shapiro AB, Gao N, Thresher J, Walkup GK, Whiteaker J. A high-throughput absorbance-based assay for methionine produced by methionine aminopeptidase using S-adenosyl-L-methionine synthetase. ACTA ACUST UNITED AC 2011; 16:494-505. [PMID: 21402755 DOI: 10.1177/1087057111398934] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Methionine aminopeptidase (MAP) (E.C. 3.4.11.18) is a metallopeptidase that cleaves the N-terminal methionine (Met) residue from some proteins. MAP is essential for growth of several bacterial pathogens, making it a target for antibacterial drug discovery. MAP enzymes are also present in eukaryotic cells, and one is a target for antiangiogenic cancer therapy. To screen large compound libraries for MAP inhibitors as the starting point for drug discovery, a high-throughput-compatible assay is valuable. Here the authors describe a novel assay, which detects the Met product of MAP-catalyzed peptide cleavage by coupling it to adenosine triphosphate (ATP)-dependent production of S-adenosyl-L-methionine (SAM) and inorganic phosphate (P(i)) by SAM synthetase (MetK) combined with inorganic pyrophosphatase. The three P(i) ions produced for each Met consumed are detected using Malachite Green/molybdate reagent. This assay can use any unmodified peptide MAP substrate with an N-terminal Met. The assay was used to measure kinetic constants for Escherichia coli MAP using Mn(2+) as the activator and the peptide Met-Gly-Met-Met as the substrate, as well as to measure the potency of a MAP inhibitor. A Mn(2+) buffer is described that can be used to prevent free Mn(2+) depletion by chelating compounds from interfering in screens for MAP inhibitors.
Collapse
|
15
|
Mucha A, Drag M, Dalton JP, Kafarski P. Metallo-aminopeptidase inhibitors. Biochimie 2010; 92:1509-29. [PMID: 20457213 PMCID: PMC7117057 DOI: 10.1016/j.biochi.2010.04.026] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 04/29/2010] [Indexed: 01/05/2023]
Abstract
Aminopeptidases are enzymes that selectively hydrolyze an amino acid residue from the N-terminus of proteins and peptides. They are important for the proper functioning of prokaryotic and eukaryotic cells, but very often are central players in the devastating human diseases like cancer, malaria and diabetes. The largest aminopeptidase group include enzymes containing metal ion(s) in their active centers, which often determines the type of inhibitors that are the most suitable for them. Effective ligands mostly bind in a non-covalent mode by forming complexes with the metal ion(s). Here, we present several approaches for the design of inhibitors for metallo-aminopeptidases. The optimized structures should be considered as potential leads in the drug discovery process against endogenous and infectious diseases.
Collapse
Affiliation(s)
- Artur Mucha
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | | | | | | |
Collapse
|
16
|
Olaleye O, Raghunand TR, Bhat S, He J, Tyagi S, Lamichhane G, Gu P, Zhou J, Zhang Y, Grosset J, Bishai WR, Liu JO. Methionine aminopeptidases from Mycobacterium tuberculosis as novel antimycobacterial targets. ACTA ACUST UNITED AC 2010; 17:86-97. [PMID: 20142044 DOI: 10.1016/j.chembiol.2009.12.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 12/09/2009] [Accepted: 12/28/2009] [Indexed: 10/19/2022]
Abstract
Methionine aminopeptidase (MetAP) is a metalloprotease that removes the N-terminal methionine during protein synthesis. To assess the importance of the two MetAPs in Mycobacterium tuberculosis, we overexpressed and purified each of the MetAPs to near homogeneity and showed that both were active as MetAP enzymes in vitro. We screened a library of 175,000 compounds against MtMetAP1c and identified 2,3-dichloro-1,4-naphthoquinone class of compounds as inhibitors of both MtMetAPs. It was found that the MtMetAP inhibitors were active against replicating and aged nongrowing M. tuberculosis. Overexpression of either MtMetAP1a or MtMetAP1c in M. tuberculosis conferred resistance of bacterial cells to the inhibitors. Moreover, knockdown of MtMetAP1a, but not MtMetAP1c, resulted in decreased viability of M. tuberculosis. These results suggest that MtMetAP1a is a promising target for developing antituberculosis agents.
Collapse
Affiliation(s)
- Omonike Olaleye
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jiang M, Chen X, Wu XH, Chen M, Wu YD, Guo Z. Catalytic mechanism of SHCHC synthase in the menaquinone biosynthesis of Escherichia coli: identification and mutational analysis of the active site residues. Biochemistry 2009; 48:6921-31. [PMID: 19545176 DOI: 10.1021/bi900897h] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
(1R,6R)-2-Succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate (SHCHC) synthase (MenH) is an alpha/beta fold enzyme containing a catalytically essential serine-histidine-aspartate triad typical of serine proteases but catalyzes a pyruvate elimination reaction initiated by alpha-proton abstraction in the menaquinone biosynthetic pathway of Escherichia coli. In this study, we identify the active site residues in the synthase through sequence analysis and structural modeling and study their mechanistic roles in MenH catalysis. Steady-state kinetic characterization of site-directed mutants of the active site residues shows that three conserved arginine residues (Arg-90, Arg-124, and Arg-168) likely form ionic salt bridges with three carboxylate groups of the substrate in the Michaelis complex and that the side-chain polar groups of the conserved tyrosine (Tyr-85) and tryptophan (Trp-147) residues likely donate hydrogen bonds to form an "oxyanion hole". In addition, the pH dependence of the MenH kinetic properties reveals a catalytic base with a pK(a) highly dependent on the hydroxyl group of the triad serine residue in the enzymatic reaction. Moreover, proton inventory experiments demonstrate that the SHCHC synthase adopts one-proton catalysis like many serine proteases. These results allow the proposal of a mechanism in which the histidine residue of the MenH triad serves as a general base catalyst to deprotonate the triad seryl hydroxyl group in the alpha-proton abstraction from the substrate. As such, the MenH triad performs a simple and fundamental proton transfer reaction occurring repeatedly in the reactions catalyzed by serine proteases and alpha/beta fold hydrolases, suggesting a common evolutionary origin for all serine-histidine-aspartate triads serving different catalytic functions.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Chemistry, Center for Cancer Research, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
18
|
Synthesis of barbiturate-based methionine aminopeptidase-1 inhibitors. Bioorg Med Chem Lett 2008; 18:2373-6. [PMID: 18343108 DOI: 10.1016/j.bmcl.2008.02.066] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/26/2008] [Accepted: 02/27/2008] [Indexed: 11/22/2022]
Abstract
The syntheses of a new class of barbiturate-based inhibitors for human and Escherichia Coli methionine aminopeptidase-1 (MetAP-1) are described. Some of the synthesized inhibitors show selective inhibition of the human enzyme with high potency.
Collapse
|
19
|
Jiang M, Chen X, Guo ZF, Cao Y, Chen M, Guo Z. Identification and characterization of (1R,6R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase in the menaquinone biosynthesis of Escherichia coli. Biochemistry 2008; 47:3426-34. [PMID: 18284213 DOI: 10.1021/bi7023755] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Menaquinone is a lipid-soluble molecule that plays an essential role as an electron carrier in the respiratory chain of many bacteria. We have previously shown that its biosynthesis in Escherichia coli involves a new intermediate, 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate (SEPHCHC), and requires an additional enzyme to convert this intermediate into (1 R,6 R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate (SHCHC). Here, we report the identification and characterization of MenH (or YfbB), an enzyme previously proposed to catalyze a late step in menaquinone biosynthesis, as the SHCHC synthase. The synthase catalyzes a proton abstraction reaction that results in 2,5-elimination of pyruvate from SEPHCHC and the formation of SHCHC. It is an efficient enzyme ( k cat/ K M = 2.0 x 10 (7) M (-1) s (-1)) that provides a smaller transition-state stabilization than other enzymes catalyzing proton abstraction from carbon acids. Despite its lack of the proposed thioesterase activity, the SHCHC synthase is homologous to the well-characterized C-C bond hydrolase MhpC. The crystallographic structure of the Vibrio cholerae MenH protein closely resembles that of MhpC and contains a Ser-His-Asp triad typical of serine proteases. Interestingly, this triad is conserved in all MenH proteins and is essential for the SHCHC synthase activity. Mutational analysis found that the catalytic efficiency of the E. coli protein is reduced by 1.4 x 10 (3), 2.1 x 10 (5), and 9.3 x 10 (3) folds when alanine replaces serine, histidine, and aspartate of the triad, respectively. These results show that the SHCHC synthase is closely related to alpha/beta hydrolases but catalyzes a reaction mechanistically distinct from all known hydrolase reactions.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Chemistry, Center for Cancer Research, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong Special Administrative Region (SAR), China
| | | | | | | | | | | |
Collapse
|
20
|
Hu X, Addlagatta A, Lu J, Matthews BW, Liu JO. Elucidation of the function of type 1 human methionine aminopeptidase during cell cycle progression. Proc Natl Acad Sci U S A 2006; 103:18148-53. [PMID: 17114291 PMCID: PMC1838721 DOI: 10.1073/pnas.0608389103] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Processing of the N-terminal initiator methionine is an essential cellular process conserved from prokaryotes to eukaryotes. The enzymes that remove N-terminal methionine are known as methionine aminopeptidases (MetAPs). Human MetAP2 has been shown to be required for the proliferation of endothelial cells and angiogenesis. The physiological function of MetAP1, however, has remained elusive. In this report we demonstrate that a family of inhibitors with a core structure of pyridine-2-carboxylic acid previously developed for the bacterial and yeast MetAP1 is also specific for human MetAP1 (HsMetAP1), as confirmed by both enzymatic assay and high-resolution x-ray crystallography. Treatment of tumor cell lines with the MetAP1-specific inhibitors led to an accumulation of cells in the G(2)/M phase, suggesting that HsMetAP1 may play an important role in G(2)/M phase transition. Overexpression of HsMetAP1, but not HsMetAP2, conferred resistance of cells to the inhibitors, and the inhibitors caused retention of N-terminal methionine of a known MetAP substrate, suggesting that HsMetAP1 is the cellular target for the inhibitors. In addition, when HsMetAP1 was knocked down by gene-specific siRNA, cells exhibited slower progression during G(2)/M phase, a phenotype similar to cells treated with MetAP1 inhibitors. Importantly, MetAP1 inhibitors were able to induce apoptosis of leukemia cell lines, presumably as a consequence of their interference with the G(2)/M phase checkpoint. Together, these results suggest that MetAP1 plays an important role in G(2)/M phase of the cell cycle and that it may serve as a promising target for the discovery and development of new anticancer agents.
Collapse
Affiliation(s)
- Xiaoyi Hu
- *Department of Pharmacology and Molecular Sciences and
| | - Anthony Addlagatta
- Institute of Molecular Biology, Howard Hughes Medical Institute and Department of Physics, University of Oregon, Eugene, OR 97403-1229
| | - Jun Lu
- *Department of Pharmacology and Molecular Sciences and
| | - Brian W. Matthews
- Institute of Molecular Biology, Howard Hughes Medical Institute and Department of Physics, University of Oregon, Eugene, OR 97403-1229
- To whom correspondence may be addressed. E-mail: or
| | - Jun O. Liu
- *Department of Pharmacology and Molecular Sciences and
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205; and
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
21
|
Chen X, Chong CR, Shi L, Yoshimoto T, Sullivan DJ, Liu JO. Inhibitors of Plasmodium falciparum methionine aminopeptidase 1b possess antimalarial activity. Proc Natl Acad Sci U S A 2006; 103:14548-53. [PMID: 16983082 PMCID: PMC1599997 DOI: 10.1073/pnas.0604101103] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With >1 million deaths annually, mostly among children in sub-Saharan Africa, malaria poses one of the most critical challenges in medicine today. Although introduction of the artemisinin class of antimalarial drugs has offered a temporary solution to the problem of drug resistance, new antimalarial drugs are needed to ensure effective control of the disease in the future. Herein, we have investigated members of the methionine aminopeptidase family as potential antimalarial targets. The Plasmodium falciparum methionine aminopeptidase 1b (PfMetAP1b), one of four MetAP proteins encoded in the P. falciparum genome, was cloned, overexpressed, purified, and used to screen a 175,000-compound library for inhibitors. A family of structurally related inhibitors containing a 2-(2-pyridinyl)-pyrimidine core was identified. Structure/activity studies led to the identification of a potent PfMetAP1b inhibitor, XC11, with an IC(50) of 112 nM. XC11 was highly selective for PfMetAP1b and did not exhibit significant cytotoxicity against primary human fibroblasts. Most importantly, XC11 inhibited the proliferation of P. falciparum strains 3D7 [chloroquine (CQ)-sensitive] and Dd2 (multidrug-resistant) in vitro and is active in mouse malaria models for both CQ-sensitive and CQ-resistant strains. These results suggest that PfMetAP1b is a promising target and XC11 is an important lead compound for the development of novel antimalarial drugs.
Collapse
Affiliation(s)
- Xiaochun Chen
- Departments of *Pharmacology and Molecular Sciences and
| | | | - Lirong Shi
- The Malaria Research Institute, W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; and
| | - Tadashi Yoshimoto
- School of Pharmaceutical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - David J. Sullivan
- The Malaria Research Institute, W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; and
| | - Jun O. Liu
- Departments of *Pharmacology and Molecular Sciences and
- Oncology and
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
22
|
Frottin F, Martinez A, Peynot P, Mitra S, Holz RC, Giglione C, Meinnel T. The proteomics of N-terminal methionine cleavage. Mol Cell Proteomics 2006; 5:2336-49. [PMID: 16963780 DOI: 10.1074/mcp.m600225-mcp200] [Citation(s) in RCA: 295] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methionine aminopeptidase (MAP) is a ubiquitous, essential enzyme involved in protein N-terminal methionine excision. According to the generally accepted cleavage rules for MAP, this enzyme cleaves all proteins with small side chains on the residue in the second position (P1'), but many exceptions are known. The substrate specificity of Escherichia coli MAP1 was studied in vitro with a large (>120) coherent array of peptides mimicking the natural substrates and kinetically analyzed in detail. Peptides with Val or Thr at P1' were much less efficiently cleaved than those with Ala, Cys, Gly, Pro, or Ser in this position. Certain residues at P2', P3', and P4' strongly slowed the reaction, and some proteins with Val and Thr at P1' could not undergo Met cleavage. These in vitro data were fully consistent with data for 862 E. coli proteins with known N-terminal sequences in vivo. The specificity sites were found to be identical to those for the other type of MAPs, MAP2s, and a dedicated prediction tool for Met cleavage is now available. Taking into account the rules of MAP cleavage and leader peptide removal, the N termini of all proteins were predicted from the annotated genome and compared with data obtained in vivo. This analysis showed that proteins displaying N-Met cleavage are overrepresented in vivo. We conclude that protein secretion involving leader peptide cleavage is more frequent than generally thought.
Collapse
Affiliation(s)
- Frédéric Frottin
- Protein Maturation, Cell Fate, and Therapeutics, Institut des Sciences du Végétal, UPR2355, CNRS, Bâtiment 23, 1 avenue de la Terrasse, F-91198 Gif-sur-Yvette cedex, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Mitra S, Dygas-Holz AM, Jiracek J, Zertova M, Zakova L, Holz RC. A new colorimetric assay for methionyl aminopeptidases: examination of the binding of a new class of pseudopeptide analog inhibitors. Anal Biochem 2006; 357:43-9. [PMID: 16844071 DOI: 10.1016/j.ab.2006.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 06/07/2006] [Accepted: 06/09/2006] [Indexed: 11/18/2022]
Abstract
A direct and convenient spectrophotometric assay has been developed for methionine aminopeptidases (MetAPs). The method employs the hydrolysis of a substrate that is a methionyl analogue of p-nitroaniline (L-Met-p-NA), which releases the chromogenic product p-nitroaniline. This chromogenic product can be monitored continuously using a UV-Vis spectrophotometer set at 405 nm. The assay was tested with the type I MetAP from Escherichia coli (EcMetAP-I) and the type II MetAP from Pyrococcus furiosus (PfMetAP-II). Using L-Met-p-NA, the kinetic constants k(cat) and K(m) were determined for EcMetAP-I and PfMetAP-II and were compared with those obtained with a "standard" high-performance liquid chromatography (HPLC) discontinuous assay. The assay has also been used to determine the temperature dependence of the kinetic constant k(cat) for PfMetAP-II as well as to screen two novel pseudopeptide inhibitors of MetAPs. The results demonstrate that L-Met-p-NA provides a fast, convenient, and effective substrate for both type I and type II MetAPs and that this substrate can be used to quickly screen inhibitors of MetAPs.
Collapse
Affiliation(s)
- Sanghamitra Mitra
- Department of Chemistry and Biochemistry, Utah State University, Logan, 84322, USA
| | | | | | | | | | | |
Collapse
|
24
|
Hu X, Addlagatta A, Matthews BW, Liu JO. Identification of Pyridinylpyrimidines as Inhibitors of Human Methionine Aminopeptidases. Angew Chem Int Ed Engl 2006; 45:3772-5. [PMID: 16724298 DOI: 10.1002/anie.200600757] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoyi Hu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
25
|
Hu X, Addlagatta A, Matthews BW, Liu JO. Identification of Pyridinylpyrimidines as Inhibitors of Human Methionine Aminopeptidases. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200600757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Zhu J, Dhimitruka I, Pei D. 5-(2-Aminoethyl)dithio-2-nitrobenzoate as a more base-stable alternative to Ellman's reagent. Org Lett 2006; 6:3809-12. [PMID: 15469355 DOI: 10.1021/ol048404+] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[reaction: see text] 5-(2-Aminoethyl)dithio-2-nitrobenzoate (ADNB) reacts with free thiols with kinetics similar to those of Ellman's reagent but has dramatically improved stability under alkaline conditions, making it an excellent alternative to Ellman's reagent for the quantitation of thiol contents and enzymatic assays under basic pH conditions.
Collapse
Affiliation(s)
- Jinge Zhu
- Department of Chemistry and Ohio State Biochemistry Program, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
27
|
Schiffmann R, Neugebauer A, Klein CD. Metal-Mediated Inhibition of Escherichia coli Methionine Aminopeptidase: Structure−Activity Relationships and Development of a Novel Scoring Function for Metal−Ligand Interactions. J Med Chem 2005; 49:511-22. [PMID: 16420038 DOI: 10.1021/jm050476z] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the discovery of thiabendazole as a potent inhibitor (K(i) = 0.4 microM) of Escherichia coli methionine aminopeptidase (ecMetAP) and the synthesis and pharmacological evaluation of thiabendazole congeners with activity in the upper nanomolar range. Elucidation of the X-ray structure of ecMetAP in complex with thiabendazole and an unrelated inhibitor that was independently described by another group showed that that both compounds bind to an additional Co(II) ion at the entrance of the active site. This unexpected finding explains the inactivity of the compounds under in vivo conditions. It also allows us to discuss the structure-activity relationships of this series of compounds in a meaningful way, based upon docking runs with an auxiliary metal ion. We describe a new scoring function for the evaluation of metal-mediated inhibitor binding that, unlike the previously used scoring function implemented in the docking program, allows us to distinguish between active and inactive compounds. Finally, conclusions for the structure-based design of in vivo-active inhibitors of ecMetAP are drawn.
Collapse
Affiliation(s)
- Rolf Schiffmann
- Saarland University, Pharmaceutical and Medicinal Chemistry, D-66041 Saarbrücken, Germany
| | | | | |
Collapse
|
28
|
Huang M, Xie SX, Ma ZQ, Hanzlik RP, Ye QZ. Metal mediated inhibition of methionine aminopeptidase by quinolinyl sulfonamides. Biochem Biophys Res Commun 2005; 339:506-13. [PMID: 16300729 DOI: 10.1016/j.bbrc.2005.11.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Accepted: 11/06/2005] [Indexed: 11/28/2022]
Abstract
Quinolinyl sulfonamides, such as N-(quinolin-8-yl)methanesulfonamide (10) and N-(5-chloroquinolin-8-yl)methanesulfonamide (11), were identified as potent methionine aminopeptidase (MetAP) inhibitors by high throughput screening of a diverse chemical library of small organic compounds. They showed different inhibitory potencies on Co(II)-, Ni(II)-, Fe(II)-, Mn(II)-, and Zn(II)-forms of Escherichia coli MetAP, and their inhibition is dependent on metal concentration. X-ray structures of E. coli MetAP complexed with 10 revealed that the inhibitor forms a metal complex with the residue H79 at the enzyme active site; the complex is further stabilized by an extended H-bond and metal interaction network. Analysis of the inhibition of MetAP by these inhibitors indicates that this is a typical mechanism of inhibition for many non-peptidic MetAP inhibitors and emphasizes the importance of defining in vitro conditions for identifying and evaluating MetAP inhibitors that will be capable of giving information relevant to the in vivo situation.
Collapse
Affiliation(s)
- Min Huang
- High Throughput Screening Laboratory, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | |
Collapse
|
29
|
Swierczek K, Copik AJ, Swierczek SI, Holz RC. Molecular Discrimination of Type-I over Type-II Methionyl Aminopeptidases. Biochemistry 2005; 44:12049-56. [PMID: 16142902 DOI: 10.1021/bi047752g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two residues that are conserved in type-I methionyl aminopeptidases (MetAPs) but are absent in all type-II MetAPs are the cysteine residues (Escherichia coli MetAP-I: C59 and C70) that reside at the back of the substrate recognition pocket. These Cys residues are 4.4 A apart and do not form a disulfide bond. Since bacteria and fungi contain only type-I MetAPs while all human cells contain both type-I and type-II MetAPs, type-I MetAPs represent a novel antibiotic/antifungal target if type-I MetAPs can be specifically targeted over type-II. Based on reaction of the thiol-specific binding reagent 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNB) with the type-I MetAP from E. coli and the type-II MetAP from Pyrococcus furiosus, the type-I MetAP can be selectively inhibited. Verification that DTNB covalently binds to C59 in EcMetAP-I was obtained by mass spectrometry (MS) from reaction of DTNB with the C59A and C70A mutant EcMetAP-I enzymes. In addition, two inhibitors of EcMetAP-I, 5-iodopentaphosphonic acid (1) and 6-phosphonohexanoic acid (2), were designed and synthesized. The first was designed as a selective-C59 binding reagent while the second was designed as a simple competitive inhibitor of EcMetAP. Indeed, inhibitor 1 forms a covalent interaction with C59 based on activity assays and MS measurements, while 2 does not. These data indicate that type-I MetAPs can be selectively targeted over type-II MetAPs, suggesting that type-I MetAPs represent a new enzymatic target for antibacterial or antifungal agents.
Collapse
Affiliation(s)
- Krzysztof Swierczek
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA
| | | | | | | |
Collapse
|
30
|
Zhang H, Huang H, Cali A, Takvorian PM, Feng X, Zhou G, Weiss LM. Investigations into microsporidian methionine aminopeptidase type 2: a therapeutic target for microsporidiosis. Folia Parasitol (Praha) 2005; 52:182-92. [PMID: 16004378 PMCID: PMC3109671 DOI: 10.14411/fp.2005.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Microsporidia have been reported to cause a wide range of clinical diseases particularly in patients that are immunosuppressed. They can infect virtually any organ system and cases of gastrointestinal infection, encephalitis, ocular infection, sinusitis, myositis and disseminated infection are well described in the literature. While benzimidazoles such as albendazole are active against many species of Microsporidia, these drugs do not have significant activity against Enterocytozoon bieneusi. Fumagillin, ovalicin and their analogues have been demonstrated to have antimicrosporidial activity in vitro and in animal models of microsporidiosis. Fumagillin has also been demonstrated to have efficacy in human infections due to E. bieneusi. Fumagillin is an irreversible inhibitor of methionine aminopeptidase type 2 (MetAP2). Homology cloning employing the polymerase chain reaction was used to identify the MetAP2 gene from the human pathogenic microsporidia Encephalitozoon cuniculi, Encephalitozoon hellem, Encephalitozoon intestinalis, Brachiola algerae and E. bieneusi. The full-length MetAP2 coding sequence was obtained for all of the Encephalitozoonidae. Recombinant E. cuniculi MetAP2 was produced in baculovirus and purified using chromatographic techniques. The in vitro activity and effect of the inhibitors bestatin and TNP-470 on this recombinant microsporidian MetAP2 was characterized. An in silico model of E. cuniculi MetAP2 was developed based on crystallographic data on human MetAP2. These reagents provide new tools for the development of in vitro assay systems to screen candidate compounds for use as new therapeutic agents for the treatment of microsporidiosis.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
D'souza VM, Brown RS, Bennett B, Holz RC. Characterization of the active site and insight into the binding mode of the anti-angiogenesis agent fumagillin to the manganese(II)-loaded methionyl aminopeptidase from Escherichia coli. J Biol Inorg Chem 2004; 10:41-50. [PMID: 15578241 DOI: 10.1007/s00775-004-0611-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Accepted: 11/02/2004] [Indexed: 10/26/2022]
Abstract
EPR spectra were recorded for methionine aminopeptidase from Escherichia coli (EcMetAP-I) samples (approximately 2.5 mM) to which one and two equivalents of Mn(II) were added (the latter is referred to as [MnMn(EcMetAP-I)]). The spectra for each sample were indistinguishable except that the spectrum of [MnMn(EcMetAP-I)] was twice as intense. The EPR spectrum of [MnMn(EcMetAP-I)] exhibited the characteristic six-line g approximately 2 EPR signal of mononuclear Mn(II) with A(av)((55)Mn)=9.3 mT (93 G) and exhibited Curie-law temperature dependence. This signal is typical of Mn(II) in a ligand sphere comprising oxygen and/or nitrogen atoms. Other features in the spectrum were observed only as the temperature was raised from that of liquid helium. The temperature dependences of these features are consistent with their assignment to excited state transitions in the S=1, 2 ... 5 non-Kramer's doublets, due to two antiferromagnetically coupled Mn(II) ions with an S=0 ground state. This assignment is supported by the observation of a characteristic 4.5 mT hyperfine pattern, and by the presence of signals in the parallel mode consistent with a non-Kramers' spin ladder. Upon the addition of the anti-angiogenesis agent fumagillin to [MnMn(EcMetAP-I)], very small changes were observed in the EPR spectrum. MALDI-TOF mass spectrometry indicated that fumagillin was, however, covalently coordinated to EcMetAP-I. Therefore, the inhibitory action of this anti-angiogenesis agent on EcMetAP-I appears to involve covalent binding to a polypeptide component at or near the active site rather than direct binding to the metal ions.
Collapse
Affiliation(s)
- Ventris M D'souza
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA
| | | | | | | |
Collapse
|
32
|
Fardis M, Pyun HJ, Tario J, Jin H, Kim CU, Ruckman J, Lin Y, Green L, Hicke B. Design, synthesis and evaluation of a series of novel fumagillin analogues. Bioorg Med Chem 2004; 11:5051-8. [PMID: 14604668 DOI: 10.1016/j.bmc.2003.08.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A series of fumagillin analogues targeted at understanding tolerability of MetAP2 toward substitution at C4 and C6 were synthesized. Initially, the C6 side chain was maintained as cinnamoyl ester and C4 was modified. It was concluded that replacing the natural C4 of fumagillin with a benzyl oxime at C4 resulted in moderate loss of activity toward binding to MetAP2. Placement of a primary or secondary carbamate at C6 did not improve the potency of compounds toward inhibition of MetAP2. However, the inhibitory activity against MetAP2 was gained back by placing polar groups such as piperazinyl carbamate at C6. Small alkyl substituents on the amine of piperazinyl carbamate were well tolerated.
Collapse
Affiliation(s)
- Maria Fardis
- Department of Medicinal Chemistry, Gilead, 333 Lakeside Dr., Foster City, CA 94404, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cui YM, Li JY, Chen LL, Li J, Ye QZ, Nan FJ. Design and synthesis of chromogenic thiopeptolide substrates as MetAPs active site probes. Bioorg Med Chem 2004; 12:2853-61. [PMID: 15142545 DOI: 10.1016/j.bmc.2004.03.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 03/19/2004] [Accepted: 03/19/2004] [Indexed: 11/16/2022]
Abstract
Twenty one chromogenic thiopeptolide substrates were designed and synthesized as the active site probes and analyzed with each S1 site of mutant residues and enzymes of wild-type MetAP1s. The preliminary enzymatic experiments indicate that cysteine 70 or 202, at either Escherichia coli or human MetAP1, played a crucial role in the methionine hydrolysis.
Collapse
Affiliation(s)
- Yong-Mei Cui
- Chinese National Center for Drug Screening, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 189 Guo Shou Jing Road, ZhangJiang Hi-Tech Park, Shanghai 201203, China
| | | | | | | | | | | |
Collapse
|
34
|
Weiss LM, Zhou GC, Zhang H. Characterization of recombinant microsporidian methionine aminopeptidase type 2. J Eukaryot Microbiol 2004; 50 Suppl:597-9. [PMID: 14736176 DOI: 10.1111/j.1550-7408.2003.tb00643.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
35
|
Li JY, Cui YM, Chen LL, Gu M, Li J, Nan FJ, Ye QZ. Mutations at the S1 sites of methionine aminopeptidases from Escherichia coli and Homo sapiens reveal the residues critical for substrate specificity. J Biol Chem 2004; 279:21128-34. [PMID: 14976199 DOI: 10.1074/jbc.m401679200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Methionine aminopeptidase (MetAP) catalyzes the removal of methionine from newly synthesized polypeptides. MetAP carries out this cleavage with high precision, and Met is the only natural amino acid residue at the N terminus that is accepted, although type I and type II MetAPs use two different sets of residues to form the hydrophobic S1 site. Characteristics of the S1 binding pocket in type I MetAP were investigated by systematic mutation of each of the seven S1 residues in Escherichia coli MetAP type I (EcMetAP1) and human MetAP type I (HsMetAP1). We found that Tyr-65 and Trp-221 in EcMetAP1, as well as the corresponding residues Phe-197 and Trp-352 in HsMetAP1, were essential for the hydrolysis of a thiopeptolide substrate, Met-S-Gly-Phe. Mutation of Phe-191 to Ala in HsMetAP1 caused inactivity in contrast to the full activity of EcMetAP1(Y62A), which may suggest a subtle difference between the two type I enzymes. The more striking finding is that mutation of Cys-70 in EcMetAP1 or Cys-202 in HsMetAP1 opens up the S1 pocket. The thiopeptolides Leu-S-Gly-Phe and Phe-S-Gly-Phe, with previously unacceptable Leu or Phe as the N-terminal residue, became efficient substrates of EcMetAP1(C70A) and HsMetAP1(C202A). The relaxed specificity shown in these S1 site mutants for the N-terminal residues was confirmed by hydrolysis of peptide substrates and inhibition by reaction products. The structural features at the enzyme active site will be useful information for designing specific MetAP inhibitors for therapeutic applications.
Collapse
Affiliation(s)
- Jing-Ya Li
- Chinese National Center for Drug Screening, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 189 Guo-Shou-Jing Road, Shanghai 201203, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Hu X, Zhu J, Srivathsan S, Pei D. Peptidyl hydroxamic acids as methionine aminopeptidase inhibitors. Bioorg Med Chem Lett 2004; 14:77-9. [PMID: 14684302 DOI: 10.1016/j.bmcl.2003.10.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A new class of methionine aminopeptidase (MetAP) inhibitors, which contain an internal hydroxamate (N-acyl-N-alkylhydroxylamine) core as the metal-chelating group, has been designed, synthesized, and tested. The compounds exhibited reversible, competitive inhibition against Escherichia coli MetAP as well as human MetAP-1 and MetAP-2. The most potent inhibitor had a K(i) value of 2.5 microM and >20-fold selectivity toward E. coli MAP.
Collapse
Affiliation(s)
- Xubo Hu
- Department of Chemistry and Ohio State Biochemistry Program, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
37
|
Oefner C, Douangamath A, D'Arcy A, Häfeli S, Mareque D, Mac Sweeney A, Padilla J, Pierau S, Schulz H, Thormann M, Wadman S, Dale GE. The 1.15A crystal structure of the Staphylococcus aureus methionyl-aminopeptidase and complexes with triazole based inhibitors. J Mol Biol 2003; 332:13-21. [PMID: 12946343 DOI: 10.1016/s0022-2836(03)00862-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methionyl aminopeptidases (MetAPs) represent a unique class of protease that are responsible for removing the N-terminal methionine residue from proteins and peptides. There are two major classes of MetAPs (type I and type II) described and each class can be subdivided into two subclasses. Eukaryotes contain both the type I and type II MetAPs, whereas prokaryotes possess only the type I enzyme. Due to the physiological importance of these enzymes there is considerable interest in inhibitors to be used as antiangiogenic and antimicrobial agents. Here, we describe the 1.15A crystal structure of the Staphylococcus aureus MetAP-I as an apo-enzyme and its complexes with various 1,2,4-triazole-based derivatives at high-resolution. The protein has a typical "pita-bread" fold as observed for the other MetAP structures. The inhibitors bind in the active site with the N1 and N2 atoms of the triazole moiety complexing two divalent ions. The 1,2,4-triazols represent a novel class of potent non-peptidic inhibitors for the MetAP-Is.
Collapse
Affiliation(s)
- Christian Oefner
- Morphochem AG, WRO-1055/338 Schwarzwaldallee 215, 4058 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Anissimova M, Yaouancq L, Noor F, Badet-Denisot MA, Badet B. New chromogenic dipeptide substrate for continuous assay of the D-alanyl-D-alanine dipeptidase VanX required for high-level vancomycin resistance. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2003; 62:88-95. [PMID: 12823621 DOI: 10.1034/j.1399-3011.2003.00072.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A direct continuous UV-Vis spectrophotometric assay has been developed for VanX, a D-alanyl-D-alanine aminodipeptidase necessary for vancomycin resistance. This method is based on the hydrolysis of the alternative substrate D-alanyl-alpha-(R)-phenylthio-glycine D-Ala-D-Gly(S-Ph)-OH (H-DAla-DPsg-OH, 5a). Spontaneous decomposition of the released phenylthioglycine generates thiophenol, which is quantified using Ellman's reagent. The dipeptide behaved as an excellent substrate of VanX, exhibiting Michaelis-Menten kinetics with a kcat of 76 +/- 5/s and a KM of 0.83 +/- 0.08 mm (kcat = 46 +/- 3/s and KM = 0.11 +/- 0.01 mm for D-Ala-D-Ala). Determination of the kinetic parameters of the previously reported mechanism-based inhibitor D-Ala-D-Gly(SPhip-CHF2)-OH (H-D-Ala-DPfg-OH, 5c) [Araoz, R., Anhalt, E., René, L., Badet-Denisot, M.-A., Courvalin, P. & Badet, B. (2000) Biochemistry 39, 15971-15979] using the substrate reported in the present study yielded values of Kirr of 22 +/- 1 microM and kinact of 9.3 +/- 0.4/min in good agreement with values previously obtained in our laboratory (Kirr = 30 +/- 1 mm; kinact = 7.3 +/- 0.3/min). In addition, inhibition by the competing substrate D-Ala-D-Ala resulted in determination of a Ki = 70 +/- 6 microM close to the previously reported KM value. These results demonstrate that the present assay is a convenient, rapid and sensitive tool in the search for VanX inhibitors.
Collapse
Affiliation(s)
- M Anissimova
- Institut de Chimie des Substances Naturelles, CNRS-UPR 2301, 91198 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
39
|
Li JY, Chen LL, Cui YM, Luo QL, Li J, Nan FJ, Ye QZ. Specificity for inhibitors of metal-substituted methionine aminopeptidase. Biochem Biophys Res Commun 2003; 307:172-9. [PMID: 12849997 DOI: 10.1016/s0006-291x(03)01144-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Methionine aminopeptidases (MetAPs) have been studied in vitro as Co(II) enzymes, but their in vivo metal remains to be defined. While activation of Escherichia coli MetAP (EcMetAP1) by Co(II), Mn(II), and Zn(II) was detectable by a colorimetric Met-S-Gly-Phe assay, significant activation by Ni(II) was shown in a fluorescence Met-AMC assay, in addition to Co(II) and Mn(II) activation. When tested on the metal-substituted EcMetAP1s, a few inhibitors that we obtained recently from a random screening on Co-EcMetAP1 either became much weak or lost activity on Mn- or Zn-EcMetAP1, although they kept inhibitory activity on Ni-EcMetAP1. A couple of peptidic inhibitors and the methionine mimetic (3R)-amino-(2S)-hydroxyheptanoic acid (AHHpA, 6) maintained moderate activities on Co-, Mn-, Zn-, and Ni-EcMetAP1s. Our results clearly demonstrate that the metal-substitution has changed the enzyme specificity for substrates and inhibitors. Therapeutic applications call for inhibitors specific for MetAP with a physiologically relevant metal at its active site.
Collapse
Affiliation(s)
- Jing-Ya Li
- Chinese National Center for Drug Screening, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 189 Guo-Shou-Jing Road, Shanghai 201203, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Luo QL, Li JY, Liu ZY, Chen LL, Li J, Qian Z, Shen Q, Li Y, Lushington GH, Ye QZ, Nan FJ. Discovery and structural modification of inhibitors of methionine aminopeptidases from Escherichia coli and Saccharomyces cerevisiae. J Med Chem 2003; 46:2631-40. [PMID: 12801227 DOI: 10.1021/jm0300532] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of pyridine-2-carboxylic acid derivatives were synthesized according to the leads from the screening, and potent inhibitors have been obtained by structural modification. They have shown submicromolar inhibition of the enzymes (for example, for 9n, IC(50) = 130 nM for EcMetAP1 and IC(50) = 380 nM for ScMetAP1). They represent small-molecule MetAP inhibitors with novel structures different from alkylating fumagillin derivatives and peptidic bestatin-based MetAP inhibitor.
Collapse
Affiliation(s)
- Qun-Li Luo
- Chinese National Center for Drug Screening, Shanghai Institute of Materia Medica, Shanghai Institutes for Life Sciences, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|