1
|
von Gerichten J, West AL, Irvine NA, Miles EA, Calder PC, Lillycrop KA, Fielding BA, Burdge GC. The Partitioning of Newly Assimilated Linoleic and α-Linolenic Acids Between Synthesis of Longer-Chain Polyunsaturated Fatty Acids and Hydroxyoctadecaenoic Acids Is a Putative Branch Point in T-Cell Essential Fatty Acid Metabolism. Front Immunol 2021; 12:740749. [PMID: 34675928 PMCID: PMC8523940 DOI: 10.3389/fimmu.2021.740749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/08/2021] [Indexed: 12/28/2022] Open
Abstract
Longer-chain polyunsaturated fatty acids (LCPUFAs) ≥20 carbons long are required for leukocyte function. These can be obtained from the diet, but there is some evidence that leukocytes can convert essential fatty acids (EFAs) into LCPUFAs. We used stable isotope tracers to investigate LCPUFA biosynthesis and the effect of different EFA substrate ratios in human T lymphocytes. CD3+ T cells were incubated for up to 48 h with or without concanavalin A in media containing a 18:2n-6:18:3n-3 (EFA) ratio of either 5:1 or 8:1 and [13C]18:3n-3 plus [d5]18:2n-6. Mitogen stimulation increased the amounts of 16:1n-7, 18:1n-9, 18:2n-6, 20:3n-6, 20:4n-6, 18:3n-3, and 20:5n-3 in T cells. Expression of the activation marker CD69 preceded increased FADS2 and FADS1 mRNA expression and increased amounts of [d5]20:2n-6 and [13C]20:3n-3 at 48 h. In addition, 22-carbon n-6 or n-3 LCPUFA synthesis was not detected, consistent with the absence of ELOVL2 expression. An EFA ratio of 8:1 reduced 18:3n-3 conversion and enhanced 20:2n-6 synthesis compared to a 5:1 ratio. Here, [d5]9- and [d5]-13-hydroxyoctadecadienoic (HODE) and [13C]9- and [13C]13-hydroxyoctadecatrienoic acids (HOTrE) were the major labelled oxylipins in culture supernatants; labelled oxylipins ≥20 carbons were not detected. An EFA ratio of 8:1 suppressed 9- and 13-HOTrE synthesis, but there was no significant effect on 9- and 13-HODE synthesis. These findings suggest that partitioning of newly assimilated EFA between LCPUFA synthesis and hydroxyoctadecaenoic acid may be a metabolic branch point in T-cell EFA metabolism that has implications for understanding the effects of dietary fats on T lymphocyte function.
Collapse
Affiliation(s)
- Johanna von Gerichten
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Surrey, United Kingdom
| | - Annette L West
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Nicola A Irvine
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Elizabeth A Miles
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute of Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Karen A Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Barbara A Fielding
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Surrey, United Kingdom
| | - Graham C Burdge
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
2
|
Park HG, Kim JH, Dancer AN, Kothapalli KS, Brenna JT. The aromatase inhibitor letrozole restores FADS2 function in ER+ MCF7 human breast cancer cells. Prostaglandins Leukot Essent Fatty Acids 2021; 171:102312. [PMID: 34303883 DOI: 10.1016/j.plefa.2021.102312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE Plasticity in fatty acid metabolism is increasingly recognized as a major feature influencing cancer progression and efficacy of treatments. Estrogen receptor positive MCF7 human breast cancer cells have long been known to have no FADS2-mediated Δ6-desaturase activity. Our objective was to examine the effect of estrogen and the "antiestrogen" aromatase inhibitor letrozole, on Δ5- and Δ6-desaturase synthesized fatty acids in vitro. METHODS Eicosa-11,14-dienoic acid (20:2n-6), a known substrate for both FADS1 and FADS2, was used as a sentinel of relative FADS2 and FADS1 activity. MCF7 cells and four additional estrogen responsive wild type cell lines (HepG2, SK-N-SH, Y79 and Caco2) were studied. FAME were quantified by GC-FID and structures identified by GCCACI-MS/MS. RESULTS In all five cell lines, estrogen caused a dose dependent decrease in sciadonic acid (5,11,14-20:3, ScA) via apparent inhibition of FADS1 activity, and had no effect on FADS2 catalyzed synthesis of dihomo-gamma linolenic acid (8,11,14-20:3; DGLA). In MCF7 cells, letrozole caused a dose dependent increase in FADS2-catalyzed DGLA synthesis, which plateaued in SK-N-SH cells. CONCLUSION Letrozole restores Δ6-desaturase mediated synthesis of the anti-inflammatory PGE1-precursor DGLA in vitro and is the first endocrine-active agent to have opposing effects on FADS1 and FADS2 catalyzed activities.
Collapse
Affiliation(s)
- Hui Gyu Park
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA
| | - Jae Hun Kim
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA
| | - Andrew N Dancer
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA
| | - Kumar S Kothapalli
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA
| | - J Thomas Brenna
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA.
| |
Collapse
|
3
|
Sibbons CM, Irvine NA, Pérez-Mojica JE, Calder PC, Lillycrop KA, Fielding BA, Burdge GC. Polyunsaturated Fatty Acid Biosynthesis Involving Δ8 Desaturation and Differential DNA Methylation of FADS2 Regulates Proliferation of Human Peripheral Blood Mononuclear Cells. Front Immunol 2018; 9:432. [PMID: 29556240 PMCID: PMC5844933 DOI: 10.3389/fimmu.2018.00432] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are important for immune function. Limited evidence indicates that immune cell activation involves endogenous PUFA synthesis, but this has not been characterised. To address this, we measured metabolism of 18:3n-3 in quiescent and activated peripheral blood mononuclear cells (PBMCs), and in Jurkat T cell leukaemia. PBMCs from men and women (n = 34) were incubated with [1-13C]18:3n-3 with or without Concanavalin A (Con. A). 18:3n-3 conversion was undetectable in unstimulated PBMCs, but up-regulated when stimulated. The main products were 20:3n-3 and 20:4n-3, while 18:4n-3 was undetectable, suggesting initial elongation and Δ8 desaturation. PUFA synthesis was 17.4-fold greater in Jurkat cells than PBMCs. The major products of 18:3n-3 conversion in Jurkat cells were 20:4n-3, 20:5n-3, and 22:5n-3. 13C Enrichment of 18:4n-3 and 20:3n-3 suggests parallel initial elongation and Δ6 desaturation. The FADS2 inhibitor SC26196 reduced PBMC, but not Jurkat cell, proliferation suggesting PUFA synthesis is involved in regulating mitosis in PBMCs. Con. A stimulation increased FADS2, FADS1, ELOVL5 and ELOVL4 mRNA expression in PBMCs. A single transcript corresponding to the major isoform of FADS2, FADS20001, was detected in PBMCs and Jurkat cells. PBMC activation induced hypermethylation of a 470bp region in the FADS2 5'-regulatory sequence. This region was hypomethylated in Jurkat cells compared to quiescent PBMCs. These findings show that PUFA synthesis involving initial elongation and Δ8 desaturation is involved in regulating PBMC proliferation and is regulated via transcription possibly by altered DNA methylation. These processes were dysregulated in Jurkat cells. This has implications for understanding the regulation of mitosis in normal and transformed lymphocytes.
Collapse
Affiliation(s)
- Charlene M Sibbons
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom.,Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Nicola A Irvine
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
| | - J Eduardo Pérez-Mojica
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Philip C Calder
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Karen A Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Barbara A Fielding
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Graham C Burdge
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
| |
Collapse
|
4
|
Lehmann WD. A timeline of stable isotopes and mass spectrometry in the life sciences. MASS SPECTROMETRY REVIEWS 2017; 36:58-85. [PMID: 26919394 DOI: 10.1002/mas.21497] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 01/21/2016] [Indexed: 06/05/2023]
Abstract
This review retraces the role of stable isotopes and mass spectrometry in the life sciences. The timeline is divided into four segments covering the years 1920-1950, 1950-1980, 1980-2000, and 2000 until today. For each period methodic progress and typical applications are discussed. Application of stable isotopes is driven by improvements of mass spectrometry, chromatography, and related fields in sensitivity, mass accuracy, structural specificity, complex sample handling ability, data output, and data evaluation. We currently experience the vision of omics-type analyses, that is, the comprehensive identification and quantification of a complete compound class within one or a few analytical runs. This development is driven by stable isotopes without competition by radioisotopes. In metabolic studies as classic field of isotopic tracer experiments, stable isotopes and radioisotopes were competing solutions, with stable isotopes as the long-term junior partner. Since the 1990s the number of metabolic studies with radioisotopes decreases, whereas stable isotope studies retain their slow but stable upward tendency. Unique fields of stable isotopes are metabolic tests in newborns, metabolic experiments in healthy controls, newborn screening for inborn errors, quantification of drugs and drug metabolites in doping control, natural isotope fractionation in geology, ecology, food authentication, or doping control, and more recently the field of quantitative omics-type analyses. There, cells or whole organisms are systematically labeled with stable isotopes to study proteomic differences or specific responses to stimuli or genetic manipulation. The duo of stable isotopes and mass spectrometry will probably continue to grow in the life sciences, since it delivers reference-quality quantitative data with molecular specificity, often combined with informative isotope effects. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:58-85, 2017.
Collapse
Affiliation(s)
- Wolf D Lehmann
- German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| |
Collapse
|
5
|
Wang SH, Hung HC, Tsai CC, Huang MC, Ho KY, Wu YM, Wang YY, Lin YC. Plasma polyunsaturated fatty acids and periodontal recovery in Taiwanese with periodontitis: a significant relationship. Arch Oral Biol 2014; 59:800-7. [PMID: 24859767 DOI: 10.1016/j.archoralbio.2014.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/19/2014] [Accepted: 04/13/2014] [Indexed: 02/01/2023]
Abstract
BACKGROUND Plasma levels of polyunsaturated fatty acids (PUFAs) are different before and after periodontal treatment. Asians and Westerners have significantly different baseline levels of plasma PUFAs. However, no Asian study has reported the effects of nonsurgical treatment on the correlation between periodontal condition and plasma levels of PUFAs. We analyzed whether recovery from periodontitis was correlated with the elevation of plasma fatty acids 3 months after the nonsurgical intervention and with no recommended supplements. DESIGN Thirty-five Taiwanese patients with periodontitis were recruited. Probing pocket depths (PPDs) and clinical attachment levels (CALs) were measured at baseline and 3 months after the nonsurgical treatment. Plasma levels of fatty acids were determined using gas chromatography. Differences and correlations between plasma fatty acid composition and periodontitis severity at baseline and 3 months after treatment were determined. RESULTS Twenty-six patients completed the study. At the baseline, PPDs were negatively correlated with plasma n-3 PUFAs (r=-0.52, p<0.01), but at 3 months post intervention, periodontitis severity had declined and the weight percentages of n-3 PUFAs, DPA, and DHA were significantly (p=0.019, 0.005, and 0.037, respectively) higher. The recovery percentages of CALs were positively and significantly correlated with plasma ΔPUFAs and the percentage of Δn-3 PUFAs in ΔPUFAs (r=0.42 and 0.45, respectively; p<0.05 for both). CONCLUSIONS We conclude that a higher weight percentage of n-3 PUFAs in total PUFAs was related to the recovery of CALs 3 months after the nonsurgical periodontal treatment. However, no such relationship was found for PPDs.
Collapse
Affiliation(s)
- Sheng-Hung Wang
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-Chia Hung
- Department of Nursing, College of Health and Nursing, Meiho University, Pingtung, Taiwan
| | - Chi-Cheng Tsai
- School of Dentistry, College of Oral Medicine and Department of Dentistry, University Hospital Chung-Shan Medical University, Taichung, Taiwan
| | - Meng-Chuan Huang
- Department of Public Health and Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kun-Yen Ho
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Min Wu
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Yun Wang
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ying-Chu Lin
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
6
|
de Lima C, Alves L, Iagher F, Machado AF, Kryczyk M, Yamazaki RK, Brito GAP, Nunes EA, Naliwaiko K, Fernandes LC. Tumor growth reduction in Walker 256 tumor-bearing rats performing anaerobic exercise: participation of Bcl-2, Bax, apoptosis, and peroxidation. Appl Physiol Nutr Metab 2011; 36:533-8. [PMID: 21851206 DOI: 10.1139/h11-047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Physical activity has been used in cancer prevention and treatment. In this study, we investigated some of the mechanisms by which anaerobic exercise reduces tumor growth. To do so, rats were trained for 8 weeks. Training consisted of jumping in a swimming pool for ten 30-s sets, with a load that was 50% of body weight attached to the back, 4 times per week. At the sixth week, anaerobic exercise trained rats (EX group) were inoculated with a suspension of Walker 256 tumor cells. Tumor weight, apoptotic tumor cells, tumor Bax and Bcl-2 protein expression, tumor lipid peroxidation, and tumor cell proliferation ex vivo were evaluated. Tumor weight was significantly lower in the EX group (∼30%) than in rats that did not undergo training (sedentary group) (p < 0.05). Apoptosis in the tumor cells of EX rats was 2-fold higher than in the tumor cells of sedentary rats; in addition, Bax expression increased by 10% and Bcl-2 decreased by 13% in EX rats. Lipid peroxidation was 4-fold higher in the tumor cells of EX rats than in those of sedentary rats (p < 0.05). Tumor cell proliferation ex vivo was 29% lower in the EX group than in the sedentary group (p < 0.05). In conclusion, Walker 256 tumor-bearing exercised rats presented more tumor cell apoptosis, a higher tumor content of lipid peroxides, pro-apoptotic protein expression balance, and reduced tumor weight and cell proliferation ex vivo, compared with sedentary rats. These events, together, account for the lower tumor growth we observed in the EX rats.
Collapse
Affiliation(s)
- Carina de Lima
- Department of Physiology, Federal University of Paraná, Curitiba-PR, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Chen CT, Liu Z, Bazinet RP. Rapid de-esterification and loss of eicosapentaenoic acid from rat brain phospholipids: an intracerebroventricular study. J Neurochem 2010; 116:363-73. [DOI: 10.1111/j.1471-4159.2010.07116.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
Heinzle E, Yuan Y, Kumar S, Wittmann C, Gehre M, Richnow HH, Wehrung P, Adam P, Albrecht P. Analysis of 13C labeling enrichment in microbial culture applying metabolic tracer experiments using gas chromatography–combustion–isotope ratio mass spectrometry. Anal Biochem 2008; 380:202-10. [DOI: 10.1016/j.ab.2008.05.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Revised: 05/23/2008] [Accepted: 05/27/2008] [Indexed: 10/22/2022]
|
9
|
Huang MC, Brenna JT, Chao AC, Tschanz C, Diersen-Schade DA, Hung HC. Differential tissue dose responses of (n-3) and (n-6) PUFA in neonatal piglets fed docosahexaenoate and arachidonoate. J Nutr 2007; 137:2049-55. [PMID: 17709441 DOI: 10.1093/jn/137.9.2049] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Docosahexaenoic acid (DHA) and arachidonic acid (ARA) are commonly added to infant formula worldwide; however, dietary concentrations needed to obtain optimal tissue levels have not been established. Hence, we studied tissue responses in piglets fed various doses of DHA and ARA. Doses were 0, 1, 2, and 5 times those used in U.S. infant formulas and DHA/ARA in Diet 0, Diet 1, Diet 2, and Diet 5 were 0, 4.1/8.1, 8.1/16.2, and 20.3/40.6 mg/100 kJ formula, respectively. Supplementation of dietary DHA and ARA increased DHA in brain, retina, liver, adipose tissue, plasma, and erythrocyte by 1.1- to 25.8-fold of Diet 0 (P-trend < 0.01). Tissue ARA (1.1- to 6.0-fold of Diet 0) responded to dietary ARA in liver, adipose tissue, plasma, and erythrocytes (P-trend < 0.05); brain and retina ARA was, however, unresponsive to dietary DHA and ARA. Plasma and erythrocyte DHA were positively associated with DHA in neural (brain and retina) and visceral (liver and adipose) tissues (r(2) = 0.11-0.56; P < 0.001-P = 0.042). Plasma and erythrocyte ARA did not correlate with neural ARA. Only plasma ARA was associated with liver ARA (r(2) = 0.222; P = 0.02) and adipose ARA (r(2) = 0.867; P < 0.001) and erythrocyte ARA correlated with adipose ARA (r(2) = 0.470; P < 0.001). We conclude that dietary DHA supplementation affords an effective strategy for enhancing tissue DHA, ARA in visceral but not neural tissues is sensitive to dietary ARA, and erythrocyte and plasma DHA can be used as proxies for tissue DHA, although blood-borne ARA is not an indicator of neural ARA.
Collapse
Affiliation(s)
- Meng-Chuan Huang
- Department of Public Health, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80705, Taiwan.
| | | | | | | | | | | |
Collapse
|
10
|
Mund RC, Pizato N, Bonatto S, Nunes EA, Vicenzi T, Tanhoffer R, de Oliveira HHP, Curi R, Calder PC, Fernandes LC. Decreased tumor growth in Walker 256 tumor-bearing rats chronically supplemented with fish oil involves COX-2 and PGE2 reduction associated with apoptosis and increased peroxidation. Prostaglandins Leukot Essent Fatty Acids 2007; 76:113-20. [PMID: 17234396 DOI: 10.1016/j.plefa.2006.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 11/29/2006] [Indexed: 11/26/2022]
Abstract
Many studies have shown that addition of fish oil (FO) to the diet reduces tumor growth but the mechanism(s) of action involved is (are) still unknown. In this study, we examine some possible mechanisms in tumor-bearing rats chronically supplemented with FO. Male Wistar rats (21 days old) were fed with regular chow and supplemented with coconut or FO (1g/kg body weight) until they reached 70 days of age. Then, they were inoculated with a suspension of Walker 256 ascitic tumor cells (2 x 10(7)ml) and after 14 days they were killed. Supplementation with FO resulted in significantly lower tumor weight, greater tumor cell apoptosis, lower ex vivo tumor cell proliferation, a higher tumor content of lipid peroxides, lower expression of cyclooxygenase-2 (COX-2) in tumor tissue and a lower plasma concentration of prostaglandin E2 than observed in rats fed regular chow or supplemented with coconut oil. These results suggest that reduction of tumor growth by FO involves an increase in apoptosis and of lipid peroxidation in tumor tissue, with a reduction in tumor cell proliferation ex vivo, COX-2 expression and PGE2 production. Thus, FO may act simultaneously through multiple effects to reduce tumor growth. Whether these effects are connected through a single underlying mechanism remains to be seen.
Collapse
Affiliation(s)
- Rogéria C Mund
- Department of Physiology, University Federal of Paraná, Biological Science Building, 81530-990, Curitiba, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wright TC, Cant JP, Brenna JT, McBride BW. Acetyl CoA Carboxylase Shares Control of Fatty Acid Synthesis with Fatty Acid Synthase in Bovine Mammary Homogenate. J Dairy Sci 2006; 89:2552-8. [PMID: 16772574 DOI: 10.3168/jds.s0022-0302(06)72331-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objectives of this research were to determine the flux control coefficients for acetyl CoA carboxylase and fatty acid synthase using an in vitro preparation of bovine mammary homogenate. For an enzyme to be considered rate limiting with the use of metabolic control analysis, its control coefficient would be equal to unity. The hypothesis for this experiment was that the control coefficient for acetyl CoA carboxylase was not equal to unity, and that this enzyme was not, therefore, the rate-limiting step. Mammary tissue was isolated from lactating Holstein cows at slaughter and frozen in liquid nitrogen. Tissue was ground, homogenized, and centrifuged to obtain a postmitochondrial supernatant for use in in vitro incubations containing labeled acetate. Specific inhibitors for acetyl CoA carboxylase and fatty acid synthase were used to fractionally inhibit de novo synthesis for the calculation of flux control coefficients. The composition of fatty acids synthesized in the absence of enzyme inhibitors was similar to the composition of fatty acids in the presence of inhibitors. Calculations following avidin inhibition of acetyl CoA carboxylase determined the flux control coefficient was 0.63 +/- 0.15, which means that 63% of the control of fatty acid synthesis is exerted by acetyl CoA carboxylase. The remaining control (37%) was from fatty acid synthase, which indicates a significant degree of control over the flux of acetate in de novo synthesis resides with this enzyme. The rate-limiting status ascribed to acetyl CoA carboxylase was not supported, because the flux control coefficient was less than unity. Metabolic control analysis, through its use of pathway product measurements, allows for potential interactions in the pathway such as feedback inhibition contribution to the flux control coefficients, which would not otherwise be considered in studies measuring enzyme kinetics with purified enzymes.
Collapse
Affiliation(s)
- T C Wright
- Department of Animal and Poultry Science, University of Guelph, Guelph, ON, Canada N1G 2W1
| | | | | | | |
Collapse
|
12
|
Muth A, Mosandl A, Bursen A, Marschalek R, Sewell AC, Böhles H. Multidimensional gas chromatography-mass spectrometry for tracer studies of fatty acid metabolism via stable isotopes in cultured human trophoblast cells. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 791:235-44. [PMID: 12798183 DOI: 10.1016/s1570-0232(03)00220-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The determination of placental fatty acid metabolism using stable isotope-labeled tracers was investigated in the human placental choriocarcinoma (JAR) cell line. Stable isotope incorporation was measured by MDGC-MS. The cultured trophoblast cells incorporated and metabolized the essential fatty acids to long-chain polyunsaturated fatty acids. The described method enables the detection of a low Delta(6)-desaturase activity in this human placental cell line. The developed MDGC-MS method allows the assessment of long-chain polyunsaturated fatty acid biosynthesis in cultured cells with high sensitivity and selectivity. In this respect, tracer studies with MDGC-MS will be a powerful tool to clarify the significance of placental fatty acid metabolism.
Collapse
Affiliation(s)
- Alexandra Muth
- Department of Food Chemistry, J.W. Goethe-University, Biocenter, Marie-Curie-Strasse 9, D-60439 Frankfurt/Main, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Meier-Augenstein W. Stable isotope analysis of fatty acids by gas chromatography–isotope ratio mass spectrometry. Anal Chim Acta 2002. [DOI: 10.1016/s0003-2670(02)00194-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2001; 36:446-457. [PMID: 11333450 DOI: 10.1002/jms.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|