1
|
Bourceau OM, Ferdelman T, Lavik G, Mussmann M, Kuypers MMM, Marchant HK. Simultaneous sulfate and nitrate reduction in coastal sediments. ISME COMMUNICATIONS 2023; 3:17. [PMID: 36882570 PMCID: PMC9992702 DOI: 10.1038/s43705-023-00222-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 03/09/2023]
Abstract
The oscillating redox conditions that characterize coastal sandy sediments foster microbial communities capable of respiring oxygen and nitrate simultaneously, thereby increasing the potential for organic matter remineralization, nitrogen (N)-loss and emissions of the greenhouse gas nitrous oxide. It is unknown to what extent these conditions also lead to overlaps between dissimilatory nitrate and sulfate respiration. Here, we show that sulfate and nitrate respiration co-occur in the surface sediments of an intertidal sand flat. Furthermore, we found strong correlations between dissimilatory nitrite reduction to ammonium (DNRA) and sulfate reduction rates. Until now, the nitrogen and sulfur cycles were assumed to be mainly linked in marine sediments by the activity of nitrate-reducing sulfide oxidisers. However, transcriptomic analyses revealed that the functional marker gene for DNRA (nrfA) was more associated with microorganisms known to reduce sulfate rather than oxidise sulfide. Our results suggest that when nitrate is supplied to the sediment community upon tidal inundation, part of the sulfate reducing community may switch respiratory strategy to DNRA. Therefore increases in sulfate reduction rate in-situ may result in enhanced DNRA and reduced denitrification rates. Intriguingly, the shift from denitrification to DNRA did not influence the amount of N2O produced by the denitrifying community. Our results imply that microorganisms classically considered as sulfate reducers control the potential for DNRA within coastal sediments when redox conditions oscillate and therefore retain ammonium that would otherwise be removed by denitrification, exacerbating eutrophication.
Collapse
Affiliation(s)
- O M Bourceau
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - T Ferdelman
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - G Lavik
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - M Mussmann
- University of Vienna, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Djerassiplatz 1, A-1030, Vienna, Austria
| | - M M M Kuypers
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - H K Marchant
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany.
- University of Bremen, Center for Marine Environmental Sciences, MARUM, 28359, Bremen, Germany.
| |
Collapse
|
2
|
Yao CK, Sarbagili-Shabat C. Gaseous metabolites as therapeutic targets in ulcerative colitis. World J Gastroenterol 2023; 29:682-691. [PMID: 36742165 PMCID: PMC9896612 DOI: 10.3748/wjg.v29.i4.682] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/19/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Diet therapies are currently under-utilised in optimising clinical outcomes for patients with active ulcerative colitis (UC). Furthermore, existing dietary therapies are framed by poorly defined mechanistic targets to warrant its success. There is good evidence to suggest that microbial production of gaseous metabolites, hydrogen sulfide (H2S) and nitric oxide (NO) are implicated in the development of mucosal inflammation in UC. On a cellular level, exposure of the colonic epithelium to excessive concentrations of these gases are shown to promote functional defects described in UC. Hence, targeting bacterial production of these gases could provide an opportunity to formulate new dietary therapies in UC. Despite the paucity of evidence, there is epidemiological and clinical data to support the concept of reducing mucosal inflammation in UC via dietary strategies that reduce H2S. Several dietary components, namely sulphur-containing amino acids and inorganic sulphur have been shown to be influential in enhancing colonic H2S production. More recent data suggests increasing the supply of readily fermentable fibre as an effective strategy for H2S reduction. Conversely, very little is known regarding how diet alters microbial production of NO. Hence, the current evidence suggest that a whole diet approach is needed. Finally, biomarkers for assessing changes in microbial gaseous metabolites in response to dietary interventions are very much required. In conclusion, this review identifies a great need for high quality randomised-controlled trials to demonstrate the efficacy of a sulphide-reducing dietary therapy for patients with active UC.
Collapse
Affiliation(s)
- Chu K Yao
- Department of Gastroenterology, Monash University, Melbourne 3004, Australia
| | - Chen Sarbagili-Shabat
- Pediatric Gastroenterology Unit, PIBD Research Center, Wolfson Medical Center, Holon 5822012, Israel
| |
Collapse
|
3
|
Kroneck PMH. Nature's nitrite-to-ammonia expressway, with no stop at dinitrogen. J Biol Inorg Chem 2021; 27:1-21. [PMID: 34865208 PMCID: PMC8840924 DOI: 10.1007/s00775-021-01921-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022]
Abstract
Since the characterization of cytochrome c552 as a multiheme nitrite reductase, research on this enzyme has gained major interest. Today, it is known as pentaheme cytochrome c nitrite reductase (NrfA). Part of the NH4+ produced from NO2- is released as NH3 leading to nitrogen loss, similar to denitrification which generates NO, N2O, and N2. NH4+ can also be used for assimilatory purposes, thus NrfA contributes to nitrogen retention. It catalyses the six-electron reduction of NO2- to NH4+, hosting four His/His ligated c-type hemes for electron transfer and one structurally differentiated active site heme. Catalysis occurs at the distal side of a Fe(III) heme c proximally coordinated by lysine of a unique CXXCK motif (Sulfurospirillum deleyianum, Wolinella succinogenes) or, presumably, by the canonical histidine in Campylobacter jejeuni. Replacement of Lys by His in NrfA of W. succinogenes led to a significant loss of enzyme activity. NrfA forms homodimers as shown by high resolution X-ray crystallography, and there exist at least two distinct electron transfer systems to the enzyme. In γ-proteobacteria (Escherichia coli) NrfA is linked to the menaquinol pool in the cytoplasmic membrane through a pentaheme electron carrier (NrfB), in δ- and ε-proteobacteria (S. deleyianum, W. succinogenes), the NrfA dimer interacts with a tetraheme cytochrome c (NrfH). Both form a membrane-associated respiratory complex on the extracellular side of the cytoplasmic membrane to optimize electron transfer efficiency. This minireview traces important steps in understanding the nature of pentaheme cytochrome c nitrite reductases, and discusses their structural and functional features.
Collapse
Affiliation(s)
- Peter M H Kroneck
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany.
| |
Collapse
|
4
|
Adyasari D, Hassenrück C, Montiel D, Dimova N. Microbial community composition across a coastal hydrological system affected by submarine groundwater discharge (SGD). PLoS One 2020; 15:e0235235. [PMID: 32598345 PMCID: PMC7323985 DOI: 10.1371/journal.pone.0235235] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/10/2020] [Indexed: 11/18/2022] Open
Abstract
Mobile Bay, the fourth largest estuary in the USA located in the northern Gulf of Mexico, is known for extreme hypoxia in the water column during dry season caused by NH4+-rich and anoxic submarine groundwater discharge (SGD). Nutrient dynamics in the coastal ecosystem point to potentially elevated microbial activities; however, little is known about microbial community composition and their functional roles in this area. In this study, we investigated microbial community composition, distribution, and metabolic prediction along the coastal hydrological compartment of Mobile Bay using 16S rRNA gene sequencing. We collected microbial samples from surface (river and bay water) and subsurface water (groundwater and coastal pore water from two SGD sites with peat and sandy lithology, respectively). Salinity was identified as the primary factor affecting the distribution of microbial communities across surface water samples, while DON and PO43- were the major predictor of community shift within subsurface water samples. Higher microbial diversity was found in coastal pore water in comparison to surface water samples. Gammaproteobacteria, Bacteroidia, and Oxyphotobacteria dominated the bacterial community. Among the archaea, methanogens were prevalent in the peat-dominated SGD site, while the sandy SGD site was characterized by a higher proportion of ammonia-oxidizing archaea. Cyanobium PCC-6307 and unclassified Thermodesulfovibrionia were identified as dominant taxa strongly associated with trends in environmental parameters in surface and subsurface samples, respectively. Microbial communities found in the groundwater and peat layer consisted of taxa known for denitrification and dissimilatory nitrate reduction to ammonium (DNRA). This finding suggested that microbial communities might also play a significant role in mediating nitrogen transformation in the SGD flow path and in affecting the chemical composition of SGD discharging to the water column. Given the ecological importance of microorganisms, further studies at higher taxonomic and functional resolution are needed to accurately predict chemical biotransformation processes along the coastal hydrological continuum, which influence water quality and environmental condition in Mobile Bay.
Collapse
Affiliation(s)
- Dini Adyasari
- Department of Biogeochemistry and Geology, Leibniz Centre for Tropical Marine Research, Bremen, Germany
| | - Christiane Hassenrück
- Department of Biogeochemistry and Geology, Leibniz Centre for Tropical Marine Research, Bremen, Germany
| | - Daniel Montiel
- Department of Geological Sciences, Coastal Hydrogeology Laboratory, University of Alabama, Alabama, AL, United States of America
- Geosyntec Consultants, Clearwater, FL, United States of America
| | - Natasha Dimova
- Department of Geological Sciences, Coastal Hydrogeology Laboratory, University of Alabama, Alabama, AL, United States of America
| |
Collapse
|
5
|
Westphal A, Eichinger F, Eichinger L, Würdemann H. Change in the microbial community of saline geothermal fluids amended with a scaling inhibitor: effects of heat extraction and nitrate dosage. Extremophiles 2019; 23:283-304. [PMID: 30778766 DOI: 10.1007/s00792-019-01080-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/29/2019] [Indexed: 11/27/2022]
Abstract
Geothermal plants are often affected by corrosion caused by microbial metabolites such as H2S. In the Bad Blumau (Austria) geothermal system, an increase in microbially produced H2S was observed in the hot (107 °C) and scaling inhibitor-amended saline fluids and in fluids that had cooled down (45 °C). Genetic fingerprinting and quantification revealed the dominance, increasing abundance and diversity of sulfate reducers such as Desulfotomaculum spp. that accompanied the cooling and processing of the geothermal fluids. In addition, a δ34S isotopic signature showed the microbial origin of the H2S that has been produced either chemolithotrophically or chemoorganotrophically. A nitrate addition test in a test pipe as a countermeasure against the microbial H2S formation caused a shift from a biocenosis dominated by bacteria of the phylum Firmicutes to a community of Firmicutes and Proteobacteria. Nitrate supported the growth of nitrate-reducing sulfur-oxidizing Thiobacillus thioparus, which incompletely reduced nitrate to nitrite. The addition of nitrate led to a change in the composition of the sulfate-reducing community. As a result, representatives of nitrate- and nitrite-reducing SRB, such as Desulfovibrio and Desulfonatronum, emerged as additional community members. The interaction of sulfate-reducing bacteria and nitrate-reducing sulfur-oxidizing bacteria (NR-SOB) led to the removal of H2S, but increased the corrosion rate in the test pipe.
Collapse
Affiliation(s)
- Anke Westphal
- Section 5.3 Geomicrobiology, GFZ German Research Centre for Geosciences, Telegrafenberg, 14473, Potsdam, Germany
| | | | - Lorenz Eichinger
- HYDROISOTOP GmbH, Woelkestr. 9, 85301, Schweitenkirchen, Germany
| | - Hilke Würdemann
- Section 5.3 Geomicrobiology, GFZ German Research Centre for Geosciences, Telegrafenberg, 14473, Potsdam, Germany. .,Department of Engineering and Natural Sciences, University of Applied Science Merseburg, Eberhard-Leibnitz-Str. 2, 06217, Merseburg, Germany.
| |
Collapse
|
6
|
Zhou C, Ontiveros-Valencia A, Nerenberg R, Tang Y, Friese D, Krajmalnik-Brown R, Rittmann BE. Hydrogenotrophic Microbial Reduction of Oxyanions With the Membrane Biofilm Reactor. Front Microbiol 2019; 9:3268. [PMID: 30687262 PMCID: PMC6335333 DOI: 10.3389/fmicb.2018.03268] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/17/2018] [Indexed: 11/20/2022] Open
Abstract
Oxyanions, such as nitrate, perchlorate, selenate, and chromate are commonly occurring contaminants in groundwater, as well as municipal, industrial, and mining wastewaters. Microorganism-mediated reduction is an effective means to remove oxyanions from water by transforming oxyanions into harmless and/or immobilized forms. To carry out microbial reduction, bacteria require a source of electrons, called the electron-donor substrate. Compared to organic electron donors, H2 is not toxic, generates minimal secondary contamination, and can be readily obtained in a variety of ways at reasonable cost. However, the application of H2 through conventional delivery methods, such as bubbling, is untenable due to H2's low water solubility and combustibility. In this review, we describe the membrane biofilm reactor (MBfR), which is a technological breakthrough that makes H2 delivery to microorganisms efficient, reliable, and safe. The MBfR features non-porous gas-transfer membranes through which bubbleless H2 is delivered on-demand to a microbial biofilm that develops naturally on the outer surface of the membranes. The membranes serve as an active substratum for a microbial biofilm able to biologically reduce oxyanions in the water. We review the development of the MBfR technology from bench, to pilot, and to commercial scales, and we elucidate the mechanisms that control MBfR performance, particularly including methods for managing the biofilm's structure and function. We also give examples of MBfR performance for cases of treating single and co-occurring oxyanions in different types of contaminated water. In summary, the MBfR is an effective and reliable technology for removing oxyanion contaminants by accurately providing a biofilm with bubbleless H2 on demand. Controlling the H2 supply in accordance to oxyanion surface loading and managing the accumulation and activity of biofilm are the keys for process success.
Collapse
Affiliation(s)
- Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, United States
| | | | - Robert Nerenberg
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, United States
| | | | - Rosa Krajmalnik-Brown
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
7
|
Stoeva MK, Coates JD. Specific inhibitors of respiratory sulfate reduction: towards a mechanistic understanding. MICROBIOLOGY-SGM 2018; 165:254-269. [PMID: 30556806 DOI: 10.1099/mic.0.000750] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Microbial sulfate reduction (SR) by sulfate-reducing micro-organisms (SRM) is a primary environmental mechanism of anaerobic organic matter mineralization, and as such influences carbon and sulfur cycling in many natural and engineered environments. In industrial systems, SR results in the generation of hydrogen sulfide, a toxic, corrosive gas with adverse human health effects and significant economic and environmental consequences. Therefore, there has been considerable interest in developing strategies for mitigating hydrogen sulfide production, and several specific inhibitors of SRM have been identified and characterized. Specific inhibitors are compounds that disrupt the metabolism of one group of organisms, with little or no effect on the rest of the community. Putative specific inhibitors of SRM have been used to control sulfidogenesis in industrial and engineered systems. Despite the value of these inhibitors, mechanistic and quantitative studies into the molecular mechanisms of their inhibition have been sparse and unsystematic. The insight garnered by such studies is essential if we are to have a more complete understanding of SR, including the past and current selective pressures acting upon it. Furthermore, the ability to reliably control sulfidogenesis - and potentially assimilatory sulfate pathways - relies on a thorough molecular understanding of inhibition. The scope of this review is to summarize the current state of the field: how we measure and understand inhibition, the targets of specific SR inhibitors and how SRM acclimatize and/or adapt to these stressors.
Collapse
Affiliation(s)
- Magdalena K Stoeva
- 1Energy Biosciences Institute, University of California - Berkeley, Berkeley, CA, USA
- 2Department of Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA, USA
| | - John D Coates
- 2Department of Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA, USA
- 1Energy Biosciences Institute, University of California - Berkeley, Berkeley, CA, USA
| |
Collapse
|
8
|
Cadby IT, Faulkner M, Cheneby J, Long J, van Helden J, Dolla A, Cole JA. Coordinated response of the Desulfovibrio desulfuricans 27774 transcriptome to nitrate, nitrite and nitric oxide. Sci Rep 2017; 7:16228. [PMID: 29176637 PMCID: PMC5701242 DOI: 10.1038/s41598-017-16403-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/08/2017] [Indexed: 01/06/2023] Open
Abstract
The sulfate reducing bacterium Desulfovibrio desulfuricans inhabits both the human gut and external environments. It can reduce nitrate and nitrite as alternative electron acceptors to sulfate to support growth. Like other sulphate reducing bacteria, it can also protect itself against nitrosative stress caused by NO generated when nitrite accumulates. By combining in vitro experiments with bioinformatic and RNA-seq data, metabolic responses to nitrate or NO and how nitrate and nitrite reduction are coordinated with the response to nitrosative stress were revealed. Although nitrate and nitrite reduction are tightly regulated in response to substrate availability, the global responses to nitrate or NO were largely regulated independently. Multiple NADH dehydrogenases, transcription factors of unknown function and genes for iron uptake were differentially expressed in response to electron acceptor availability or nitrosative stress. Amongst many fascinating problems for future research, the data revealed a YtfE orthologue, Ddes_1165, that is implicated in the repair of nitrosative damage. The combined data suggest that three transcription factors coordinate this regulation in which NrfS-NrfR coordinates nitrate and nitrite reduction to minimize toxicity due to nitrite accumulation, HcpR1 serves a global role in regulating the response to nitrate, and HcpR2 regulates the response to nitrosative stress.
Collapse
Affiliation(s)
- Ian T Cadby
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Matthew Faulkner
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- The Institute of Integrative Biology, Bioscience building, University of Liverpool, Liverpool, Merseyside, L69 7ZB, UK
| | - Jeanne Cheneby
- Aix Marseille Univ, INSERM, TAGC, UMR_S 1090, 163, Avenue de Luminy, 13288, Marseille, France
| | - Justine Long
- Aix Marseille Univ, INSERM, TAGC, UMR_S 1090, 163, Avenue de Luminy, 13288, Marseille, France
| | - Jacques van Helden
- Aix Marseille Univ, INSERM, TAGC, UMR_S 1090, 163, Avenue de Luminy, 13288, Marseille, France
| | - Alain Dolla
- Aix Marseille Univ, CNRS, LCB, Marseille, France
| | - Jeffrey A Cole
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
9
|
Biotechnological Applications of Microbial (Per)chlorate Reduction. Microorganisms 2017; 5:microorganisms5040076. [PMID: 29186812 PMCID: PMC5748585 DOI: 10.3390/microorganisms5040076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/18/2017] [Accepted: 11/22/2017] [Indexed: 01/31/2023] Open
Abstract
While the microbial degradation of a chloroxyanion-based herbicide was first observed nearly ninety years ago, only recently have researchers elucidated the underlying mechanisms of perchlorate and chlorate [collectively, (per)chlorate] respiration. Although the obvious application of these metabolisms lies in the bioremediation and attenuation of (per)chlorate in contaminated environments, a diversity of alternative and innovative biotechnological applications has been proposed based on the unique metabolic abilities of dissimilatory (per)chlorate-reducing bacteria (DPRB). This is fueled in part by the unique ability of these organisms to generate molecular oxygen as a transient intermediate of the central pathway of (per)chlorate respiration. This ability, along with other novel aspects of the metabolism, have resulted in a wide and disparate range of potential biotechnological applications being proposed, including enzymatic perchlorate detection; gas gangrene therapy; enhanced xenobiotic bioremediation; oil reservoir bio-souring control; chemostat hygiene control; aeration enhancement in industrial bioreactors; and, biogenic oxygen production for planetary exploration. While previous reviews focus on the fundamental science of microbial (per)chlorate reduction (for example see Youngblut et al., 2016), here, we provide an overview of the emerging biotechnological applications of (per)chlorate respiration and the underlying organisms and enzymes to environmental and biotechnological industries.
Collapse
|
10
|
Sousa JR, Silveira CM, Fontes P, Roma-Rodrigues C, Fernandes AR, Van Driessche G, Devreese B, Moura I, Moura JJ, Almeida MG. Understanding the response of Desulfovibrio desulfuricans ATCC 27774 to the electron acceptors nitrate and sulfate - biosynthetic costs modulate substrate selection. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1455-1469. [DOI: 10.1016/j.bbapap.2017.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/12/2017] [Accepted: 07/21/2017] [Indexed: 11/27/2022]
|
11
|
Cadby IT, Ibrahim SA, Faulkner M, Lee DJ, Browning D, Busby SJ, Lovering AL, Stapleton MR, Green J, Cole JA. Regulation, sensory domains and roles of twoDesulfovibrio desulfuricansATCC27774 Crp family transcription factors, HcpR1 and HcpR2, in response to nitrosative stress. Mol Microbiol 2016; 102:1120-1137. [DOI: 10.1111/mmi.13540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Ian T. Cadby
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| | - Susan A. Ibrahim
- Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank; Sheffield S10 2TN UK
| | - Matthew Faulkner
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| | - David J. Lee
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| | - Douglas Browning
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| | - Stephen J. Busby
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| | - Andrew L. Lovering
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| | - Melanie R. Stapleton
- Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank; Sheffield S10 2TN UK
| | - Jeffrey Green
- Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank; Sheffield S10 2TN UK
| | - Jeffrey A. Cole
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| |
Collapse
|
12
|
Barton LL, Lyle DA, Ritz NL, Granat AS, Khurshid AN, Kherbik N, Hider R, Lin HC. Bismuth(III) deferiprone effectively inhibits growth of Desulfovibrio desulfuricans ATCC 27774. Biometals 2016; 29:311-9. [PMID: 26896170 DOI: 10.1007/s10534-016-9917-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 11/28/2022]
Abstract
Sulfate-reducing bacteria have been implicated in inflammatory bowel diseases and ulcerative colitis in humans and there is an interest in inhibiting the growth of these sulfide-producing bacteria. This research explores the use of several chelators of bismuth to determine the most effective chelator to inhibit the growth of sulfate-reducing bacteria. For our studies, Desulfovibrio desulfuricans ATCC 27774 was grown with nitrate as the electron acceptor and chelated bismuth compounds were added to test for inhibition of growth. Varying levels of inhibition were attributed to bismuth chelated with subsalicylate or citrate but the most effective inhibition of growth by D. desulfuricans was with bismuth chelated by deferiprone, 3-hydroxy-1,2-dimethyl-4(1H)-pyridone. Growth of D. desulfuricans was inhibited by 10 μM bismuth as deferiprone:bismuth with either nitrate or sulfate respiration. Our studies indicate deferiprone:bismuth has bacteriostatic activity on D. desulfuricans because the inhibition can be reversed following exposure to 1 mM bismuth for 1 h at 32 °C. We suggest that deferiprone is an appropriate chelator for bismuth to control growth of sulfate-reducing bacteria because deferiprone is relatively nontoxic to animals, including humans, and has been used for many years to bind Fe(III) in the treatment of β-thalassemia.
Collapse
Affiliation(s)
- Larry L Barton
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Daniel A Lyle
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Nathaniel L Ritz
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA.,Department of Medicine, University of New Mexico and New Mexico VA Health Care System, Albuquerque, NM, 87018, USA
| | - Alex S Granat
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Ali N Khurshid
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Nada Kherbik
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Robert Hider
- Medicinal Chemistry, Institute of Pharmaceutical Science, King's College, London, London, SE1 9NH, UK
| | - Henry C Lin
- Department of Medicine, University of New Mexico and New Mexico VA Health Care System, Albuquerque, NM, 87018, USA
| |
Collapse
|
13
|
Engelbrektson A, Hubbard CG, Tom LM, Boussina A, Jin YT, Wong H, Piceno YM, Carlson HK, Conrad ME, Anderson G, Coates JD. Inhibition of microbial sulfate reduction in a flow-through column system by (per)chlorate treatment. Front Microbiol 2014; 5:315. [PMID: 25071731 PMCID: PMC4092371 DOI: 10.3389/fmicb.2014.00315] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/09/2014] [Indexed: 11/13/2022] Open
Abstract
Microbial sulfate reduction is a primary cause of oil reservoir souring. Here we show that amendment with chlorate or perchlorate [collectively (per)chlorate] potentially resolves this issue. Triplicate packed columns inoculated with marine sediment were flushed with coastal water amended with yeast extract and one of nitrate, chlorate, or perchlorate. Results showed that although sulfide production was dramatically reduced by all treatments, effluent sulfide was observed in the nitrate (10 mM) treatment after an initial inhibition period. In contrast, no effluent sulfide was observed with (per)chlorate (10 mM). Microbial community analyses indicated temporal community shifts and phylogenetic clustering by treatment. Nitrate addition stimulated Xanthomonadaceae and Rhizobiaceae growth, supporting their role in nitrate metabolism. (Per)chlorate showed distinct effects on microbial community structure compared with nitrate and resulted in a general suppression of the community relative to the untreated control combined with a significant decrease in sulfate reducing species abundance indicating specific toxicity. Furthermore, chlorate stimulated Pseudomonadaceae and Pseudoalteromonadaceae, members of which are known chlorate respirers, suggesting that chlorate may also control sulfidogenesis by biocompetitive exclusion of sulfate-reduction. Perchlorate addition stimulated Desulfobulbaceae and Desulfomonadaceae, which contain sulfide oxidizing and elemental sulfur-reducing species respectively, suggesting that effluent sulfide concentrations may be controlled through sulfur redox cycling in addition to toxicity and biocompetitive exclusion. Sulfur isotope analyses further support sulfur cycling in the columns, even when sulfide is not detected. This study indicates that (per)chlorate show great promise as inhibitors of sulfidogenesis in natural communities and provides insight into which organisms and respiratory processes are involved.
Collapse
Affiliation(s)
- Anna Engelbrektson
- Department of Plant and Microbial Biology, University of California, Berkeley Berkeley, CA, USA
| | | | - Lauren M Tom
- Lawrence Berkeley National Laboratory, Earth Sciences Division Berkeley, CA, USA
| | - Aaron Boussina
- Department of Plant and Microbial Biology, University of California, Berkeley Berkeley, CA, USA
| | - Yong T Jin
- Department of Plant and Microbial Biology, University of California, Berkeley Berkeley, CA, USA
| | - Hayden Wong
- Department of Plant and Microbial Biology, University of California, Berkeley Berkeley, CA, USA
| | - Yvette M Piceno
- Lawrence Berkeley National Laboratory, Earth Sciences Division Berkeley, CA, USA
| | - Hans K Carlson
- Department of Plant and Microbial Biology, University of California, Berkeley Berkeley, CA, USA
| | - Mark E Conrad
- Lawrence Berkeley National Laboratory, Earth Sciences Division Berkeley, CA, USA
| | - Gary Anderson
- Lawrence Berkeley National Laboratory, Earth Sciences Division Berkeley, CA, USA
| | - John D Coates
- Department of Plant and Microbial Biology, University of California, Berkeley Berkeley, CA, USA ; Lawrence Berkeley National Laboratory, Earth Sciences Division Berkeley, CA, USA
| |
Collapse
|
14
|
Giacomucci L, Toja F, Sanmartín P, Toniolo L, Prieto B, Villa F, Cappitelli F. Degradation of nitrocellulose-based paint by Desulfovibrio desulfuricans ATCC 13541. Biodegradation 2012; 23:705-16. [PMID: 22367465 DOI: 10.1007/s10532-012-9546-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 02/15/2012] [Indexed: 11/24/2022]
Abstract
Nitrocellulose is one of the most commonly used compounds in ammunition and paint industries and its recalcitrance to degradation has a negative impact on human health and the environment. In this study the capability of Desulfovibrio desulfuricans ATCC 13541 to degrade nitrocellulose as binder in paint was assayed for the first time. Nitrocellulose-based paint degradation was followed by monitoring the variation in nitrate, nitrite and ammonium content in the culture medium using Ultraviolet-Visible spectroscopy. At the same time cell counts and ATP assay were performed to estimate bacterial density and activity in all samples. Infrared spectroscopy and colorimetric measurements of paint samples were performed to assess chemical and colour changes due to the microbial action. Microscope observations of nitrocellulose-based paint samples demonstrated the capability of the bacterium to adhere to the paint surface and change the paint adhesive characteristics. Finally, preliminary studies of nitrocellulose degradation pathway were conducted by assaying nitrate- and nitrite reductases activity in D. desulfuricans grown in presence or in absence of paint. We found that D. desulfuricans ATCC 13541 is able to transform nitrocellulose as paint binder and we hypothesised ammonification as degradation pathway. The results suggest that D. desulfuricans ATCC 13541 is a good candidate as a nitrocellulose-degrading bacterium.
Collapse
Affiliation(s)
- L Giacomucci
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Assunção A, Martins M, Silva G, Lucas H, Coelho MR, Costa MC. Bromate removal by anaerobic bacterial community: mechanism and phylogenetic characterization. JOURNAL OF HAZARDOUS MATERIALS 2011; 197:237-243. [PMID: 21982540 DOI: 10.1016/j.jhazmat.2011.09.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 09/19/2011] [Accepted: 09/21/2011] [Indexed: 05/31/2023]
Abstract
A highly bromate resistant bacterial community and with ability for bromate removal was obtained from a sulphate-reducing bacteria enrichment consortium. This community was able to remove 96% of bromate and 99% of sulphate from an aqueous solution containing 40 μM bromate and 10 mM sulphate. Moreover, 93% of bromate was removed in the absence of sulphate. Under this condition bromate was reduced stoichiometrically to bromide. However, in the presence of sulphate only 88% of bromate was reduced to bromide. Although, bromate removal was not affected by the absence of sulphate, this anion promoted a modification on the structure of the bacterial community. Phylogenetic analysis of 16S rRNA gene showed that the community grown in the presence of bromate and sulphate was mainly composed by bacteria closely to Clostridium and Citrobacter genera, while the community grown in the absence of sulphate was predominantly composed by Clostridium genus. It is the first time that Clostridium and Citrobacter genera are reported as having bromate removal ability. Furthermore, bromate removal by the consortium predominantly composed by Clostridium and Citrobacter genera occurred by enzymatic reduction and by extracellular metabolic products, while the enzymatic process was the only mechanism involved in bromate removal by the consortium mainly composed by Clostridium genus.
Collapse
Affiliation(s)
- Ana Assunção
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Faculdade de Ciências e de Tecnologia, Departamento de Química e Farmácia, Faro, Portugal.
| | | | | | | | | | | |
Collapse
|
16
|
Biological souring and mitigation in oil reservoirs. Appl Microbiol Biotechnol 2011; 92:263-82. [DOI: 10.1007/s00253-011-3542-6] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 07/29/2011] [Accepted: 08/05/2011] [Indexed: 02/07/2023]
|
17
|
Jiang G, Gutierrez O, Sharma KR, Yuan Z. Effects of nitrite concentration and exposure time on sulfide and methane production in sewer systems. WATER RESEARCH 2010; 44:4241-4251. [PMID: 20554309 DOI: 10.1016/j.watres.2010.05.030] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 04/29/2010] [Accepted: 05/24/2010] [Indexed: 05/29/2023]
Abstract
Nitrite dosing is a promising technology to prevent sulfide and methane formation in sewers, due to the known inhibitory/toxic effect of nitrite on sulfate-reducing bacteria (SRB) and methanogenic Archaea (MA). The dependency of nitrite-induced inhibition on sulfide and methane producing activities of anaerobic sewer biofilms on nitrite levels and exposure time is investigated using a range of nitrite concentrations (40, 80, 120 mg-N/L) and exposure time up to 24 days. The recovery of these activities after the 24-day nitrite dosage was also monitored for more than two months. The inhibition level was found to be dependent on both nitrite concentration and exposure time, with stronger inhibition observed at higher nitrite concentrations and/or longer exposure time. However, the time required for achieving 50% recovery of both sulfate-reducing and methanogenic activities after the cessation of nitrite dosage only marginally depended on nitrite concentration. Model-based analysis of the recovery data showed that the recovery was likely due to the regrowth of SRB and methanogens. The lab studies and mathematical analysis supported the development of an intermittent dosing strategy, which was tested in a 1-km long rising main sewer. The field trial confirmed that intermittent dosing of nitrite can effectively reduce/prevent the formation of both sulfide and methane.
Collapse
Affiliation(s)
- Guangming Jiang
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | | | | |
Collapse
|
18
|
He Q, He Z, Joyner DC, Joachimiak M, Price MN, Yang ZK, Yen HCB, Hemme CL, Chen W, Fields MM, Stahl DA, Keasling JD, Keller M, Arkin AP, Hazen TC, Wall JD, Zhou J. Impact of elevated nitrate on sulfate-reducing bacteria: a comparative study of Desulfovibrio vulgaris. ISME JOURNAL 2010; 4:1386-97. [PMID: 20445634 DOI: 10.1038/ismej.2010.59] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sulfate-reducing bacteria have been extensively studied for their potential in heavy-metal bioremediation. However, the occurrence of elevated nitrate in contaminated environments has been shown to inhibit sulfate reduction activity. Although the inhibition has been suggested to result from the competition with nitrate-reducing bacteria, the possibility of direct inhibition of sulfate reducers by elevated nitrate needs to be explored. Using Desulfovibrio vulgaris as a model sulfate-reducing bacterium, functional genomics analysis reveals that osmotic stress contributed to growth inhibition by nitrate as shown by the upregulation of the glycine/betaine transporter genes and the relief of nitrate inhibition by osmoprotectants. The observation that significant growth inhibition was effected by 70 mM NaNO(3) but not by 70 mM NaCl suggests the presence of inhibitory mechanisms in addition to osmotic stress. The differential expression of genes characteristic of nitrite stress responses, such as the hybrid cluster protein gene, under nitrate stress condition further indicates that nitrate stress response by D. vulgaris was linked to components of both osmotic and nitrite stress responses. The involvement of the oxidative stress response pathway, however, might be the result of a more general stress response. Given the low similarities between the response profiles to nitrate and other stresses, less-defined stress response pathways could also be important in nitrate stress, which might involve the shift in energy metabolism. The involvement of nitrite stress response upon exposure to nitrate may provide detoxification mechanisms for nitrite, which is inhibitory to sulfate-reducing bacteria, produced by microbial nitrate reduction as a metabolic intermediate and may enhance the survival of sulfate-reducing bacteria in environments with elevated nitrate level.
Collapse
Affiliation(s)
- Qiang He
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mohanakrishnan J, Gutierrez O, Sharma KR, Guisasola A, Werner U, Meyer RL, Keller J, Yuan Z. Impact of nitrate addition on biofilm properties and activities in rising main sewers. WATER RESEARCH 2009; 43:4225-4237. [PMID: 19577270 DOI: 10.1016/j.watres.2009.06.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 05/30/2009] [Accepted: 06/04/2009] [Indexed: 05/28/2023]
Abstract
Anaerobic sewer biofilm is a composite of many different microbial populations, including sulfate reducing bacteria (SRB), methanogens and heterotrophic bacteria. Nitrate addition to sewers in an attempt to control hydrogen sulfide concentrations affects the behaviour of these populations, which in turn impacts on wastewater characteristics. Experiments were carried out on a laboratory reactor system simulating a rising main to determine the impact of nitrate addition on the microbial activities of anaerobic sewer biofilm. Nitrate was added to the start of the rising main during sewage pump cycles at a concentration of 30 mg-N L(-1) for over 5 months. While it reduced sulfide levels at the outlet of the system by 66%, nitrate was not toxic or inhibitory to SRB activity and did not affect the dominant SRB populations in the biofilm. Long-term nitrate addition in fact stimulated additional SRB activity in downstream biofilm. Nitrate addition also stimulated the activity of nitrate reducing, sulfide oxidizing bacteria that appeared to be primarily responsible for the prevention of sulfide build up in the wastewater in the presence of nitrate. A short adaptation period of three to four nitrate exposure events (approximately 10 h) was required to stimulate biological sulfide oxidation, beyond which no sulfide accumulation was observed under anoxic conditions. Nitrate addition effectively controlled methane concentrations in the wastewater. The nitrate uptake rate of the biofilm increased with repeated exposure to nitrate, which in turn increased the consumption of biodegradable COD in the wastewater. These results provide a comprehensive understanding of the impact of nitrate addition on wastewater composition and sewer biofilm microbial activities, which will facilitate optimization of nitrate dosing for effective sulfide control in rising main sewers.
Collapse
Affiliation(s)
- J Mohanakrishnan
- Advanced Water Management Centre, Building 60, Research Road, The University of Queensland, St. Lucia, Brisbane QLD 4072, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2009; 68:41-98. [PMID: 19426853 DOI: 10.1016/s0065-2164(09)01202-7] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chemolithotrophic bacteria that use sulfate as terminal electron acceptor (sulfate-reducing bacteria) constitute a unique physiological group of microorganisms that couple anaerobic electron transport to ATP synthesis. These bacteria (220 species of 60 genera) can use a large variety of compounds as electron donors and to mediate electron flow they have a vast array of proteins with redox active metal groups. This chapter deals with the distribution in the environment and the major physiological and metabolic characteristics of sulfate-reducing bacteria (SRB). This chapter presents our current knowledge of soluble electron transfer proteins and transmembrane redox complexes that are playing an essential role in the dissimilatory sulfate reduction pathway of SRB of the genus Desulfovibrio. Environmentally important activities displayed by SRB are a consequence of the unique electron transport components or the production of high levels of H(2)S. The capability of SRB to utilize hydrocarbons in pure cultures and consortia has resulted in using these bacteria for bioremediation of BTEX (benzene, toluene, ethylbenzene and xylene) compounds in contaminated soils. Specific strains of SRB are capable of reducing 3-chlorobenzoate, chloroethenes, or nitroaromatic compounds and this has resulted in proposals to use SRB for bioremediation of environments containing trinitrotoluene and polychloroethenes. Since SRB have displayed dissimilatory reduction of U(VI) and Cr(VI), several biotechnology procedures have been proposed for using SRB in bioremediation of toxic metals. Additional non-specific metal reductase activity has resulted in using SRB for recovery of precious metals (e.g. platinum, palladium and gold) from waste streams. Since bacterially produced sulfide contributes to the souring of oil fields, corrosion of concrete, and discoloration of stonework is a serious problem, there is considerable interest in controlling the sulfidogenic activity of the SRB. The production of biosulfide by SRB has led to immobilization of toxic metals and reduction of textile dyes, although the process remains unresolved, SRB play a role in anaerobic methane oxidation which not only contributes to carbon cycle activities but also depletes an important industrial energy reserve.
Collapse
|
21
|
Bacteria of the sulphur cycle: An overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2008.12.011] [Citation(s) in RCA: 272] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Abstract
Sulphate-reducing bacteria (SRB) are anaerobic microorganisms that use sulphate as a terminal electron acceptor in, for example, the degradation of organic compounds. They are ubiquitous in anoxic habitats, where they have an important role in both the sulphur and carbon cycles. SRB can cause a serious problem for industries, such as the offshore oil industry, because of the production of sulphide, which is highly reactive, corrosive and toxic. However, these organisms can also be beneficial by removing sulphate and heavy metals from waste streams. Although SRB have been studied for more than a century, it is only with the recent emergence of new molecular biological and genomic techniques that we have begun to obtain detailed information on their way of life.
Collapse
|
23
|
López-Cortés A, Fardeau ML, Fauque G, Joulian C, Ollivier B. Reclassification of the sulfate- and nitrate-reducing bacterium Desulfovibrio vulgaris subsp. oxamicus as Desulfovibrio oxamicus sp. nov., comb. nov. Int J Syst Evol Microbiol 2006; 56:1495-1499. [PMID: 16825618 DOI: 10.1099/ijs.0.64074-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Desulfovibrio vulgaris subsp. oxamicus (type strain, DSM 1925(T)) was found to use nitrate as a terminal electron acceptor, the latter being reduced to ammonium. Phylogenetic studies indicated that strain DSM 1925(T) was distantly related to the type strain of Desulfovibrio vulgaris (95.4 % similarity of the small-subunit rRNA gene) and had as its closest phylogenetic relatives two other nitrate- and sulfate-reducing bacteria, namely Desulfovibrio termitidis (99.4 % similarity) and Desulfovibrio longreachensis (98.4 % similarity). Additional experiments were conducted to characterize better strain DSM 1925(T). This strain incompletely oxidized lactate and ethanol to acetate. It also oxidized butanol, pyruvate and citrate, but not glucose, fructose, acetate, propionate, butyrate, methanol, glycerol or peptone. The optimum temperature for growth was 37 degrees C (range 16-50 degrees C) and the optimum NaCl concentration for growth was 0.1 % (range 0-5 %). Because of significant genotypic and phenotypic differences from Desulfovibrio termitidis and Desulfovibrio longreachensis, reclassification of Desulfovibrio vulgaris subsp. oxamicus as Desulfovibrio oxamicus sp. nov., comb. nov., is proposed. The type strain is strain Monticello 2(T) (=DSM 1925(T)=NCIMB 9442(T)=ATCC 33405(T)).
Collapse
MESH Headings
- Carbohydrate Metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Desulfovibrio/classification
- Desulfovibrio/genetics
- Desulfovibrio/metabolism
- Desulfovibrio/physiology
- Desulfovibrio vulgaris/classification
- Desulfovibrio vulgaris/genetics
- Desulfovibrio vulgaris/metabolism
- Desulfovibrio vulgaris/physiology
- Genes, rRNA/genetics
- Growth Inhibitors/pharmacology
- Molecular Sequence Data
- Nitrates/metabolism
- Oxidation-Reduction
- Peptones/metabolism
- Phylogeny
- Quaternary Ammonium Compounds/metabolism
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Sodium Chloride/pharmacology
- Sulfates/metabolism
Collapse
Affiliation(s)
- Alejandro López-Cortés
- Laboratorio de Ecología Microbiana Molecular, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Mar Bermejo 195, Playa Palo Santa Rita, La Paz, Baja California Sur, 23090, Mexico
| | - Marie-Laure Fardeau
- Laboratoire de Microbiologie IRD, Universités de Provence et de la Méditerranée, 163 avenue de Luminy, ESIL-GBMA, Case 925, 13288 Marseille Cedex 9, France
| | - Guy Fauque
- Laboratoire de Microbiologie, Géochimie et Ecologie Marines, UMR CNRS 6117, Campus de Luminy, Case 901, 13288 Marseille Cedex 9, France
- Laboratoire de Microbiologie IRD, Universités de Provence et de la Méditerranée, 163 avenue de Luminy, ESIL-GBMA, Case 925, 13288 Marseille Cedex 9, France
| | - Catherine Joulian
- BRGM, Environment and Process Division, Biotechnology Unit, 2, avenue Claude Guillemin, 45060 Orléans Cedex 2, France
| | - Bernard Ollivier
- Laboratoire de Microbiologie IRD, Universités de Provence et de la Méditerranée, 163 avenue de Luminy, ESIL-GBMA, Case 925, 13288 Marseille Cedex 9, France
| |
Collapse
|
24
|
Rempel CL, Evitts RW, Nemati M. Dynamics of corrosion rates associated with nitrite or nitrate mediated control of souring under biological conditions simulating an oil reservoir. J Ind Microbiol Biotechnol 2006; 33:878-86. [PMID: 16758172 DOI: 10.1007/s10295-006-0142-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 05/08/2006] [Indexed: 02/08/2023]
Abstract
Representative microbial cultures from an oil reservoir and electrochemical techniques including potentiodynamic scan and linear polarization were used to investigate the time dependent corrosion rate associated with control of biogenic sulphide production through addition of nitrite, nitrate and a combination of nitrate-reducing, sulphide-oxidizing bacteria (NR-SOB) and nitrate. The addition of nitrate alone did not prevent the biogenic production of sulphide but the produced sulphide was eventually oxidized and removed from the system. The addition of nitrate and NR-SOB had a similar effect on oxidation and removal of sulphide present in the system. However, as the addition of nitrate and NR-SOB was performed towards the end of sulphide production phase, the assessment of immediate impact was not possible. The addition of nitrite inhibited the biogenic production of sulphide immediately and led to removal of sulphide through nitrite mediated chemical oxidation of sulphide. The real time corrosion rate measurement revealed that in all three cases an acceleration in the corrosion rate occurred during the oxidation and removal of sulphide. Amendments of nitrate and NR-SOB or nitrate alone both gave rise to localized corrosion in the form of pits, with the maximum observed corrosion rates of 0.72 and 1.4 mm year(-1), respectively. The addition of nitrite also accelerated the corrosion rate but the maximum corrosion rate observed following nitrite addition was 0.3 mm year(-1). Furthermore, in the presence of nitrite the extent of pitting was not as high as those observed with other control methods.
Collapse
Affiliation(s)
- C L Rempel
- Department of Chemical Engineering, College of Engineering, University of Saskatchewan, S7N 5A9, Saskatoon, Canada
| | | | | |
Collapse
|
25
|
Haveman SA, Greene EA, Stilwell CP, Voordouw JK, Voordouw G. Physiological and gene expression analysis of inhibition of Desulfovibrio vulgaris hildenborough by nitrite. J Bacteriol 2004; 186:7944-50. [PMID: 15547266 PMCID: PMC529081 DOI: 10.1128/jb.186.23.7944-7950.2004] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Desulfovibrio vulgaris Hildenborough mutant lacking the nrfA gene for the catalytic subunit of periplasmic cytochrome c nitrite reductase (NrfHA) was constructed. In mid-log phase, growth of the wild type in medium containing lactate and sulfate was inhibited by 10 mM nitrite, whereas 0.6 mM nitrite inhibited the nrfA mutant. Lower concentrations (0.04 mM) inhibited the growth of both mutant and wild-type cells on plates. Macroarray hybridization indicated that nitrite upregulates the nrfHA genes and downregulates genes for sulfate reduction enzymes catalyzing steps preceding the reduction of sulfite to sulfide by dissimilatory sulfite reductase (DsrAB), for two membrane-bound electron transport complexes (qmoABC and dsrMKJOP) and for ATP synthase (atp). DsrAB is known to bind and slowly reduce nitrite. The data support a model in which nitrite inhibits DsrAB (apparent dissociation constant K(m) for nitrite = 0.03 mM), and in which NrfHA (K(m) for nitrite = 1.4 mM) limits nitrite entry by reducing it to ammonia when nitrite concentrations are at millimolar levels. The gene expression data and consideration of relative gene locations suggest that QmoABC and DsrMKJOP donate electrons to adenosine phosphosulfate reductase and DsrAB, respectively. Downregulation of atp genes, as well as the recorded cell death following addition of inhibitory nitrite concentrations, suggests that the proton gradient collapses when electrons are diverted from cytoplasmic sulfate to periplasmic nitrite reduction.
Collapse
Affiliation(s)
- Shelley A Haveman
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | | | | | | | | |
Collapse
|
26
|
Da Silva S, Cosnier S, Gabriela Almeida M, Moura JJ. An efficient poly(pyrrole–viologen)-nitrite reductase biosensor for the mediated detection of nitrite. Electrochem commun 2004. [DOI: 10.1016/j.elecom.2004.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
27
|
Eckford R, Fedorak P. Chapter 11 Using nitrate to control microbially-produced hydrogen sulfide in oil field waters. STUDIES IN SURFACE SCIENCE AND CATALYSIS 2004. [DOI: 10.1016/s0167-2991(04)80152-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Arnoux P, Sabaty M, Alric J, Frangioni B, Guigliarelli B, Adriano JM, Pignol D. Structural and redox plasticity in the heterodimeric periplasmic nitrate reductase. Nat Struct Mol Biol 2003; 10:928-34. [PMID: 14528294 DOI: 10.1038/nsb994] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2003] [Accepted: 09/04/2003] [Indexed: 11/09/2022]
Abstract
The structure of the respiratory nitrate reductase (NapAB) from Rhodobacter sphaeroides, the periplasmic heterodimeric enzyme responsible for the first step in the denitrification process, has been determined at a resolution of 3.2 A. The di-heme electron transfer small subunit NapB binds to the large subunit with heme II in close proximity to the [4Fe-4S] cluster of NapA. A total of 57 residues at the N- and C-terminal extremities of NapB adopt an extended conformation, embracing the NapA subunit and largely contributing to the total area of 5,900 A(2) buried in the complex. Complex formation was studied further by measuring the variation of the redox potentials of all the cofactors upon binding. The marked effects observed are interpreted in light of the three-dimensional structure and depict a plasticity that contributes to an efficient electron transfer in the complex from the heme I of NapB to the molybdenum catalytic site of NapA.
Collapse
Affiliation(s)
- Pascal Arnoux
- CEA/Cadarache, DSV, DEVM, Laboratoire de Bioénergétique Cellulaire, 13108 St Paul lez Durance Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
29
|
Almeida MG, Macieira S, Gonçalves LL, Huber R, Cunha CA, Romão MJ, Costa C, Lampreia J, Moura JJG, Moura I. The isolation and characterization of cytochromecnitrite reductase subunits (NrfA and NrfH) fromDesulfovibrio desulfuricansATCC 27774. ACTA ACUST UNITED AC 2003; 270:3904-15. [PMID: 14511372 DOI: 10.1046/j.1432-1033.2003.03772.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cytochrome c nitrite reductase is isolated from the membranes of the sulfate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774 as a heterooligomeric complex composed by two subunits (61 kDa and 19 kDa) containing c-type hemes, encoded by the genes nrfA and nrfH, respectively. The extracted complex has in average a 2NrfA:1NrfH composition. The separation of ccNiR subunits from one another is accomplished by gel filtration chromatography in the presence of SDS. The amino-acid sequence and biochemical subunits characterization show that NrfA contains five hemes and NrfH four hemes. These considerations enabled the revision of a vast amount of existing spectroscopic data on the NrfHA complex that was not originally well interpreted due to the lack of knowledge on the heme content and the oligomeric enzyme status. Based on EPR and Mössbauer parameters and their correlation to structural information recently obtained from X-ray crystallography on the NrfA structure [Cunha, C.A., Macieira, S., Dias, J.M., Almeida, M.G., Gonçalves, L.M.L., Costa, C., Lampreia, J., Huber, R., Moura, J.J.G., Moura, I. & Romão, M. (2003) J. Biol. Chem. 278, 17455-17465], we propose the full assignment of midpoint reduction potentials values to the individual hemes. NrfA contains the high-spin catalytic site (-80 mV) as well as a quite unusual high reduction potential (+150 mV)/low-spin bis-His coordinated heme, considered to be the site where electrons enter. In addition, the reassessment of the spectroscopic data allowed the first partial spectroscopic characterization of the NrfH subunit. The four NrfH hemes are all in a low-spin state (S = 1/2). One of them has a gmax at 3.55, characteristic of bis-histidinyl iron ligands in a noncoplanar arrangement, and has a positive reduction potential.
Collapse
Affiliation(s)
- Maria Gabriela Almeida
- REQUIMTE, CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Greene EA, Hubert C, Nemati M, Jenneman GE, Voordouw G. Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria. Environ Microbiol 2003; 5:607-17. [PMID: 12823193 DOI: 10.1046/j.1462-2920.2003.00446.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sulphate-reducing bacteria (SRB) can be inhibited by nitrate-reducing, sulphide-oxidizing bacteria (NR-SOB), despite the fact that these two groups are interdependent in many anaerobic environments. Practical applications of this inhibition include the reduction of sulphide concentrations in oil fields by nitrate injection. The NR-SOB Thiomicrospira sp. strain CVO was found to oxidize up to 15 mM sulphide, considerably more than three other NR-SOB strains that were tested. Sulphide oxidation increased the environmental redox potential (Eh) from -400 to +100 mV and gave 0.6 nitrite per nitrate reduced. Within the genus Desulfovibrio, strains Lac3 and Lac6 were inhibited by strain CVO and nitrate for the duration of the experiment, whereas inhibition of strains Lac15 and D. vulgaris Hildenborough was transient. The latter had very high nitrite reductase (Nrf) activity. Southern blotting with D. vulgaris nrf genes as a probe indicated the absence of homologous nrf genes from strains Lac3 and Lac6 and their presence in strain Lac15. With respect to SRB from other genera, inhibition of the known nitrite reducer Desulfobulbus propionicus by strain CVO and nitrate was transient, whereas inhibition of Desulfobacterium autotrophicum and Desulfobacter postgatei was long-lasting. The results indicate that inhibition of SRB by NR-SOB is caused by nitrite production. Nrf-containing SRB can overcome this inhibition by further reducing nitrite to ammonia, preventing a stalling of the favourable metabolic interactions between these two bacterial groups. Nrf, which is widely distributed in SRB, can thus be regarded as a resistance factor that prevents the inhibition of dissimilatory sulphate reduction by nitrite.
Collapse
Affiliation(s)
- E A Greene
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada, T2N 1N4
| | | | | | | | | |
Collapse
|
31
|
Cunha CA, Macieira S, Dias JM, Almeida G, Goncalves LL, Costa C, Lampreia J, Huber R, Moura JJG, Moura I, Romão MJ. Cytochrome c nitrite reductase from Desulfovibrio desulfuricans ATCC 27774. The relevance of the two calcium sites in the structure of the catalytic subunit (NrfA). J Biol Chem 2003; 278:17455-65. [PMID: 12618432 DOI: 10.1074/jbc.m211777200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gene encoding cytochrome c nitrite reductase (NrfA) from Desulfovibrio desulfuricans ATCC 27774 was sequenced and the crystal structure of the enzyme was determined to 2.3-A resolution. In comparison with homologous structures, it presents structural differences mainly located at the regions surrounding the putative substrate inlet and product outlet, and includes a well defined second calcium site with octahedral geometry, coordinated to propionates of hemes 3 and 4, and caged by a loop non-existent in the previous structures. The highly negative electrostatic potential in the environment around hemes 3 and 4 suggests that the main role of this calcium ion may not be electrostatic but structural, namely in the stabilization of the conformation of the additional loop that cages it and influences the solvent accessibility of heme 4. The NrfA active site is similar to that of peroxidases with a nearby calcium site at the heme distal side nearly in the same location as occurs in the class II and class III peroxidases. This fact suggests that the calcium ion at the distal side of the active site in the NrfA enzymes may have a similar physiological role to that reported for the peroxidases.
Collapse
Affiliation(s)
- Carlos A Cunha
- Departamento de Quimica, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Petrova OE, Tarasova NB, Davydova MN. Biotechnological potential of sulfate-reducing bacteria for transformation of nitrocellulose. Anaerobe 2002; 8:315-7. [PMID: 16887675 DOI: 10.1016/s1075-9964(03)00029-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2002] [Revised: 11/25/2002] [Accepted: 02/07/2003] [Indexed: 10/27/2022]
Abstract
The biotransformation of NC by Desulfovibrio sp. was studied. The mass of NC was decreased by 4.9-9.3%. The rate of NC transformation was between 46 and 73 mg NC per mg of bacterial protein in 10 days. Moreover, N content (%N) in the remaining NC was reduced by 2-12%. The inhibitory effect of NC was clearly expressed when the growth of D. desulfuricans 1388 in lactate/sulfate medium was initiated. The growth rate of bacteria was 1.5-fold greater when NC was not added (0.074 and 0.05 h(-1) respectively). The transformation of NC by D. desulfuricans was accompanied by the appearance of nitrate in the culture liquid, the amount of which reached the peak by the 8th day.
Collapse
Affiliation(s)
- O E Petrova
- Institute of Biochemistry and Biophysics Russian Academy of Science, P.O. Box 30, Kazan 420111, Russia.
| | | | | |
Collapse
|
33
|
Abstract
Nitrite is widely used by bacteria as an electron acceptor under anaerobic conditions. In respiratory nitrite ammonification an electrochemical proton potential across the membrane is generated by electron transport from a non-fermentable substrate like formate or H(2) to nitrite. The corresponding electron transport chain minimally comprises formate dehydrogenase or hydrogenase, a respiratory quinone and cytochrome c nitrite reductase. The catalytic subunit of the latter enzyme (NrfA) catalyzes nitrite reduction to ammonia without liberating intermediate products. This review focuses on recent progress that has been made in understanding the enzymology and bioenergetics of respiratory nitrite ammonification. High-resolution structures of NrfA proteins from different bacteria have been determined, and many nrf operons sequenced, leading to the prediction of electron transfer pathways from the quinone pool to NrfA. Furthermore, the coupled electron transport chain from formate to nitrite of Wolinella succinogenes has been reconstituted by incorporating the purified enzymes into liposomes. The NrfH protein of W. succinogenes, a tetraheme c-type cytochrome of the NapC/NirT family, forms a stable complex with NrfA in the membrane and serves in passing electrons from menaquinol to NrfA. Proteins similar to NrfH are predicted by open reading frames of several bacterial nrf gene clusters. In gamma-proteobacteria, however, NrfH is thought to be replaced by the nrfBCD gene products. The active site heme c group of NrfA proteins from different bacteria is covalently bound via the cysteine residues of a unique CXXCK motif. The lysine residue of this motif serves as an axial ligand to the heme iron thus replacing the conventional histidine residue. The attachment of the lysine-ligated heme group requires specialized proteins in W. succinogenes and Escherichia coli that are encoded by accessory nrf genes. The proteins predicted by these genes are unrelated in the two bacteria but similar to proteins of the respective conventional cytochrome c biogenesis systems.
Collapse
Affiliation(s)
- Jörg Simon
- Institut für Mikrobiologie, Johann Wolfgang Goethe-Universität, Biozentrum N240, Marie-Curie-Str. 9, D-60439 Frankfurt am Main, Germany.
| |
Collapse
|
34
|
Pereira IA, LeGall J, Xavier AV, Teixeira M. Characterization of a heme c nitrite reductase from a non-ammonifying microorganism, Desulfovibrio vulgaris Hildenborough. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1481:119-30. [PMID: 11004582 DOI: 10.1016/s0167-4838(00)00111-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A cytochrome c nitrite reductase (NiR) was purified for the first time from a microorganism not capable of growing on nitrate, the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. It was isolated from the membranes as a large heterooligomeric complex of 760 kDa, containing two cytochrome c subunits of 56 and 18 kDa. This complex has nitrite and sulfite reductase activities of 685 micromol NH(4)(+)/min/mg and 1.0 micromol H(2)/min/mg. The enzyme was studied by UV-visible and electron paramagnetic resonance (EPR) spectroscopies. The overall redox behavior was determined through a visible redox titration. The data were analyzed with a set of four redox transitions, with an E(0)' of +160 mV (12% of total absorption), -5 mV (38% of total absorption), -110 mV (38% of total absorption) and -210 mV (12% of total absorption) at pH 7.6. The EPR spectra of oxidized and partially reduced NiR show a complex pattern, indicative of multiple heme-heme magnetic interactions. It was found that D. vulgaris Hildenborough is not capable of using nitrite as a terminal electron acceptor. These results indicate that in this organism the NiR is not involved in the dissimilative reduction of nitrite, as is the case with the other similar enzymes isolated so far. The possible role of this enzyme in the detoxification of nitrite and/or in the reduction of sulfite is discussed.
Collapse
Affiliation(s)
- I A Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Portugal.
| | | | | | | |
Collapse
|
35
|
Richardson DJ. Bacterial respiration: a flexible process for a changing environment. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 3):551-571. [PMID: 10746759 DOI: 10.1099/00221287-146-3-551] [Citation(s) in RCA: 359] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK1
| |
Collapse
|
36
|
Simple and Complex Iron-Sulfur Proteins in Sulfate Reducing Bacteria. ADVANCES IN INORGANIC CHEMISTRY 1999. [DOI: 10.1016/s0898-8838(08)60083-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|