1
|
Labarthe S, Plancade S, Raguideau S, Plaza Oñate F, Le Chatelier E, Leclerc M, Laroche B. Four functional profiles for fibre and mucin metabolism in the human gut microbiome. MICROBIOME 2023; 11:231. [PMID: 37858269 PMCID: PMC10588041 DOI: 10.1186/s40168-023-01667-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND With the emergence of metagenomic data, multiple links between the gut microbiome and the host health have been shown. Deciphering these complex interactions require evolved analysis methods focusing on the microbial ecosystem functions. Despite the fact that host or diet-derived fibres are the most abundant nutrients available in the gut, the presence of distinct functional traits regarding fibre and mucin hydrolysis, fermentation and hydrogenotrophic processes has never been investigated. RESULTS After manually selecting 91 KEGG orthologies and 33 glycoside hydrolases further aggregated in 101 functional descriptors representative of fibre and mucin degradation pathways in the gut microbiome, we used nonnegative matrix factorization to mine metagenomic datasets. Four distinct metabolic profiles were further identified on a training set of 1153 samples, thoroughly validated on a large database of 2571 unseen samples from 5 external metagenomic cohorts and confirmed with metatranscriptomic data. Profiles 1 and 2 are the main contributors to the fibre-degradation-related metagenome: they present contrasted involvement in fibre degradation and sugar metabolism and are differentially linked to dysbiosis, metabolic disease and inflammation. Profile 1 takes over Profile 2 in healthy samples, and unbalance of these profiles characterize dysbiotic samples. Furthermore, high fibre diet favours a healthy balance between profiles 1 and profile 2. Profile 3 takes over profile 2 during Crohn's disease, inducing functional reorientations towards unusual metabolism such as fucose and H2S degradation or propionate, acetone and butanediol production. Profile 4 gathers under-represented functions, like methanogenesis. Two taxonomic makes up of the profiles were investigated, using either the covariation of 203 prevalent genomes or metagenomic species, both providing consistent results in line with their functional characteristics. This taxonomic characterization showed that profiles 1 and 2 were respectively mainly composed of bacteria from the phyla Bacteroidetes and Firmicutes while profile 3 is representative of Proteobacteria and profile 4 of methanogens. CONCLUSIONS Integrating anaerobic microbiology knowledge with statistical learning can narrow down the metagenomic analysis to investigate functional profiles. Applying this approach to fibre degradation in the gut ended with 4 distinct functional profiles that can be easily monitored as markers of diet, dysbiosis, inflammation and disease. Video Abstract.
Collapse
Affiliation(s)
- Simon Labarthe
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France.
- Univ. Bordeaux, INRAE, BIOGECO, 33610, Cestas, France.
- Inria, INRAE, Pléiade, 33400, Talence, France.
| | - Sandra Plancade
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France
- UR875 MIAT, Université fédérale de Toulouse, INRAE, Castanet-Tolosan, France
| | - Sebastien Raguideau
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France
- Earlham Institute, Organisms and Ecosystems, NR4 7UZ, Norwich, UK
| | | | | | - Marion Leclerc
- Université Paris-Saclay, INRAE, Micalis, 78350, Jouy-en-Josas, France
- Pendulum Therapeutics, San Francisco, USA
| | - Beatrice Laroche
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France
- Inria, INRAE, Musca, 91120, Palaiseau, France
| |
Collapse
|
2
|
Laura M, Jo P. No acetogen is equal: Strongly different H 2 thresholds reflect diverse bioenergetics in acetogenic bacteria. Environ Microbiol 2023; 25:2032-2040. [PMID: 37209014 DOI: 10.1111/1462-2920.16429] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
Acetogens share the capacity to convert H2 and CO2 into acetate for energy conservation (ATP synthesis). This reaction is attractive for applications, such as gas fermentation and microbial electrosynthesis. Different H2 partial pressures prevail in these distinctive applications (low concentrations during microbial electrosynthesis [<40 Pa] vs. high concentrations with gas fermentation [>9%]). Strain selection thus requires understanding of how different acetogens perform under different H2 partial pressures. Here, we determined the H2 threshold (H2 partial pressure at which acetogenesis halts) for eight different acetogenic strains under comparable conditions. We found a three orders of magnitude difference between the lowest and highest H2 threshold (6 ± 2 Pa for Sporomusa ovata vs. 1990 ± 67 Pa for Clostridium autoethanogenum), while Acetobacterium strains had intermediate H2 thresholds. We used these H2 thresholds to estimate ATP gains, which ranged from 0.16 to 1.01 mol ATP per mol acetate (S. ovata vs. C. autoethanogenum). The experimental H2 thresholds thus suggest strong differences in the bioenergetics of acetogenic strains and possibly also in their growth yields and kinetics. We conclude that no acetogen is equal and that a good understanding of their differences is essential to select the most optimal strain for different biotechnological applications.
Collapse
Affiliation(s)
- Munoz Laura
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Philips Jo
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Choudhury PK, Jena R, Puniya AK, Tomar SK. Isolation and characterization of reductive acetogens from rumen fluid samples of Murrah buffaloes. 3 Biotech 2023; 13:265. [PMID: 37415727 PMCID: PMC10319699 DOI: 10.1007/s13205-023-03688-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
In the present study, attempts have been made to isolate reductive acetogens from the rumen fluid samples of Murrah buffaloes (Bubalus bubalis). Out of 32 rumen samples 51 isolates were isolated, and based on autotrophic growth for production of acetate and presence of formyltetrahydrofolate synthetase gene (FTHFS) 12 isolates were confirmed as reductive acetogens. Microscopic observations showed that ten isolates as Gram-positive rods (ACB28, ACB29, ACB66, ACB73, ACB81, ACB91, ACB133, ACB229, ACB52, ACB95) and two isolates as Gram-positive cocci (ACB19, ACB89). All isolates tested negative for catalase, oxidase, and gelatin liquefaction, whereas the production of H2S was detected for two (ACB52 and ACB95) of the above isolates. All these isolates showed autotrophic growth from H2 and CO2, and heterotrophic growth with different fermentable sugars, viz., d-glucose, D-fructose, and D-trehalose but failed to grow on salicin, raffinose, and l-rhamnose. Out of the isolates, two showed amylase activity (ACB28 and ACB95), five showed CMCase activity (ACB19, ACB28, ACB29, ACB73 and ACB91), three showed pectinase activity (ACB29, ACB52 and ACB89), whereas none of the isolates was found positive for avicellase and xylanase activity. Based on 16S rDNA gene sequence analysis, the isolates showed their phylogenetic relationship with maximum similarity up to 99% to different strains of earlier reported known acetogens of clostridia group including Clostridium sp. (6), Eubacterium limosum (1), Ruminococcus sp. (1) and Acetobacterium woodii (1) except one, i.e., Vagococcus fluvialis. The results indicate that reductive acetogens isolated from the rumen fluid samples of Murrah buffalos are both autotrophic and heterotrophic in nature and further investigations are required to exploit and explore their potential as an alternate hydrogen sink.
Collapse
Affiliation(s)
- Prasanta Kumar Choudhury
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001 India
- Department of Dairy Technology, School of Agricultural and Bioengineering, Centurion University of Technology and Management, Paralakhemundi, Odisha 761211 India
| | - Rajashree Jena
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001 India
- Department of Dairy Technology, School of Agricultural and Bioengineering, Centurion University of Technology and Management, Paralakhemundi, Odisha 761211 India
| | - Anil Kumar Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001 India
| | - Sudhir Kumar Tomar
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001 India
| |
Collapse
|
4
|
Yao H, Flanagan BM, Williams BA, Mikkelsen D, Gidley MJ. Lactate and buyrate proportions, methanogen growth and gas production during in vitro dietary fibre fermentation all depend on fibre concentration. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Smith NW, Shorten PR, Altermann E, Roy NC, McNabb WC. Examination of hydrogen cross-feeders using a colonic microbiota model. BMC Bioinformatics 2021; 22:3. [PMID: 33407079 PMCID: PMC7789523 DOI: 10.1186/s12859-020-03923-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
Background Hydrogen cross-feeding microbes form a functionally important subset of the human colonic microbiota. The three major hydrogenotrophic functional groups of the colon: sulphate-reducing bacteria (SRB), methanogens and reductive acetogens, have been linked to wide ranging impacts on host physiology, health and wellbeing. Results An existing mathematical model for microbial community growth and metabolism was combined with models for each of the three hydrogenotrophic functional groups. The model was further developed for application to the colonic environment via inclusion of responsive pH, host metabolite absorption and the inclusion of host mucins. Predictions of the model, using two existing metabolic parameter sets, were compared to experimental faecal culture datasets. Model accuracy varied between experiments and measured variables and was most successful in predicting the growth of high relative abundance functional groups, such as the Bacteroides, and short chain fatty acid (SCFA) production. Two versions of the colonic model were developed: one representing the colon with sequential compartments and one utilising a continuous spatial representation. When applied to the colonic environment, the model predicted pH dynamics within the ranges measured in vivo and SCFA ratios comparable to those in the literature. The continuous version of the model simulated relative abundances of microbial functional groups comparable to measured values, but predictions were sensitive to the metabolic parameter values used for each functional group. Sulphate availability was found to strongly influence hydrogenotroph activity in the continuous version of the model, correlating positively with SRB and sulphide concentration and negatively with methanogen concentration, but had no effect in the compartmentalised model version. Conclusions Although the model predictions compared well to only some experimental measurements, the important features of the colon environment included make it a novel and useful contribution to modelling the colonic microbiota.
Collapse
Affiliation(s)
- Nick W Smith
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand.,AgResearch, Ruakura Research Centre, Private Bag 3123, Hamilton, 3240, New Zealand
| | - Paul R Shorten
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand. .,AgResearch, Ruakura Research Centre, Private Bag 3123, Hamilton, 3240, New Zealand.
| | - Eric Altermann
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand.,AgResearch, Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nicole C Roy
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Department of Human Nutrition, University of Otago, Dunedin, New Zealand.,Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Warren C McNabb
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| |
Collapse
|
6
|
Singh A, Nylander JAA, Schnürer A, Bongcam-Rudloff E, Müller B. High-Throughput Sequencing and Unsupervised Analysis of Formyltetrahydrofolate Synthetase (FTHFS) Gene Amplicons to Estimate Acetogenic Community Structure. Front Microbiol 2020; 11:2066. [PMID: 32983047 PMCID: PMC7481360 DOI: 10.3389/fmicb.2020.02066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/05/2020] [Indexed: 11/17/2022] Open
Abstract
The formyltetrahydrofolate synthetase (FTHFS) gene is a molecular marker of choice to study the diversity of acetogenic communities. However, current analyses are limited due to lack of a high-throughput sequencing approach for FTHFS gene amplicons and a dedicated bioinformatics pipeline for data analysis, including taxonomic annotation and visualization of the sequence data. In the present study, we combined the barcode approach for multiplexed sequencing with unsupervised data analysis to visualize acetogenic community structure. We used samples from a biogas digester to develop proof-of-principle for our combined approach. We successfully generated high-throughput sequence data for the partial FTHFS gene and performed unsupervised data analysis using the novel bioinformatics pipeline “AcetoScan” presented in this study, which resulted in taxonomically annotated OTUs, phylogenetic tree, abundance plots and diversity indices. The results demonstrated that high-throughput sequencing can be used to sequence the FTHFS amplicons from a pool of samples, while the analysis pipeline AcetoScan can be reliably used to process the raw sequence data and visualize acetogenic community structure. The method and analysis pipeline described in this paper can assist in the identification and quantification of known or potentially new acetogens. The AcetoScan pipeline is freely available at https://github.com/abhijeetsingh1704/AcetoScan.
Collapse
Affiliation(s)
- Abhijeet Singh
- Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johan A A Nylander
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,National Bioinformatics Infrastructure Sweden, SciLifeLab, Uppsala, Sweden
| | - Anna Schnürer
- Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Erik Bongcam-Rudloff
- SLU-Global Bioinformatics Centre, Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bettina Müller
- Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
7
|
Smith NW, Shorten PR, Altermann E, Roy NC, McNabb WC. Competition for Hydrogen Prevents Coexistence of Human Gastrointestinal Hydrogenotrophs in Continuous Culture. Front Microbiol 2020; 11:1073. [PMID: 32547517 PMCID: PMC7272605 DOI: 10.3389/fmicb.2020.01073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/29/2020] [Indexed: 01/24/2023] Open
Abstract
Understanding the metabolic dynamics of the human gastrointestinal tract (GIT) microbiota is of growing importance as research continues to link the microbiome to host health status. Microbial strains that metabolize hydrogen have been associated with a variety of both positive and negative host nutritional and health outcomes, but limited data exists for their competition in the GIT. To enable greater insight into the behaviour of these microbes, a mathematical model was developed for the metabolism and growth of the three major hydrogenotrophic groups: sulphate-reducing bacteria (SRB), methanogens and reductive acetogens. In batch culture simulations with abundant sulphate and hydrogen, the SRB outcompeted the methanogen for hydrogen due to having a half-saturation constant 106 times lower than that of the methanogen. The acetogen, with a high model threshold for hydrogen uptake of around 70 mM, was the least competitive. Under high lactate and zero sulphate conditions, hydrogen exchange between the SRB and the methanogen was the dominant interaction. The methanogen grew at 70% the rate of the SRB, with negligible acetogen growth. In continuous culture simulations, both the SRB and the methanogen were washed out at dilution rates above 0.15 h−1 regardless of substrate availability, whereas the acetogen could survive under abundant hydrogen conditions. Specific combinations of conditions were required for survival of more than one hydrogenotroph in continuous culture, and survival of all three was not possible. The stringency of these requirements and the inability of the model to simulate survival of all three hydrogenotrophs in continuous culture demonstrates that factors outside of those modelled are vital to allow hydrogenotroph coexistence in the GIT.
Collapse
Affiliation(s)
- Nick W Smith
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,AgResearch, Ruakura Research Centre, Hamilton, New Zealand.,AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | - Paul R Shorten
- Riddet Institute, Massey University, Palmerston North, New Zealand.,AgResearch, Ruakura Research Centre, Hamilton, New Zealand
| | - Eric Altermann
- Riddet Institute, Massey University, Palmerston North, New Zealand.,AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | - Nicole C Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand.,AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Warren C McNabb
- Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| |
Collapse
|
8
|
Moens E, Bolca S, Van de Wiele T, Van Landschoot A, Goeman JL, Possemiers S, Verstraete W. Exploration of isoxanthohumol bioconversion from spent hops into 8-prenylnaringenin using resting cells of Eubacterium limosum. AMB Express 2020; 10:79. [PMID: 32333233 PMCID: PMC7182650 DOI: 10.1186/s13568-020-01015-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 11/10/2022] Open
Abstract
Hops is an almost unique source of the potent phytoestrogen 8-prenylnaringenin (8-PN). As hops contain only low levels of 8-PN, synthesis may be more attractive than extraction. A strain of the Gram-positive Eubacterium limosum was isolated previously for 8-PN production from more abundant precursor isoxanthohumol (IX) from hops. In this study, spent hops, an industrial side stream from the beer industry, was identified as interesting source of IX. Yet, hop-derived compounds are well-known antibacterial agents and the traces of a large variety of different compounds in spent hops interfered with growth and IX conversion. Critical factors to finally enable bacterial 8-PN production from spent hops, using a food and feed grade medium, were evaluated in this research. The use of bacterial resting cells and complex medium at a pH of 7.8-8 best fulfilled the requirements for 8-PN production and generated a solid basis for development of an economic process.
Collapse
Affiliation(s)
- Esther Moens
- ProDigest BVBA, Technol Pk 82, 9052, Ghent, Belgium
- Ugent, CMET, Coupure Links 653, 9000, Ghent, Belgium
| | - Selin Bolca
- ProDigest BVBA, Technol Pk 82, 9052, Ghent, Belgium
| | | | | | - Jan L Goeman
- Ugent, Dept Organic and Macromolecular Chemistry, Krijgslaan 281-S4, 9000, Ghent, Belgium
| | | | | |
Collapse
|
9
|
Mathematical modelling supports the existence of a threshold hydrogen concentration and media-dependent yields in the growth of a reductive acetogen. Bioprocess Biosyst Eng 2020; 43:885-894. [PMID: 31982985 PMCID: PMC7125072 DOI: 10.1007/s00449-020-02285-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
The bacterial production of acetate via reductive acetogenesis along the Wood–Ljungdahl metabolic pathway is an important source of this molecule in several environments, ranging from industrial bioreactors to the human gastrointestinal tract. Here, we contributed to the study of reductive acetogens by considering mathematical modelling techniques for the prediction of bacterial growth and acetate production. We found that the incorporation of a hydrogen uptake concentration threshold into the models improves their predictions and we calculated this threshold as 86.2 mM (95% confidence interval 6.1–132.6 mM). Monod kinetics and first-order kinetics models, with the inclusion of two candidate threshold terms or reversible Michaelis–Menten kinetics, were compared to experimental data and the optimal formulation for predicting both growth and metabolism was found. The models were then used to compare the efficacy of two growth media for acetogens. We found that the recently described general acetogen medium was superior to the DSMZ medium in terms of unbiased estimation of acetogen growth and investigated the contribution of yeast extract concentration to acetate production and bacterial growth in culture. The models and their predictions will be useful to those studying both industrially and environmentally relevant reductive acetogenesis and allow for straightforward adaptation to similar cases with different organisms.
Collapse
|
10
|
Philips J. Extracellular Electron Uptake by Acetogenic Bacteria: Does H 2 Consumption Favor the H 2 Evolution Reaction on a Cathode or Metallic Iron? Front Microbiol 2020; 10:2997. [PMID: 31998274 PMCID: PMC6966493 DOI: 10.3389/fmicb.2019.02997] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/11/2019] [Indexed: 12/30/2022] Open
Abstract
Some acetogenic bacteria are capable of using solid electron donors, such as a cathode or metallic iron [Fe(0)]. Acetogens using a cathode as electron donor are of interest for novel applications such as microbial electrosynthesis, while microorganisms using Fe(0) as electron donor cause detrimental microbial induced corrosion. The capacity to use solid electron donors strongly differs between acetogenic strains, which likely relates to their extracellular electron transfer (EET) mechanism. Different EET mechanisms have been proposed for acetogenic bacteria, including a direct mechanism and a H2 dependent indirect mechanism combined with extracellular hydrogenases catalyzing the H2 evolution reaction on the cathode or Fe(0) surface. Interestingly, low H2 partial pressures often prevail during acetogenesis with solid electron donors. Hence, an additional mechanism is here proposed: the maintenance of low H2 partial pressures by microbial H2 consumption, which thermodynamically favors the H2 evolution reaction on the cathode or Fe(0) surface. This work elaborates how the H2 partial pressure affects the H2 evolution onset potential and the H2 evolution rate on a cathode, as well as the free energy change of the anoxic corrosion reaction. In addition, the H2 consumption characteristics, i.e., H2 threshold (thermodynamic limit for H2 consumption) and H2 consumption kinetic parameters, of acetogenic bacteria are reviewed and evidence is discussed for strongly different H2 consumption characteristics. Different acetogenic strains are thus expected to maintain different H2 partial pressures on a cathode or Fe(0) surface, while those that maintain lower H2 partial pressures (lower H2 threshold, higher H2 affinity) more strongly increase the H2 evolution reaction. Consequently, I hypothesize that the different capacities of acetogenic bacteria to use solid electron donors are related to differences in their H2 consumption characteristics. The focus of this work is on acetogenic bacteria, but similar considerations are likely also relevant for other hydrogenotrophic microorganisms.
Collapse
Affiliation(s)
- Jo Philips
- Department of Engineering, Aarhus University, Aarhus, Denmark
| |
Collapse
|
11
|
Parmanand BA, Kellingray L, Le Gall G, Basit AW, Fairweather-Tait S, Narbad A. A decrease in iron availability to human gut microbiome reduces the growth of potentially pathogenic gut bacteria; an in vitro colonic fermentation study. J Nutr Biochem 2019; 67:20-27. [PMID: 30831460 PMCID: PMC6546957 DOI: 10.1016/j.jnutbio.2019.01.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 02/06/2023]
Abstract
Iron supplements are widely consumed; however most of the iron is not absorbed and enters the colon where potentially pathogenic bacteria can utilise it for growth. This study investigated the effect of iron availability on human gut microbial composition and function using an in vitro colonic fermentation model inoculated with faecal microbiota from healthy adult donors, as well as examining the effect of iron on the growth of individual gut bacteria. Batch fermenters were seeded with fresh faecal material and supplemented with the iron chelator, bathophenanthroline disulphonic acid (BPDS). Samples were analysed at regular intervals to assess impact on the gut bacterial communities. The growth of Escherichia coli and Salmonella typhimurium was significantly impaired when cultured independently in iron-deficient media. In contrast, depletion of iron did not affect the growth of the beneficial species, Lactobacillus rhamnosus, when cultured independently. Analysis of the microbiome composition via 16S-based metataxonomics indicated that under conditions of iron chelation, the relative abundance decreased for several taxa, including a 10% decrease in Escherichia and a 15% decrease in Bifidobacterium. Metabolomics analysis using 1 H-NMR indicated that the production of SCFAs was reduced under iron-limited conditions. These results support previous studies demonstrating the essentiality of iron for microbial growth and metabolism, but, in addition, they indicate that iron chelation changes the gut microbiota profile and influences human gut microbial homeostasis through both compositional and functional changes.
Collapse
Affiliation(s)
- Bhavika A Parmanand
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, NR4 7UA, UK; Faculty of Medicine and Health, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Lee Kellingray
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, NR4 7UA, UK
| | - Gwenaelle Le Gall
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, NR4 7UA, UK
| | - Abdul W Basit
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK; Intract Pharma, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | | | - Arjan Narbad
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, NR4 7UA, UK
| |
Collapse
|
12
|
Laverde Gomez JA, Mukhopadhya I, Duncan SH, Louis P, Shaw S, Collie‐Duguid E, Crost E, Juge N, Flint HJ. Formate cross-feeding and cooperative metabolic interactions revealed by transcriptomics in co-cultures of acetogenic and amylolytic human colonic bacteria. Environ Microbiol 2019; 21:259-271. [PMID: 30362296 PMCID: PMC6378601 DOI: 10.1111/1462-2920.14454] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/14/2018] [Accepted: 10/18/2018] [Indexed: 12/24/2022]
Abstract
Interspecies cross-feeding is a fundamental factor in anaerobic microbial communities. In the human colon, formate is produced by many bacterial species but is normally detected only at low concentrations. Ruminococcus bromii produces formate, ethanol and acetate in approximately equal molar proportions in pure culture on RUM-RS medium with 0.2% Novelose resistant starch (RS3) as energy source. Batch co-culturing on starch with the acetogen Blautia hydrogenotrophica however led to the disappearance of formate and increased levels of acetate, which is proposed to occur through the routing of formate via the Wood Ljungdahl pathway of B. hydrogenotrophica. We investigated these inter-species interactions further using RNAseq to examine gene expression in continuous co-cultures of R. bromii and B. hydrogenotrophica. Transcriptome analysis revealed upregulation of B. hydrogenotrophica genes involved in the Wood-Ljungdahl pathway and of a 10 gene cluster responsible for increased branched chain amino acid fermentation in the co-cultures. Cross-feeding between formate-producing species and acetogens may be a significant factor in short chain fatty acid formation in the colon contributing to high rates of acetate production. Transcriptome analysis also indicated competition for the vitamin thiamine and downregulation of dissimilatory sulfate reduction and key redox proteins in R. bromii in the co-cultures, thus demonstrating the wide-ranging consequences of inter-species interactions in this model system.
Collapse
Affiliation(s)
| | | | - Sylvia H. Duncan
- Gut Health GroupThe Rowett Institute, University of AberdeenAberdeenUK
| | - Petra Louis
- Gut Health GroupThe Rowett Institute, University of AberdeenAberdeenUK
| | - Sophie Shaw
- Centre for Genome Enabled Biology and MedicineUniversity of AberdeenOld AberdeenUK
| | - Elaina Collie‐Duguid
- Centre for Genome Enabled Biology and MedicineUniversity of AberdeenOld AberdeenUK
| | - Emmanuelle Crost
- The Gut Health and Food Safety Institute Strategic ProgrammeQuadram Institute BioscienceNorwichUK
| | - Nathalie Juge
- The Gut Health and Food Safety Institute Strategic ProgrammeQuadram Institute BioscienceNorwichUK
| | - Harry J. Flint
- Gut Health GroupThe Rowett Institute, University of AberdeenAberdeenUK
| |
Collapse
|
13
|
Abstract
Hydrogen plays a key role in many microbial metabolic pathways in the human gastrointestinal tract (GIT) that have an impact on human nutrition, health and wellbeing. Hydrogen is produced by many members of the GIT microbiota, and may be subsequently utilized by cross-feeding microbes for growth and in the production of larger molecules. Hydrogenotrophic microbes fall into three functional groups: sulfate-reducing bacteria, methanogenic archaea and acetogenic bacteria, which can convert hydrogen into hydrogen sulfide, methane and acetate, respectively. Despite different energy yields per molecule of hydrogen used between the functional groups, all three can coexist in the human GIT. The factors affecting the numerical balance of hydrogenotrophs in the GIT remain unconfirmed. There is increasing evidence linking both hydrogen sulfide and methane to GIT diseases such as irritable bowel syndrome, and strategies for the mitigation of such health problems through targeting of hydrogenotrophs constitute an important field for further investigation.
Collapse
Affiliation(s)
- Nick W. Smith
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand,AgResearch, Grasslands Research Centre, Palmerston North, New Zealand,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Paul R. Shorten
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand,Riddet Institute, Massey University, Palmerston North, New Zealand,CONTACT Paul R. Shorten AgResearch, Ruakura Research Centre, Private Bag 3123, Hamilton 3240, New Zealand
| | - Eric H. Altermann
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Nicole C. Roy
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand,Riddet Institute, Massey University, Palmerston North, New Zealand,High-Value Nutrition National Science Challenge, hosted by The University of Auckland, Auckland, New Zealand
| | - Warren C. McNabb
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
14
|
Modestra JA, Mohan SV. Microbial electrosynthesis of carboxylic acids through CO 2 reduction with selectively enriched biocatalyst: Microbial dynamics. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2017.05.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Effect of Dietary Oxalate on the Gut Microbiota of the Mammalian Herbivore Neotoma albigula. Appl Environ Microbiol 2016; 82:2669-2675. [PMID: 26896138 DOI: 10.1128/aem.00216-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/18/2016] [Indexed: 01/17/2023] Open
Abstract
Diet is one of the primary drivers that sculpts the form and function of the mammalian gut microbiota. However, the enormous taxonomic and metabolic diversity held within the gut microbiota makes it difficult to isolate specific diet-microbe interactions. The objective of the current study was to elucidate interactions between the gut microbiota of the mammalian herbivore Neotoma albigula and dietary oxalate, a plant secondary compound (PSC) degraded exclusively by the gut microbiota. We quantified oxalate degradation in N. albigula fed increasing amounts of oxalate over time and tracked the response of the fecal microbiota using high-throughput sequencing. The amount of oxalate degraded in vivo was linearly correlated with the amount of oxalate consumed. The addition of dietary oxalate was found to impact microbial species diversity by increasing the representation of certain taxa, some of which are known to be capable of degrading oxalate (e.g., Oxalobacter spp.). Furthermore, the relative abundances of 117 operational taxonomic units (OTU) exhibited a significant correlation with oxalate consumption. The results of this study indicate that dietary oxalate induces complex interactions within the gut microbiota that include an increase in the relative abundance of a community of bacteria that may contribute either directly or indirectly to oxalate degradation in mammalian herbivores.
Collapse
|
16
|
Patil SA, Arends JBA, Vanwonterghem I, van Meerbergen J, Guo K, Tyson GW, Rabaey K. Selective Enrichment Establishes a Stable Performing Community for Microbial Electrosynthesis of Acetate from CO₂. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:8833-8843. [PMID: 26079858 DOI: 10.1021/es506149d] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The advent of renewable energy conversion systems exacerbates the existing issue of intermittent excess power. Microbial electrosynthesis can use this power to capture CO2 and produce multicarbon compounds as a form of energy storage. As catalysts, microbial populations can be used, provided side reactions such as methanogenesis are avoided. Here a simple but effective approach is presented based on enrichment of a robust microbial community via several culture transfers with H2:CO2 conditions. This culture produced acetate at a concentration of 1.29 ± 0.15 g L(-1) (maximum up to 1.5 g L(-1); 25 mM) from CO2 at a fixed current of -5 Am(-2) in fed-batch bioelectrochemical reactors at high N2:CO2 flow rates. Continuous supply of reducing equivalents enabled acetate production at a rate of 19 ± 2 gm(-2)d(-1) (projected cathode area) in several independent experiments. This is a considerably high rate compared with other unmodified carbon-based cathodes. 58 ± 5% of the electrons was recovered in acetate, whereas 30 ± 10% of the electrons was recovered in H2 as a secondary product. The bioproduction was most likely H2 based; however, electrochemical, confocal microscopy, and community analyses of the cathodes suggested the possible involvement of the cathodic biofilm. Together, the enrichment approach and galvanostatic operation enabled instant start-up of the electrosynthesis process and reproducible acetate production profiles.
Collapse
Affiliation(s)
- Sunil A Patil
- †Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Jan B A Arends
- †Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | | | - Jarne van Meerbergen
- †Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Kun Guo
- †Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | | | - Korneel Rabaey
- †Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
17
|
Biological conversion of methane to liquid fuels: status and opportunities. Biotechnol Adv 2014; 32:1460-75. [PMID: 25281583 DOI: 10.1016/j.biotechadv.2014.09.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 09/01/2014] [Accepted: 09/24/2014] [Indexed: 12/21/2022]
Abstract
Methane is the main component of natural gas and biogas. As an abundant energy source, methane is crucial not only to meet current energy needs but also to achieve a sustainable energy future. Conversion of methane to liquid fuels provides energy-dense products and therefore reduces costs for storage, transportation, and distribution. Compared to thermochemical processes, biological conversion has advantages such as high conversion efficiency and using environmentally friendly processes. This paper is a comprehensive review of studies on three promising groups of microorganisms (methanotrophs, ammonia-oxidizing bacteria, and acetogens) that hold potential in converting methane to liquid fuels; their habitats, biochemical conversion mechanisms, performance in liquid fuels production, and genetic modification to enhance the conversion are also discussed. To date, methane-to-methanol conversion efficiencies (moles of methanol produced per mole methane consumed) of up to 80% have been reported. A number of issues that impede scale-up of this technology, such as mass transfer limitations of methane, inhibitory effects of H2S in biogas, usage of expensive chemicals as electron donors, and lack of native strains capable of converting methane to liquid fuels other than methanol, are discussed. Future perspectives and strategies in addressing these challenges are also discussed.
Collapse
|
18
|
Motelica-Wagenaar AM, Nauta A, van den Heuvel EGHM, Kleerebezem R. Flux analysis of the human proximal colon using anaerobic digestion model 1. Anaerobe 2014; 28:137-48. [PMID: 24880006 DOI: 10.1016/j.anaerobe.2014.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 04/30/2014] [Accepted: 05/19/2014] [Indexed: 02/07/2023]
Abstract
The colon can be regarded as an anaerobic digestive compartment within the gastro intestinal tract (GIT). An in silico model simulating the fluxes in the human proximal colon was developed on basis of the anaerobic digestion model 1 (ADM1), which is traditionally used to model waste conversion to biogas. Model calibration was conducted using data from in vitro fermentation of the proximal colon (TIM-2), and, amongst others, supplemented with the bio kinetics of prebiotic galactooligosaccharides (GOS) fermentation. The impact of water and solutes absorption by the host was also included. Hydrolysis constants of carbohydrates and proteins were estimated based on total short chain fatty acids (SCFA) and ammonia production in vitro. Model validation was established using an independent dataset of a different in vitro model: an in vitro three-stage continuous culture system. The in silico model was shown to provide quantitative insight in the microbial community structure in terms of functional groups, and the substrate and product fluxes between these groups as well as the host, as a function of the substrate composition, pH and the solids residence time (SRT). The model confirms the experimental observation that methanogens are washed out at low pH or low SRT-values. The in silico model is proposed as useful tool in the design of experimental setups for in vitro experiments by giving insight in fermentation processes in the proximal human colon.
Collapse
Affiliation(s)
- Anne Marieke Motelica-Wagenaar
- Delft University of Technology, Department of Biotechnology, Julianalaan 67, 2628BC Delft, The Netherlands; FrieslandCampina, Stationsplein 4, 3818 LE Amersfoort, The Netherlands.
| | - Arjen Nauta
- FrieslandCampina, Stationsplein 4, 3818 LE Amersfoort, The Netherlands.
| | - Ellen G H M van den Heuvel
- FrieslandCampina, Stationsplein 4, 3818 LE Amersfoort, The Netherlands; EMGO Institute for Health and Care Research, Department of Epidemiology and Biostatistics, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.
| | - Robbert Kleerebezem
- Delft University of Technology, Department of Biotechnology, Julianalaan 67, 2628BC Delft, The Netherlands.
| |
Collapse
|
19
|
Colonic methane production modifies gastrointestinal toxicity associated with adjuvant 5-fluorouracil chemotherapy for colorectal cancer. J Clin Gastroenterol 2013; 47:45-51. [PMID: 23090038 DOI: 10.1097/mcg.0b013e3182680201] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
GOALS To investigate the association of colonic methane, formed by methanogenic achaea, and pH with gastrointestinal symptoms during colorectal cancer chemotherapy. BACKGROUND Adjuvant 5-fluorouracil chemotherapy reduces recurrences in colorectal cancer, but causes severe gastrointestinal toxicity, partly related to disturbed intestinal microbiota. STUDY Resected colorectal cancer patients (n=143) were analyzed for colonic methanogenesis and pH before and during the 24 weeks of 5-fluorouracil chemotherapy and for gastrointestinal symptoms during chemotherapy. This study was performed within the setting of an intervention study on the effects of Lactobacillus on chemotherapy-related gastrointestinal toxicity. The site of resected cancer, resection type, stoma, chemotherapy regimen, hypolactasia, and Lactobacillus intervention were considered as possible confounding factors, and multivariate models were constructed. RESULTS Baseline methane producers had less frequent diarrhea (more than or equal to moderate) during chemotherapy than nonproducers [odds ratio (OR), 0.42; 95% confidence interval (CI), 0.20 to 0.88; P=0.022] and more frequent constipation (OR, 4.56; 95% CI, 2.01 to 10.32; P<0.001). Baseline fecal pH was also associated with symptoms during chemotherapy; higher the pH, the lower the risk of diarrhea (OR, 0.56; 95% CI, 0.31 to 1.02; P=0.058) and higher the risk of constipation (OR, 2.23; 95% CI, 1.35 to 3.68; P=0.002). In multivariate stepwise models, methanogenesis was a significant explaining factor with inverse association with diarrhea and positive association with constipation. Fecal pH, which was significantly associated with methane production, was no longer a significant explaining factor when methanogensis was included in the model. CONCLUSIONS Methane producer status has a role in determining whether patient experiences diarrhea or constipation during 5-fluorouracil therapy. This underscores the importance of intestinal microbiota in the development of intestinal toxicity during 5-fluorouracil therapy.
Collapse
|
20
|
Dostal A, Fehlbaum S, Chassard C, Zimmermann MB, Lacroix C. Low iron availability in continuous in vitro colonic fermentations induces strong dysbiosis of the child gut microbial consortium and a decrease in main metabolites. FEMS Microbiol Ecol 2013; 83:161-75. [PMID: 22845175 PMCID: PMC3511601 DOI: 10.1111/j.1574-6941.2012.01461.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/13/2012] [Accepted: 07/19/2012] [Indexed: 12/31/2022] Open
Abstract
Iron (Fe) deficiency affects an estimated 2 billion people worldwide, and Fe supplements are a common corrective strategy. The impact of Fe deficiency and Fe supplementation on the complex microbial community of the child gut was studied using in vitro colonic fermentation models inoculated with immobilized fecal microbiota. Chyme media (all Fe chelated by 2,2'-dipyridyl to 26.5 mg Fe L(-1) ) mimicking Fe deficiency and supplementation were continuously fermented. Fermentation effluent samples were analyzed daily on the microbial composition and metabolites by quantitative PCR, 16S rRNA gene 454-pyrosequencing, and HPLC. Low Fe conditions (1.56 mg Fe L(-1) ) significantly decreased acetate concentrations, and subsequent Fe supplementation (26.5 mg Fe L(-1) ) restored acetate production. High Fe following normal Fe conditions had no impact on the gut microbiota composition and metabolic activity. During very low Fe conditions (0.9 mg Fe L(-1) or Fe chelated by 2,2'-dipyridyl), a decrease in Roseburia spp./Eubacterium rectale, Clostridium Cluster IV members and Bacteroides spp. was observed, while Lactobacillus spp. and Enterobacteriaceae increased consistent with a decrease in butyrate (-84%) and propionate (-55%). The strong dysbiosis of the gut microbiota together with decrease in main gut microbiota metabolites observed with very low iron conditions could weaken the barrier effect of the microbiota and negatively impact gut health.
Collapse
Affiliation(s)
- Alexandra Dostal
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Sophie Fehlbaum
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Christophe Chassard
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Michael Bruce Zimmermann
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Rey FE, Faith JJ, Bain J, Muehlbauer MJ, Stevens RD, Newgard CB, Gordon JI. Dissecting the in vivo metabolic potential of two human gut acetogens. J Biol Chem 2010; 285:22082-90. [PMID: 20444704 PMCID: PMC2903421 DOI: 10.1074/jbc.m110.117713] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Fermenting microbial communities generate hydrogen; its removal through the production of acetate, methane, or hydrogen sulfide modulates the efficiency of energy extraction from available nutrients in many ecosystems. We noted that pathway components for acetogenesis are more abundantly and consistently represented in the gut microbiomes of monozygotic twins and their mothers than components for methanogenesis or sulfate reduction and subsequently analyzed the metabolic potential of two sequenced human gut acetogens, Blautia hydrogenotrophica and Marvinbryantia formatexigens in vitro and in the intestines of gnotobiotic mice harboring a prominent saccharolytic bacterium. To do so, we developed a generally applicable method for multiplex sequencing of expressed microbial mRNAs (microbial RNA-Seq) and, together with mass spectrometry of metabolites, showed that these organisms have distinct patterns of substrate utilization. B. hydrogenotrophica targets aliphatic and aromatic amino acids. It increases the efficiency of fermentation by consuming reducing equivalents, thereby maintaining a high NAD+/NADH ratio and boosting acetate production. In contrast, M. formatexigens consumes oligosaccharides, does not impact the redox state of the gut, and boosts the yield of succinate. These findings have strategic implications for those who wish to manipulate the hydrogen economy of gut microbial communities in ways that modulate energy harvest.
Collapse
Affiliation(s)
- Federico E Rey
- Center for Genome Sciences, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Acetogens utilize the acetyl-CoA Wood-Ljungdahl pathway as a terminal electron-accepting, energy-conserving, CO(2)-fixing process. The decades of research to resolve the enzymology of this pathway (1) preceded studies demonstrating that acetogens not only harbor a novel CO(2)-fixing pathway, but are also ecologically important, and (2) overshadowed the novel microbiological discoveries of acetogens and acetogenesis. The first acetogen to be isolated, Clostridium aceticum, was reported by Klaas Tammo Wieringa in 1936, but was subsequently lost. The second acetogen to be isolated, Clostridium thermoaceticum, was isolated by Francis Ephraim Fontaine and co-workers in 1942. C. thermoaceticum became the most extensively studied acetogen and was used to resolve the enzymology of the acetyl-CoA pathway in the laboratories of Harland Goff Wood and Lars Gerhard Ljungdahl. Although acetogenesis initially intrigued few scientists, this novel process fostered several scientific milestones, including the first (14)C-tracer studies in biology and the discovery that tungsten is a biologically active metal. The acetyl-CoA pathway is now recognized as a fundamental component of the global carbon cycle and essential to the metabolic potentials of many different prokaryotes. The acetyl-CoA pathway and variants thereof appear to be important to primary production in certain habitats and may have been the first autotrophic process on earth and important to the evolution of life. The purpose of this article is to (1) pay tribute to those who discovered acetogens and acetogenesis, and to those who resolved the acetyl-CoA pathway, and (2) highlight the ecology and physiology of acetogens within the framework of their scientific roots.
Collapse
Affiliation(s)
- Harold L Drake
- Department of Ecological Microbiology, University of Bayreuth, 95440 Bayreuth, Germany.
| | | | | |
Collapse
|
23
|
Liu Y, Whitman WB. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 2008; 1125:171-89. [PMID: 18378594 DOI: 10.1196/annals.1419.019] [Citation(s) in RCA: 647] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although of limited metabolic diversity, methanogenic archaea or methanogens possess great phylogenetic and ecological diversity. Only three types of methanogenic pathways are known: CO(2)-reduction, methyl-group reduction, and the aceticlastic reaction. Cultured methanogens are grouped into five orders based upon their phylogeny and phenotypic properties. In addition, uncultured methanogens that may represent new orders are present in many environments. The ecology of methanogens highlights their complex interactions with other anaerobes and the physical and chemical factors controlling their function.
Collapse
Affiliation(s)
- Yuchen Liu
- Department of Microbiology, University of Georgia, 541 Biological Sciences Building, Athens, GA 30605, USA
| | | |
Collapse
|
24
|
Cook KL, Rothrock MJ, Loughrin JH, Doerner KC. Characterization of skatole-producing microbial populations in enriched swine lagoon slurry. FEMS Microbiol Ecol 2007; 60:329-40. [PMID: 17374129 DOI: 10.1111/j.1574-6941.2007.00299.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Skatole is one of the most malodorous compounds produced from the anaerobic degradation of animal waste. Little is known about the biochemistry of skatole production, the phylogeny of skatole-producing microorganisms or the conditions that favor their growth. These deficiencies hamper attempts to reduce skatole production. Our goals were to enrich for skatole producers in swine lagoon slurry (SLS) and evaluate the resulting microbial community structure using denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene sequence analysis. Skatole producers were enriched by incubating dilutions of SLS with 100 muM indole-3-acetic acid (IAA). GC-MS was used to measure skatole production in the slurries after 0, 7 and 17 days' incubation. Based on most probable number analysis, skatole producers increased 100-fold in SLS samples supplemented with IAA. Based on DGGE fingerprint patterns from day 0, 7 and 17 treatments with high, mid or low levels of skatole production, changes in the SLS population occurred as skatole production increased. Changes in the bacterial community fingerprints were associated with an increase in the low-GC gram-positive and Bacteroides groups. Results from this study provides valuable new information concerning the organisms responsible for production of this odorant, a necessary first step towards controlling skatole production.
Collapse
|
25
|
Lange M, Westermann P, Ahring BK. Archaea in protozoa and metazoa. Appl Microbiol Biotechnol 2004; 66:465-74. [PMID: 15630514 DOI: 10.1007/s00253-004-1790-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 09/20/2004] [Accepted: 10/02/2004] [Indexed: 10/26/2022]
Abstract
The presence of Archaea is currently being explored in various environments, including extreme geographic positions and eukaryotic habitats. Methanogens are the dominating archaeal organisms found in most animals, from unicellular protozoa to humans. Many methanogens can contribute to the removal of hydrogen, thereby improving the efficiency of fermentation or the reductive capacity of energy-yielding reactions. They may also be involved in tissue damage in periodontal patients. Recent molecular studies demonstrated the presence of Archaea other than methanogens in some animals-but so far, not in humans. The roles of these microorganisms have not yet been established. In the present review, we present the state of the art regarding the archaeal microflora in animals.
Collapse
Affiliation(s)
- Marianne Lange
- BioCentrum, Technical University of Denmark, BioCentrum, Building 227, Lyngby, 2800, Denmark
| | | | | |
Collapse
|
26
|
Robert C, Del'Homme C, Bernalier-Donadille A. Interspecies H2 transfer in cellulose degradation between fibrolytic bacteria and H2-utilizing microorganisms from the human colon. FEMS Microbiol Lett 2001; 205:209-14. [PMID: 11750804 DOI: 10.1111/j.1574-6968.2001.tb10949.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Interspecies H2 transfer between two newly isolated fibrolytic strains (18P13 and 18P16) and H2-utilizing methanogen or acetogen from the human colon was investigated during in vitro cellulose degradation. Both H2-consuming microorganisms utilized efficiently H2 produced from cellulose fermentation by the fibrolytic species. H2 utilization by Methanobrevibacter smithii did not change the metabolism and the cellulolytic activity of strain 18P16 whereas it induced a metabolic shift in strain 18P13. However, this metabolic shift was not associated with enhancement of cellulose degradation. In contrast, an increase in cellulose breakdown was observed when strain 18P13 was cultivated with Ruminococcus hydrogenotrophicus. This stimulating effect could be attributed to both the autotrophic and the heterotrophic metabolism of the acetogen in the coculture.
Collapse
Affiliation(s)
- C Robert
- Laboratoire de Microbiologie, INRA, Centre de Recherches de Clermont-Ferrand/Theix, 63122, Saint Genès-Champanelle, France
| | | | | |
Collapse
|