1
|
Yin X, Zhou G, Wang H, Han D, Maeke M, Richter-Heitmann T, Wunder LC, Aromokeye DA, Zhu QZ, Nimzyk R, Elvert M, Friedrich MW. Unexpected carbon utilization activity of sulfate-reducing microorganisms in temperate and permanently cold marine sediments. THE ISME JOURNAL 2024; 18:wrad014. [PMID: 38365251 PMCID: PMC10811731 DOI: 10.1093/ismejo/wrad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 02/18/2024]
Abstract
Significant amounts of organic carbon in marine sediments are degraded, coupled with sulfate reduction. However, the actual carbon and energy sources used in situ have not been assigned to each group of diverse sulfate-reducing microorganisms (SRM) owing to the microbial and environmental complexity in sediments. Here, we probed microbial activity in temperate and permanently cold marine sediments by using potential SRM substrates, organic fermentation products at very low concentrations (15-30 μM), with RNA-based stable isotope probing. Unexpectedly, SRM were involved only to a minor degree in organic fermentation product mineralization, whereas metal-reducing microbes were dominant. Contrastingly, distinct SRM strongly assimilated 13C-DIC (dissolved inorganic carbon) with H2 as the electron donor. Our study suggests that canonical SRM prefer autotrophic lifestyle, with hydrogen as the electron donor, while metal-reducing microorganisms are involved in heterotrophic organic matter turnover, and thus regulate carbon fluxes in an unexpected way in marine sediments.
Collapse
Affiliation(s)
- Xiuran Yin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 58 Renmin Avenue, Haikou 570228, China
- Faculty of Biology/Chemistry, University of Bremen, Leobener Strasse 3, Bremen D-28359, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, Bremen D-28359, Germany
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, Bremen D-28359, Germany
| | - Guowei Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 58 Renmin Avenue, Haikou 570228, China
- School of Resources and Environmental Engineering, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, China
| | - Haihua Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 58 Renmin Avenue, Haikou 570228, China
- Faculty of Biology/Chemistry, University of Bremen, Leobener Strasse 3, Bremen D-28359, Germany
- College of Urban and Environmental Sciences, Peking University, No. 5 Yiheyuan Road, Beijing 100871, China
| | - Dukki Han
- Department of Marine Bioscience, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung-si 25457, Republic of Korea
| | - Mara Maeke
- Faculty of Biology/Chemistry, University of Bremen, Leobener Strasse 3, Bremen D-28359, Germany
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, Bremen D-28359, Germany
| | - Tim Richter-Heitmann
- Faculty of Biology/Chemistry, University of Bremen, Leobener Strasse 3, Bremen D-28359, Germany
| | - Lea C Wunder
- Faculty of Biology/Chemistry, University of Bremen, Leobener Strasse 3, Bremen D-28359, Germany
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, Bremen D-28359, Germany
| | - David A Aromokeye
- Faculty of Biology/Chemistry, University of Bremen, Leobener Strasse 3, Bremen D-28359, Germany
| | - Qing-Zeng Zhu
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, Bremen D-28359, Germany
| | - Rolf Nimzyk
- Faculty of Biology/Chemistry, University of Bremen, Leobener Strasse 3, Bremen D-28359, Germany
| | - Marcus Elvert
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, Bremen D-28359, Germany
- Faculty of Geosciences, University of Bremen, Klagenfurter Strasse 2-4, Bremen D-28359, Germany
| | - Michael W Friedrich
- Faculty of Biology/Chemistry, University of Bremen, Leobener Strasse 3, Bremen D-28359, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, Bremen D-28359, Germany
| |
Collapse
|
2
|
Payne N, Kpebe A, Guendon C, Baffert C, Maillot M, Haurogné T, Tranchida F, Brugna M, Shintu L. NMR-based metabolomic analysis of the physiological role of the electron-bifurcating FeFe-hydrogenase Hnd in Solidesulfovibrio fructosivorans under pyruvate fermentation. Microbiol Res 2023; 268:127279. [PMID: 36592576 DOI: 10.1016/j.micres.2022.127279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Solidesulfovibrio fructosivorans (formely Desulfovibrio fructosovorans), an anaerobic sulfate-reducing bacterium, possesses six gene clusters encoding six hydrogenases catalyzing the reversible oxidation of hydrogen gas (H2) into protons and electrons. One of these, named Hnd, was demonstrated to be an electron-bifurcating hydrogenase Hnd (Kpebe et al., 2018). It couples the exergonic reduction of NAD+ to the endergonic reduction of a ferredoxin with electrons derived from H2 and whose function has been recently shown to be involved in ethanol production under pyruvate fermentation (Payne 2022). To understand further the physiological role of Hnd in S. fructosivorans, we compared the mutant deleted of part of the hnd gene with the wild-type strain grown on pyruvate without sulfate using NMR-based metabolomics. Our results confirm that Hnd is profoundly involved in ethanol metabolism, but also indirectly intervenes in global carbon metabolism and additional metabolic processes such as the biosynthesis of branched-chain amino acids. We also highlight the metabolic reprogramming induced by the deletion of hndD that leads to the upregulation of several NADP-dependent pathways.
Collapse
Affiliation(s)
- Natalie Payne
- Aix Marseille Univ, CNRS, BIP, Marseille, France; Aix Marseille Univ, CNRS, Centrale Marseille, ISM2, Marseille, France
| | | | | | | | | | | | - Fabrice Tranchida
- Aix Marseille Univ, CNRS, Centrale Marseille, ISM2, Marseille, France
| | | | - Laetitia Shintu
- Aix Marseille Univ, CNRS, Centrale Marseille, ISM2, Marseille, France.
| |
Collapse
|
3
|
Payne N, Kpebe A, Guendon C, Baffert C, Ros J, Lebrun R, Denis Y, Shintu L, Brugna M. The electron-bifurcating FeFe-hydrogenase Hnd is involved in ethanol metabolism in Desulfovibrio fructosovorans grown on pyruvate. Mol Microbiol 2022; 117:907-920. [PMID: 35066935 DOI: 10.1111/mmi.14881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 11/28/2022]
Abstract
Desulfovibrio fructosovorans, a sulfate-reducing bacterium, possesses six gene clusters encoding six hydrogenases catalyzing the reversible oxidation of H2 into protons and electrons. Among them, Hnd is an electron-bifurcating hydrogenase, coupling the exergonic reduction of NAD+ to the endergonic reduction of a ferredoxin with electrons derived from H2 . It was previously hypothesized that its biological function involves the production of NADPH necessary for biosynthetic purposes. However, it was subsequently demonstrated that Hnd is instead a NAD+ -reducing enzyme, thus its specific function has yet to be established. To understand the physiological role of Hnd in D. fructosovorans, we compared the hnd deletion mutant with the wild-type strain grown on pyruvate. Growth, metabolites production and comsumption, and gene expression were compared under three different growth conditions. Our results indicate that hnd is strongly regulated at the transcriptional level and that its deletion has a drastic effect on the expression of genes for two enzymes, an aldehyde ferredoxin oxidoreductase and an alcohol dehydrogenase. We demonstrated here that Hnd is involved in ethanol metabolism when bacteria grow fermentatively and proposed that Hnd might oxidize part of the H2 produced during fermentation generating both NADH and reduced ferredoxin for ethanol production via its electron bifurcation mechanism.
Collapse
Affiliation(s)
| | | | | | | | - Julien Ros
- CNRS, Aix Marseille Univ, BIP, Marseille, France
| | - Régine Lebrun
- CNRS, Aix Marseille Univ, Plate-forme Protéomique de l'IMM, FR 3479, Marseille Protéomique (MaP), Marseille, France
| | - Yann Denis
- CNRS, Aix Marseille Univ, Plate-forme Transcriptomique, Marseille, France
| | - Laetitia Shintu
- CNRS, Aix Marseille Univ, Centrale Marseille, ISM2, Marseille, France
| | | |
Collapse
|
4
|
Gomez-Bolivar J, Mikheenko IP, Macaskie LE, Merroun ML. Characterization of Palladium Nanoparticles Produced by Healthy and Microwave-Injured Cells of Desulfovibrio desulfuricans and Escherichia coli. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E857. [PMID: 31195655 PMCID: PMC6630224 DOI: 10.3390/nano9060857] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 11/23/2022]
Abstract
Numerous studies have focused on the bacterial synthesis of palladium nanoparticles (bio-Pd NPs), via uptake of Pd (II) ions and their enzymatically-mediated reduction to Pd (0). Cells of Desulfovibrio desulfuricans (obligate anaerobe) and Escherichia coli (facultative anaerobe, grown anaerobically) were exposed to low-dose radiofrequency (RF) radiation(microwave (MW) energy) and the biosynthesized Pd NPs were compared. Resting cells were exposed to microwave energy before Pd (II)-challenge. MW-injured Pd (II)-treated cells (and non MW-treated controls) were contacted with H2 to promote Pd(II) reduction. By using scanning transmission electron microscopy (STEM) associated with a high-angle annular dark field (HAADF) detector and energy dispersive X-ray (EDX) spectrometry, the respective Pd NPs were compared with respect to their mean sizes, size distribution, location, composition, and structure. Differences were observed following MWinjury prior to Pd(II) exposure versus uninjured controls. With D. desulfuricans the bio-Pd NPs formed post-injury showed two NP populations with different sizes and morphologies. The first, mainly periplasmically-located, showed polycrystalline Pd nano-branches with different crystal orientations and sizes ranging between 20 and 30 nm. The second NPpopulation, mainly located intracellularly, comprised single crystals with sizes between 1 and 5 nm. Bio-Pd NPs were produced mainly intracellularly by injured cells of E. coli and comprised single crystals with a size distribution between 1 and 3 nm. The polydispersity index was reduced in the bio-Pd made by injured cells of E. coli and D. desulfuricans to 32% and 39%, respectively, of the values of uninjured controls, indicating an increase in NP homogeneity of 30-40% as a result of the prior MWinjury. The observations are discussed with respect to the different locations of Pd(II)-reducing hydrogenases in the two organisms and with respect to potential implications for the catalytic activity of the produced NPs following injury-associated altered NP patterning.
Collapse
Affiliation(s)
- Jaime Gomez-Bolivar
- Department of Microbiology, Faculty of Sciences, University of Granada, Campus Fuentenueva, 18071 Granada, Spain.
| | - Iryna P Mikheenko
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Lynne E Macaskie
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Mohamed L Merroun
- Department of Microbiology, Faculty of Sciences, University of Granada, Campus Fuentenueva, 18071 Granada, Spain.
| |
Collapse
|
5
|
Baffert C, Kpebe A, Avilan L, Brugna M. Hydrogenases and H 2 metabolism in sulfate-reducing bacteria of the Desulfovibrio genus. Adv Microb Physiol 2019; 74:143-189. [PMID: 31126530 DOI: 10.1016/bs.ampbs.2019.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hydrogen metabolism plays a central role in sulfate-reducing bacteria of the Desulfovibrio genus and is based on hydrogenases that catalyze the reversible conversion of protons into dihydrogen. These metabolically versatile microorganisms possess a complex hydrogenase system composed of several enzymes of both [FeFe]- and [NiFe]-type that can vary considerably from one Desulfovibrio species to another. This review covers the molecular and physiological aspects of hydrogenases and H2 metabolism in Desulfovibrio but focuses particularly on our model bacterium Desulfovibrio fructosovorans. The search of hydrogenase genes in more than 30 sequenced genomes provides an overview of the distribution of these enzymes in Desulfovibrio. Our discussion will consider the significance of the involvement of electron-bifurcation in H2 metabolism.
Collapse
Affiliation(s)
- Carole Baffert
- Aix-Marseille University, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Arlette Kpebe
- Aix-Marseille University, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Luisana Avilan
- Aix-Marseille University, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Myriam Brugna
- Aix-Marseille University, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| |
Collapse
|
6
|
Kpebe A, Benvenuti M, Guendon C, Rebai A, Fernandez V, Le Laz S, Etienne E, Guigliarelli B, García-Molina G, de Lacey AL, Baffert C, Brugna M. A new mechanistic model for an O 2-protected electron-bifurcating hydrogenase, Hnd from Desulfovibrio fructosovorans. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1302-1312. [PMID: 30463674 DOI: 10.1016/j.bbabio.2018.09.364] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/22/2018] [Accepted: 09/16/2018] [Indexed: 10/28/2022]
Abstract
The genome of the sulfate-reducing and anaerobic bacterium Desulfovibrio fructosovorans encodes different hydrogenases. Among them is Hnd, a tetrameric cytoplasmic [FeFe] hydrogenase that has previously been described as an NADP-specific enzyme (Malki et al., 1995). In this study, we purified and characterized a recombinant Strep-tagged form of Hnd and demonstrated that it is an electron-bifurcating enzyme. Flavin-based electron-bifurcation is a mechanism that couples an exergonic redox reaction to an endergonic one allowing energy conservation in anaerobic microorganisms. One of the three ferredoxins of the bacterium, that was named FdxB, was also purified and characterized. It contains a low-potential (Em = -450 mV) [4Fe4S] cluster. We found that Hnd was not able to reduce NADP+, and that it catalyzes the simultaneous reduction of FdxB and NAD+. Moreover, Hnd is the first electron-bifurcating hydrogenase that retains activity when purified aerobically due to formation of an inactive state of its catalytic site protecting against O2 damage (Hinact). Hnd is highly active with the artificial redox partner (methyl viologen) and can perform the electron-bifurcation reaction to oxidize H2 with a specific activity of 10 μmol of NADH/min/mg of enzyme. Surprisingly, the ratio between NADH and reduced FdxB varies over the reaction with a decreasing amount of FdxB reduced per NADH produced, indicating a more complex mechanism than previously described. We proposed a new mechanistic model in which the ferredoxin is recycled at the hydrogenase catalytic subunit.
Collapse
Affiliation(s)
- Arlette Kpebe
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 09, France.
| | - Martino Benvenuti
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 09, France.
| | - Chloé Guendon
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 09, France.
| | - Amani Rebai
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 09, France
| | - Victoria Fernandez
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 09, France
| | - Sébastien Le Laz
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 09, France
| | - Emilien Etienne
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 09, France.
| | - Bruno Guigliarelli
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 09, France.
| | | | - Antonio L de Lacey
- Instituto de Catálisis y Petroleoquímica, CSIC, c/ Marie Curie 2, Madrid, Spain.
| | - Carole Baffert
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 09, France.
| | - Myriam Brugna
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 09, France.
| |
Collapse
|
7
|
Omajali JB, Mikheenko IP, Merroun ML, Wood J, Macaskie LE. Characterization of intracellular palladium nanoparticles synthesized by Desulfovibrio desulfuricans and Bacillus benzeovorans. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2015; 17:264. [PMID: 27004043 PMCID: PMC4779138 DOI: 10.1007/s11051-015-3067-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/03/2015] [Indexed: 05/24/2023]
Abstract
Early studies have focused on the synthesis of palladium nanoparticles within the periplasmic layer or on the outer membrane of Desulfovibrio desulfuricans and on the S-layer protein of Bacillus sphaericus. However, it has remained unclear whether the synthesis of palladium nanoparticles also takes place in the bacterial cell cytoplasm. This study reports the use of high-resolution scanning transmission electron microscopy with a high-angle annular dark field detector and energy dispersive X-ray spectrometry attachment to investigate the intracellular synthesis of palladium nanoparticles (Pd NPs). We show the intracellular synthesis of Pd NPs within cells of two anaerobic strains of D. desulfuricans and an aerobic strain of B. benzeovorans using hydrogen and formate as electron donors. The Pd nanoparticles were small and largely monodispersed, between 0.2 and 8 nm, occasionally from 9 to 12 nm with occasional larger nanoparticles. With D. desulfuricans NCIMB 8307 (but not D. desulfuricans NCIMB 8326) and with B. benzeovorans NCIMB 12555, the NPs were larger when made at the expense of formate, co-localizing with phosphate in the latter, and were crystalline, but were amorphous when made with H2, with no phosphorus association. The intracellular Pd nanoparticles were mainly icosahedrons with surfaces comprising {111} facets and about 5 % distortion when compared with that of bulk palladium. The particles were more concentrated in the cell cytoplasm than the cell wall, outer membrane, or periplasm. We provide new evidence for synthesis of palladium nanoparticles within the cytoplasm of bacteria, which were confirmed to maintain cellular integrity during this synthesis.
Collapse
Affiliation(s)
- Jacob B. Omajali
- />Unit of Functional Bionanomaterials, School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Iryna P. Mikheenko
- />Unit of Functional Bionanomaterials, School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Mohamed L. Merroun
- />Department of Microbiology, Faculty of Sciences, University of Granada, Campus Fuentenueva, 18071 Granada, Spain
| | - Joseph Wood
- />School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Lynne E. Macaskie
- />Unit of Functional Bionanomaterials, School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| |
Collapse
|
8
|
Mikheenko IP, Rousset M, Dementin S, Macaskie LE. Bioaccumulation of palladium by Desulfovibrio fructosivorans wild-type and hydrogenase-deficient strains. Appl Environ Microbiol 2008; 74:6144-6. [PMID: 18689514 PMCID: PMC2565964 DOI: 10.1128/aem.02538-07] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2007] [Accepted: 08/01/2008] [Indexed: 11/20/2022] Open
Abstract
Wild-type Desulfovibrio fructosivorans and three hydrogenase-negative mutants reduced Pd(II) to Pd(0). The location of Pd(0) nanoparticles on the cytoplasmic membrane of the mutant retaining only cytoplasmic membrane-bound hydrogenase was strong evidence for the role of hydrogenases in Pd(0) deposition. Hydrogenase activity was retained at acidic pH, shown previously to favor Pd(0) deposition.
Collapse
Affiliation(s)
- I P Mikheenko
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, England, United Kingdom
| | | | | | | |
Collapse
|
9
|
Nouailler M, Morelli X, Bornet O, Chetrit B, Dermoun Z, Guerlesquin F. Solution structure of HndAc: a thioredoxin-like domain involved in the NADP-reducing hydrogenase complex. Protein Sci 2006; 15:1369-78. [PMID: 16731971 PMCID: PMC2242533 DOI: 10.1110/ps.051916606] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The NADP-reducing hydrogenase complex from Desulfovibrio fructosovorans is a heterotetramer encoded by the hndABCD operon. Sequence analysis indicates that the HndC subunit (52 kDa) corresponds to the NADP-reducing unit, and the HndD subunit (63.5 kDa) is homologous to Clostridium pasteurianum hydrogenase. The role of HndA and HndB subunits (18.8 kDa and 13.8 kDa, respectively) in the complex remains unknown. The HndA subunit belongs to the [2Fe-2S] ferredoxin family typified by C. pasteurianum ferredoxin. HndA is organized into two independent structural domains, and we report in the present work the NMR structure of its C-terminal domain, HndAc. HndAc has a thioredoxin-like fold consisting in four beta-strands and two relatively long helices. The [2Fe-2S] cluster is located near the surface of the protein and bound to four cysteine residues particularly well conserved in this class of proteins. Electron exchange between the HndD N-terminal [2Fe-2S] domain (HndDN) and HndAc has been previously evidenced, and in the present studies we have mapped the binding site of the HndDN domain on HndAc. A structural analysis of HndB indicates that it is a FeS subunit with 41% similarity with HndAc and it contains a possible thioredoxin-like fold. Our data let us propose that HndAc and HndB can form a heterodimeric intermediate in the electron transfer between the hydrogenase (HndD) active site and the NADP reduction site in HndC.
Collapse
Affiliation(s)
- Matthieu Nouailler
- Unité de Bioénergétique et Ingénierie des Protéines, IBSM-CNRS, Marseille Cedex 20, France
| | | | | | | | | | | |
Collapse
|
10
|
Coppi MV. The hydrogenases of Geobacter sulfurreducens: a comparative genomic perspective. MICROBIOLOGY-SGM 2005; 151:1239-1254. [PMID: 15817791 DOI: 10.1099/mic.0.27535-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The hydrogenase content of the genome of Geobacter sulfurreducens, a member of the family Geobacteraceae within the delta-subdivision of the Proteobacteria, was examined and found to be distinct from that of Desulfovibrio species, another family of delta-Proteobacteria on which extensive research concerning hydrogen metabolism has been conducted. Four [NiFe]-hydrogenases are encoded in the G. sulfurreducens genome: two periplasmically oriented, membrane-bound hydrogenases, Hya and Hyb, and two cytoplasmic hydrogenases, Mvh and Hox. None of these [NiFe]-hydrogenases has a counterpart in Desulfovibrio species. Furthermore, the large and small subunits of Mvh and Hox appear to be related to archaeal and cyanobacterial hydrogenases, respectively. Clusters encoding [Fe]-hydrogenases and periplasmic [NiFeSe]-hydrogenases, which are commonly found in the genomes of Desulfovibrio species, are not present in the genome of G. sulfurreducens. Hydrogen-evolving Ech hydrogenases, which are present in the genomes of at least two Desulfovibrio species, were also absent from the G. sulfurreducens genome, despite the fact that G. sulfurreducens is capable of hydrogen production. Instead, the G. sulfurreducens genome contained a cluster encoding a multimeric Ech hydrogenase related (Ehr) complex that was similar in content to operons encoding Ech hydrogenases, but did not appear to encode a hydrogenase. Phylogenetic analysis revealed that the G. sulfurreducens ehr cluster is part of a family of related clusters found in both the Archaea and Bacteria.
Collapse
Affiliation(s)
- Maddalena V Coppi
- Department of Microbiology, 203N Morrill Science Center IVN, University of Massachusetts-Amherst, Amherst, MA 01003, USA
| |
Collapse
|
11
|
Coppi MV, O'Neil RA, Lovley DR. Identification of an uptake hydrogenase required for hydrogen-dependent reduction of Fe(III) and other electron acceptors by Geobacter sulfurreducens. J Bacteriol 2004; 186:3022-8. [PMID: 15126463 PMCID: PMC400607 DOI: 10.1128/jb.186.10.3022-3028.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Geobacter sulfurreducens, a representative of the family Geobacteraceae that predominates in Fe(III)-reducing subsurface environments, can grow by coupling the oxidation of hydrogen to the reduction of a variety of electron acceptors, including Fe(III), fumarate, and quinones. An examination of the G. sulfurreducens genome revealed two operons, hya and hyb, which appeared to encode periplasmically oriented respiratory uptake hydrogenases. In order to assess the roles of these two enzymes in hydrogen-dependent growth, Hya- and Hyb-deficient mutants were generated by gene replacement. Hyb was found to be required for hydrogen-dependent reduction of Fe(III), anthraquinone-2,6-disulfonate, and fumarate by resting cell suspensions and to be essential for growth with hydrogen and these three electron acceptors. Hya, in contrast, was not. These findings suggest that Hyb is an essential respiratory hydrogenase in G. sulfurreducens.
Collapse
Affiliation(s)
- Maddalena V Coppi
- Department of Microbiology, University of Massachusetts at Amherst, Amherst, Massachusetts 01003, USA.
| | | | | |
Collapse
|
12
|
Casalot L, Valette O, De Luca G, Dermoun Z, Rousset M, de Philip P. Construction and physiological studies of hydrogenase depleted mutants of Desulfovibrio fructosovorans. FEMS Microbiol Lett 2002; 214:107-12. [PMID: 12204380 DOI: 10.1111/j.1574-6968.2002.tb11332.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Desulfovibrio fructosovorans possesses two periplasmic hydrogenases (a nickel-iron and an iron hydrogenase) and a cytoplasmic NADP-dependent hydrogenase. The hydAB genes encoding the periplasmic iron hydrogenase were replaced, in the wild-type strain as well as in single mutants depleted of one of the other two hydrogenases, by the acc1 gene encoding resistance to gentamycin. Molecular characterization and remaining activity measurements of the resulting single and double mutants were performed. All mutated strains exhibited similar growth when H(2) was the electron donor but they grew differently on fructose, lactate or pyruvate as electron donors. Our results indicate that the loss of one enzyme might be compensated by another even though hydrogenases have different localization in the cells.
Collapse
Affiliation(s)
- Laurence Casalot
- Laboratoire de Microbiologie, IRD, ESIL, Case 925, F-13288 Marseille Cedex 09, France
| | | | | | | | | | | |
Collapse
|
13
|
Casalot L, De Luca G, Dermoun Z, Rousset M, de Philip P. Evidence for a fourth hydrogenase in Desulfovibrio fructosovorans. J Bacteriol 2002; 184:853-6. [PMID: 11790758 PMCID: PMC139505 DOI: 10.1128/jb.184.3.853-856.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A strain devoid of the three hydrogenases characterized for Desulfovibrio fructosovorans was constructed using marker exchange mutagenesis. As expected, the H(2)-dependent methyl viologen reduction activity of the strain was null, but physiological studies showed no striking differences between the mutated and wild-type strains. The H(+)-D(2) exchange activity measured in the mutated strain indicates the presence of a fourth hydrogenase in D. fructosovorans.
Collapse
Affiliation(s)
- Laurence Casalot
- Laboratoire de Bioénergétique et Ingénierie des Protéines, UPR 9036-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 09, France
| | | | | | | | | |
Collapse
|
14
|
De Luca G, de Philip P, Dermoun Z, Rousset M, Verméglio A. Reduction of technetium(VII) by Desulfovibrio fructosovorans is mediated by the nickel-iron hydrogenase. Appl Environ Microbiol 2001; 67:4583-7. [PMID: 11571159 PMCID: PMC93206 DOI: 10.1128/aem.67.10.4583-4587.2001] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resting cells of the sulfate-reducing bacterium Desulfovibrio fructosovorans grown in the absence of sulfate had a very high Tc(VII)-reducing activity, which led to the formation of an insoluble black precipitate. The involvement of a periplasmic hydrogenase in Tc(VII) reduction was indicated (i) by the requirement for hydrogen as an electron donor, (ii) by the tolerance of this activity to oxygen, and (iii) by the inhibition of this activity by Cu(II). Moreover, a mutant carrying a deletion in the nickel-iron hydrogenase operon showed a dramatic decrease in the rate of Tc(VII) reduction. The restoration of Tc(VII) reduction by complementation of this mutation with nickel-iron hydrogenase genes demonstrated the specific involvement of the periplasmic nickel-iron hydrogenase in the mechanism in vivo. The Tc(VII)-reducing activity was also observed with cell extracts in the presence of hydrogen. Under these conditions, Tc(VII) was reduced enzymatically to soluble Tc(V) or precipitated to an insoluble black precipitate, depending on the chemical nature of the buffer used. The purified nickel-iron hydrogenase performed Tc(VII) reduction and precipitation at high rates. These series of genetic and biochemical approaches demonstrated that the periplasmic nickel-iron hydrogenase of sulfate-reducing bacteria functions as a Tc(VII) reductase. The role of cytochrome c(3) in the mechanism is also discussed.
Collapse
Affiliation(s)
- G De Luca
- CEA Cadarache, DSV/DEVM/Laboratoire de Bioénergétique Cellulaire, 13108 Saint Paul-Lez-Durance, France
| | | | | | | | | |
Collapse
|
15
|
Verhagen MF, O'Rourke TW, Menon AL, Adams MW. Heterologous expression and properties of the gamma-subunit of the Fe-only hydrogenase from Thermotoga maritima. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1505:209-19. [PMID: 11334785 DOI: 10.1016/s0005-2728(01)00166-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thermotoga maritima is a hyperthermophilic bacterium that contains a complex, heterotrimeric (alpha(beta)gamma) Fe-only hydrogenase. Sequence analysis indicates that the gene encoding the smallest subunit (gamma), hydC, contains a predicted iron-sulfur cluster binding motif. However, characterization of the native gamma-subunit has been hampered by interference from and the inability to separate intact gamma-subunit from the other two subunits (alpha and beta). To investigate the function and properties of the isolated gamma-subunit, the gene encoding HydG was expressed in Escherichia coli. Two forms of the recombinant protein were obtained with molecular masses of 10 and 18 kDa, respectively. Both contained a single [2Fe-2S] cluster based on metal analysis, EPR and UV-visible spectroscopy. NH2-terminal sequencing revealed that the 10 kDa protein is a truncated form of the intact gamma-subunit and lacks the first 65 amino acid residues. The midpoint potential of the 18 kDa form was -356 mV at pH 7.0 and 25 degrees C, as measured by direct electrochemistry, and was pH dependent with a pK(ox) of 7.5 and a pK(red) of 7.7. The oxidized, recombinant gamma-subunit was stable at 80 degrees C under anaerobic conditions with a half-life greater than 24 h, as judged by the UV-visible spectrum of the [2Fe-2S] cluster. In the presence of air the protein was less stable and denatured with a half-life of approx. 2.5 h. The recombinant gamma-subunit was electron transfer competent and was efficiently reduced by pyruvate ferredoxin oxidoreductase from Pyrococcus furiosus, with a Km of 5microM and a Vmax of 9 U/mg. In contrast, native T. maritima hydrogenase holoenzyme and its separated alpha-subunit were much less effective electron donors for the gamma-subunit, with a V(max) of 0.01 U/mg and 0.1 U/mg, respectively.
Collapse
Affiliation(s)
- M F Verhagen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
16
|
Verhagen MF, O'Rourke T, Adams MW. The hyperthermophilic bacterium, Thermotoga maritima, contains an unusually complex iron-hydrogenase: amino acid sequence analyses versus biochemical characterization. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1412:212-29. [PMID: 10482784 DOI: 10.1016/s0005-2728(99)00062-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The hyperthermophilic bacterium, Thermotoga maritima, grows up to 90 degrees C by fermenting carbohydrates and it disposes of excess reductant by H(2) production. The H(2)-evolving cytoplasmic hydrogenase of this organism was shown to consist of three different subunits of masses 73 (alpha), 68 (beta) and 19 (gamma) kDa and to contain iron as the only metal. The genes encoding the subunits were clustered in a single operon in the order hydC (gamma), hydB (beta), and hydA (alpha). Sequence analyses indicated that: (a) the enzyme is an Fe-S-cluster-containing flavoprotein which uses NADH as an electron donor; and (b) the catalytic Fe-S cluster resides within the alpha-subunit, which is equivalent to the single subunit that constitutes most mesophilic Fe-hydrogenases. The alpha- and beta-subunits of the purified enzyme were separated by chromatography in the presence of 4 M urea. As predicted, the H(2)-dependent methyl viologen reduction activity of the holoenzyme (45-70 U mg(-1)) was retained in the alpha-subunit (130-160 U mg(-1)) after subunit separation. However, the holoenzyme did not contain flavin and neither it nor the alpha-subunit used NAD(P)(H) or T. maritima ferredoxin as an electron carrier. The holoenzyme, but not the alpha-subunit, reduced anthraquinone-2,6-disulfonate (apparent K(m), 690 microM) with H(2). The EPR properties of the reduced holoenzyme, when compared with those of the separated and reduced subunits, indicate the presence of a catalytic 'H-cluster' and three [4Fe-4S] and one [2Fe-2S] cluster in the alpha-subunit, together with one [4Fe-4S] and two [2Fe-2S] clusters in the beta-subunit. Sequence analyses predict that the alpha-subunit should contain an additional [2Fe-2S] cluster, while the beta-subunit should contain one [2Fe-2S] and three [4Fe-4S] clusters. The latter cluster contents are consistent with the measured Fe contents of about 32, 20 and 14 Fe mol(-1) for the holoenzyme and the alpha- and beta-subunits, respectively. The T. maritima enzyme is the first 'complex' Fe-hydrogenase to be purified and characterized, although the reason for its complexity remains unclear.
Collapse
Affiliation(s)
- M F Verhagen
- Department of Biochemistry and Molecular Biology and the Center for Metalloenzyme Studies, Life Sciences Building, The University of Georgia, Athens, GA, USA
| | | | | |
Collapse
|
17
|
Hatchikian EC, Magro V, Forget N, Nicolet Y, Fontecilla-Camps JC. Carboxy-terminal processing of the large subunit of [Fe] hydrogenase from Desulfovibrio desulfuricans ATCC 7757. J Bacteriol 1999; 181:2947-52. [PMID: 10217791 PMCID: PMC93742 DOI: 10.1128/jb.181.9.2947-2952.1999] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
hydA and hydB, the genes encoding the large (46-kDa) and small (13. 5-kDa) subunits of the periplasmic [Fe] hydrogenase from Desulfovibrio desulfuricans ATCC 7757, have been cloned and sequenced. The deduced amino acid sequence of the genes product showed complete identity to the sequence of the well-characterized [Fe] hydrogenase from the closely related species Desulfovibrio vulgaris Hildenborough (G. Voordouw and S. Brenner, Eur. J. Biochem. 148:515-520, 1985). The data show that in addition to the well-known signal peptide preceding the NH2 terminus of the mature small subunit, the large subunit undergoes a carboxy-terminal processing involving the cleavage of a peptide of 24 residues, in agreement with the recently reported data on the three-dimensional structure of the enzyme (Y. Nicolet, C. Piras, P. Legrand, E. C. Hatchikian, and J. C. Fontecilla-Camps, Structure 7:13-23, 1999). We suggest that this C-terminal processing is involved in the export of the protein to the periplasm.
Collapse
Affiliation(s)
- E C Hatchikian
- Unité de Bioénergétique et Ingéniérie des Protéines, IBSM, CNRS, 13402 Marseilles Cedex 20, France.
| | | | | | | | | |
Collapse
|
18
|
de Luca G, de Philip P, Rousset M, Belaich JP, Dermoun Z. The NADP-reducing hydrogenase of Desulfovibrio fructosovorans: evidence for a native complex with hydrogen-dependent methyl-viologen-reducing activity. Biochem Biophys Res Commun 1998; 248:591-6. [PMID: 9703971 DOI: 10.1006/bbrc.1998.9022] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The NADP-reducing hydrogenase of Desulfovibrio fructosovorans represents a novel class of [Fe] hydrogenases which is encoded by the well-characterized hndABCD operon containing the genes hndA, hndB, hndC, and hndD. Expression of this operon, monitored by measuring the NADP-reducing activity, was found to be maximum during the exponential phase of growth on fructose and then decreased when the concentration of the carbon and energy source became limiting. The optimum pH for the H2-driven NADP reduction was 8, and the apparent K(m) and Vmax were determined to be 0.09 mM and 13 x 10(-3) u/mg, respectively. Heterologous expression of the hnd genes in Escherichia coli was carried out to raise antisera against the different subunits of the NADP-reducing hydrogenase. The antisera were used to detect the four subunits in cell extract of D. fructosovorans after separation by SDS- and native PAGE. The four subunits of the NADP-reducing hydrogenase were demonstrated to be associated in a complex which exhibited H2-driven methyl viologen reduction. Furthermore, on native gel, a form lacking HndD, with no hydrogen-dependent methyl viologen reductase activity was also shown to be present in D. fructosovorans.
Collapse
Affiliation(s)
- G de Luca
- Centre National de la Recherche Scientifique, Marseille, France
| | | | | | | | | |
Collapse
|