1
|
Lin JLJ, Yuan HS. Lipid-Binding Regions within PKC-Related Serine/Threonine Protein Kinase N1 (PKN1) Required for Its Regulation. Biochemistry 2024; 63:743-753. [PMID: 38441874 PMCID: PMC10956426 DOI: 10.1021/acs.biochem.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
PKC-related serine/threonine protein kinase N1 (PKN1) is a protease/lipid-activated protein kinase that acts downstream of the RhoA and Rac1 pathways. PKN1 comprises unique regulatory, hinge region, and PKC homologous catalytic domains. The regulatory domain harbors two homologous regions, i.e., HR1 and C2-like. HR1 consists of three heptad repeats (HR1a, HR1b, and HR1c), with PKN1-(HR1a) hosting an amphipathic high-affinity cardiolipin-binding site for phospholipid interactions. Cardiolipin and C18:1 oleic acid are the most potent lipid activators of PKN1. PKN1-(C2) contains a pseudosubstrate sequence overlapping that of C20:4 arachidonic acid. However, the cardiolipin-binding site(s) within PKN1-(C2) and the respective binding properties remain unclear. Herein, we reveal (i) that the primary PKN1-(C2) sequence contains conserved amphipathic cardiolipin-binding motif(s); (ii) that trimeric PKN1-(C2) predominantly adopts a β-stranded conformation; (iii) that two distinct types of cardiolipin (or phosphatidic acid) binding occur, with the hydrophobic component playing a key role at higher salt levels; (iv) the multiplicity of C18 fatty acid binding to PKN1-(C2); and (v) the relevance of our lipid-binding parameters for PKN1-(C2) in terms of kinetic parameters previously determined for the full-length PKN1 enzyme. Thus, our discoveries create opportunities to design specific mammalian cell inhibitors that disrupt the localization of membrane-associated PKN1 signaling molecules.
Collapse
Affiliation(s)
- Jason L. J. Lin
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
- Department
of Biochemistry and Molecular Biology, University
of Melbourne, Victoria 3010, Australia
| | - Hanna S. Yuan
- Institute
of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
2
|
Herrerías-González F, Yeramian A, Baena-Fustegueras JA, Bueno M, Fleitas C, de la Fuente M, Serrano JCE, Granado-Serrano A, Santamaría M, Yeramian N, Zorzano-Martínez M, Mora C, Lecube A. PKN1 Kinase: A Key Player in Adipocyte Differentiation and Glucose Metabolism. Nutrients 2023; 15:nu15102414. [PMID: 37242297 DOI: 10.3390/nu15102414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Adipocyte dysfunction is the driver of obesity and correlates with insulin resistance and the onset of type 2 diabetes. Protein kinase N1 (PKN1) is a serine/threonine kinase that has been shown to contribute to Glut4 translocation to the membrane and glucose transport. Here, we evaluated the role of PKN1 in glucose metabolism under insulin-resistant conditions in primary visceral adipose tissue (VAT) from 31 patients with obesity and in murine 3T3-L1 adipocytes. In addition, in vitro studies in human VAT samples and mouse adipocytes were conducted to investigate the role of PKN1 in the adipogenic maturation process and glucose homeostasis control. We show that insulin-resistant adipocytes present a decrease in PKN1 activation levels compared to nondiabetic control counterparts. We further show that PKN1 controls the adipogenesis process and glucose metabolism. PKN1-silenced adipocytes present a decrease in both differentiation process and glucose uptake, with a concomitant decrease in the expression levels of adipogenic markers, such as PPARγ, FABP4, adiponectin and CEBPα. Altogether, these results point to PKN1 as a regulator of key signaling pathways involved in adipocyte differentiation and as an emerging player of adipocyte insulin responsiveness. These findings may provide new therapeutic approaches for the management of insulin resistance in type 2 diabetes.
Collapse
Affiliation(s)
- Fernando Herrerías-González
- Experimental Surgery Research Group, General and Digestive Surgery Department, Arnau de Vilanova University Hospital, University of Lleida, 25716 Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), 25198 Lleida, Spain
| | - Andrée Yeramian
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), 25198 Lleida, Spain
- Department of Experimental Medicine, University of Lleida, 25198 Lleida, Spain
| | - Juan Antonio Baena-Fustegueras
- Experimental Surgery Research Group, General and Digestive Surgery Department, Arnau de Vilanova University Hospital, University of Lleida, 25716 Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), 25198 Lleida, Spain
| | - Marta Bueno
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), 25198 Lleida, Spain
- Obesity, Diabetes and Metabolism (ODIM) Research Group, Endocrinology and Nutrition Department, Arnau de Vilanova University Hospital, University of Lleida, 25716 Lleida, Spain
| | - Catherine Fleitas
- Biobank Unit, Hospital Universitari Arnau de Vilanova, IRB-Lleida, 25198 Lleida, Spain
| | - Maricruz de la Fuente
- Experimental Surgery Research Group, General and Digestive Surgery Department, Arnau de Vilanova University Hospital, University of Lleida, 25716 Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), 25198 Lleida, Spain
| | - José C E Serrano
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), 25198 Lleida, Spain
- Department of Experimental Medicine, University of Lleida, 25198 Lleida, Spain
| | - Ana Granado-Serrano
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), 25198 Lleida, Spain
- Department of Experimental Medicine, University of Lleida, 25198 Lleida, Spain
| | - Maite Santamaría
- Experimental Surgery Research Group, General and Digestive Surgery Department, Arnau de Vilanova University Hospital, University of Lleida, 25716 Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), 25198 Lleida, Spain
| | - Nadine Yeramian
- Department of Biotechnology and Food Science, Faculty of Science, University of Burgos, 09001 Burgos, Spain
| | - Marta Zorzano-Martínez
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), 25198 Lleida, Spain
- Obesity, Diabetes and Metabolism (ODIM) Research Group, Endocrinology and Nutrition Department, Arnau de Vilanova University Hospital, University of Lleida, 25716 Lleida, Spain
| | - Conchi Mora
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), 25198 Lleida, Spain
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, 25716 Lleida, Spain
| | - Albert Lecube
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), 25198 Lleida, Spain
- Obesity, Diabetes and Metabolism (ODIM) Research Group, Endocrinology and Nutrition Department, Arnau de Vilanova University Hospital, University of Lleida, 25716 Lleida, Spain
| |
Collapse
|
3
|
Garcia-Concejo A, Larhammar D. Protein kinase C family evolution in jawed vertebrates. Dev Biol 2021; 479:77-90. [PMID: 34329618 DOI: 10.1016/j.ydbio.2021.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/02/2021] [Accepted: 07/22/2021] [Indexed: 11/18/2022]
Abstract
Protein kinase C (PKC) was one of the first kinases identified in human cells. It is now known to constitute a family of kinases that respond to diacylglycerol, phosphatidylserine and for some family members, Ca2+. They have a plethora of different functions, such as cell cycle regulation, immune response and memory formation. In mammals, 12 PKC family members have been described, usually divided into 4 different subfamilies. We present here a comprehensive evolutionary analysis of the PKC genes in jawed vertebrates with special focus on the impact of the two tetraploidizations (1R and 2R) before the radiation of jawed vertebrates and the teleost tetraploidization (3R), as illuminated by synteny and paralogon analysis including many neighboring gene families. We conclude that the vertebrate predecessor had five PKC genes, as tunicates and lancelets still do, and that the PKC family should therefore ideally be organized into five subfamilies. The 1R and 2R events led to a total of 12 genes distributed among these five subfamilies. All 12 genes are still present in some of the major lineages of jawed vertebrates, including mammals, whereas birds and cartilaginous fishes have lost one member. The 3R event added another nine genes in teleosts, bringing the total to 21 genes. The zebrafish, a common experimental model animal, has retained 19. We have found no independent gene duplications. Thus, the genome doublings completely account for the complexity of this gene family in jawed vertebrates and have thereby had a huge impact on their evolution.
Collapse
Affiliation(s)
- Adrian Garcia-Concejo
- Department of Neuroscience, Unit of Pharmacology, Science for Life Laboratory, Uppsala University, Box 593, SE-751 24, Uppsala, Sweden.
| | - Dan Larhammar
- Department of Neuroscience, Unit of Pharmacology, Science for Life Laboratory, Uppsala University, Box 593, SE-751 24, Uppsala, Sweden
| |
Collapse
|
4
|
The structure and function of protein kinase C-related kinases (PRKs). Biochem Soc Trans 2021; 49:217-235. [PMID: 33522581 PMCID: PMC7925014 DOI: 10.1042/bst20200466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/29/2020] [Accepted: 01/07/2021] [Indexed: 11/17/2022]
Abstract
The protein kinase C-related kinase (PRK) family of serine/threonine kinases, PRK1, PRK2 and PRK3, are effectors for the Rho family small G proteins. An array of studies have linked these kinases to multiple signalling pathways and physiological roles, but while PRK1 is relatively well-characterized, the entire PRK family remains understudied. Here, we provide a holistic overview of the structure and function of PRKs and describe the molecular events that govern activation and autoregulation of catalytic activity, including phosphorylation, protein interactions and lipid binding. We begin with a structural description of the regulatory and catalytic domains, which facilitates the understanding of their regulation in molecular detail. We then examine their diverse physiological roles in cytoskeletal reorganization, cell adhesion, chromatin remodelling, androgen receptor signalling, cell cycle regulation, the immune response, glucose metabolism and development, highlighting isoform redundancy but also isoform specificity. Finally, we consider the involvement of PRKs in pathologies, including cancer, heart disease and bacterial infections. The abundance of PRK-driven pathologies suggests that these enzymes will be good therapeutic targets and we briefly report some of the progress to date.
Collapse
|
5
|
Sophocleous G, Wood G, Owen D, Mott HR. 1H, 15N and 13C resonance assignments of the HR1c domain of PRK1, a protein kinase C-related kinase. BIOMOLECULAR NMR ASSIGNMENTS 2020; 14:245-250. [PMID: 32500230 PMCID: PMC7462907 DOI: 10.1007/s12104-020-09954-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/29/2020] [Indexed: 05/06/2023]
Abstract
PRK1 is a member of the protein kinase C-related kinase (PRK) family of serine/threonine kinases and a downstream effector of Rho GTPases. PRK1 has three N-terminal Homology Region 1 (HR1) domains (HR1a, HR1b and HR1c), which form antiparallel coiled coils that interact with Rho family GTPases. PRK1 also has a C2-like domain that targets it to the plasma membrane and a kinase domain, which is a member of the protein kinase C superfamily. PRK1 is involved in cytoskeletal regulation, cell adhesion, cell cycle progression and the immune response, and is implicated in cancer. There is currently no structural information for the HR1c domain. The 1H, 15N and 13C NMR backbone and sidechain resonance assignment of the HR1c domain presented here forms the basis for this domain's structural characterisation. This work will also enable studies of interactions between the three HR1 domains in an effort to obtain structural insight into the regulation of PRK1 activity.
Collapse
Affiliation(s)
| | - George Wood
- Department of Biochemistry, 80, Tennis Court Road, Cambridge, CB2 1GA, UK
- Department of Pathology, 10, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Darerca Owen
- Department of Biochemistry, 80, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Helen R Mott
- Department of Biochemistry, 80, Tennis Court Road, Cambridge, CB2 1GA, UK.
| |
Collapse
|
6
|
Lin JLJ. Characterization of the novel cardiolipin binding regions identified on the protease and lipid activated PKC-related kinase 1. Protein Sci 2019; 28:1473-1486. [PMID: 31125460 DOI: 10.1002/pro.3663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/22/2019] [Indexed: 11/09/2022]
Abstract
Protein kinase C-related kinase 1 (PRK1) or PKN is a protease and lipid activated protein kinase that acted downstream of the RhoA or Rac1 pathway. PRK1 comprises a unique regulatory domain and a PKC homologous kinase domain. The regulatory domain of PRK1 consists of homologous region -1 (HR1) and -2 (HR2). PRK1-(HR1) features a pseudosubstrate motif that overlapped with the putative cardiolipin and known RhoA binding sites. In fact, cardiolipin is the most potent lipid activator for PRK1 in respect of its either auto- or substrate phosphorylation activity. This study was thus aimed to characterize the binding region(s) of cardiolipin that was previously suggested for the regulatory domain of PRK1. The principal findings of this work established (i) PRK1-(HR1) folded into an active conformation where high affinity binding sites (mainly located in HR1a subdomain) were accessible for cardiolipin binding to protect against limited Lys-C digestion, (ii) the binding nature between acidic phospholipids and PRK1 (HR1) involved both polar and nonpolar components consistent with the amphipathic nature of the known cardiolipin-binding motifs, (iii) identification of the molecule masses of the Lys-C fragments of PRK1-(HR1) complexed with cardiolipin molecule, and (iv) appreciable reductions in the secondary structural contents at 222 nm measured by circular dichroism analyses demonstrated the binding of cardiolipin elicited the disruptive effect that was most evident among all phospholipids tested, suggestive of a functional correlation between the extents of helical disruption and PRK1 activation.
Collapse
Affiliation(s)
- Jason L J Lin
- Department of Biochemistry and Molecular Biology, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
7
|
Martin-Liberal J, Cameron AJ, Claus J, Judson IR, Parker PJ, Linch M. Targeting protein kinase C in sarcoma. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1846:547-59. [PMID: 25453364 DOI: 10.1016/j.bbcan.2014.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/19/2014] [Accepted: 10/08/2014] [Indexed: 12/14/2022]
Abstract
Protein kinase C (PKC) is a family of serine/threonine tyrosine kinases that regulate many cellular processes including division, proliferation, survival, anoikis and polarity. PKC is abundant in many human cancers and aberrant PKC signalling has been demonstrated in cancer models. On this basis, PKC has become an attractive target for small molecule inhibition within oncology drug development programmes. Sarcoma is a heterogeneous group of mesenchymal malignancies. Due to their relative insensitivity to conventional chemotherapies and the increasing recognition of the driving molecular events of sarcomagenesis, sarcoma provides an excellent platform to test novel therapeutics. In this review we provide a structure-function overview of the PKC family, the rationale for targeting these kinases in sarcoma and the state of play with regard to PKC inhibition in the clinic.
Collapse
Affiliation(s)
- J Martin-Liberal
- Sarcoma Unit, Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
| | - A J Cameron
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - J Claus
- Protein Phosphorylation Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - I R Judson
- Sarcoma Unit, Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
| | - P J Parker
- Protein Phosphorylation Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK; Division of Cancer Studies, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - M Linch
- Department of Oncology, University College London Cancer Institute, London, UK.
| |
Collapse
|
8
|
Abstract
Human cancer genomes harbour a variety of alterations leading to the deregulation of key pathways in tumour cells. The genomic characterization of tumours has uncovered numerous genes recurrently mutated, deleted or amplified, but gene fusions have not been characterized as extensively. Here we develop heuristics for reliably detecting gene fusion events in RNA-seq data and apply them to nearly 7,000 samples from The Cancer Genome Atlas. We thereby are able to discover several novel and recurrent fusions involving kinases. These findings have immediate clinical implications and expand the therapeutic options for cancer patients, as approved or exploratory drugs exist for many of these kinases. Kinases activated by gene fusions represent potentially important targets for the development of cancer drugs. Here, the authors develop a method for detecting gene fusion events in RNA sequencing data from The Cancer Genome Atlas and identify several novel recurrent fusions involving kinases.
Collapse
|
9
|
Thauerer B, Zur Nedden S, Baier-Bitterlich G. Protein Kinase C-Related Kinase (PKN/PRK). Potential Key-Role for PKN1 in Protection of Hypoxic Neurons. Curr Neuropharmacol 2014; 12:213-8. [PMID: 24851086 PMCID: PMC4023452 DOI: 10.2174/1570159x11666131225000518] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/20/2013] [Accepted: 12/10/2013] [Indexed: 12/13/2022] Open
Abstract
Serine/threonine protein kinase C-related kinase (PKN/PRK) is a family of three isoenzymes (PKN1, PKN2,
PKN3), which are widely distributed in eukaryotic organisms and share the same overall domain structure. The Nterminal
region encompasses a conserved repeated domain, termed HR1a-c as well as a HR2/C2 domain. The
serine/threonine kinase domain is found in the C-terminal region of the protein and shows high sequence homology to
other members of the PKC superfamily.
In neurons, PKN1 is the most abundant isoform and has been implicated in a variety of functions including cytoskeletal
organization and neuronal differentiation and its deregulation may contribute to neuropathological processes such as
amyotrophic lateral sclerosis and Alzheimer’s disease. We have recently identified a candidate role of PKN1 in the
regulation of neuroprotective processes during hypoxic stress. Our key findings were that: 1) the activity of PKN1 was
significantly increased by hypoxia (1% O2) and neurotrophins (nerve growth factor and purine nucleosides); 2) Neuronal
cells, deficient of PKN1 showed a decrease of cell viability and neurite formation along with a disturbance of the F-actinassociated
cytoskeleton; 3) Purine nucleoside-mediated neuroprotection during hypoxia was severely hampered in PKN1
deficient neuronal cells, altogether suggesting a potentially critical role of PKN1 in neuroprotective processes.
This review gives an up-to-date overview of the PKN family with a special focus on the neuroprotective role of PKN1 in
hypoxia.
Collapse
Affiliation(s)
- Bettina Thauerer
- Medical University of Innsbruck, Biocenter/ Neurobiochemistry, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Stephanie Zur Nedden
- Medical University of Innsbruck, Biocenter/ Neurobiochemistry, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Gabriele Baier-Bitterlich
- Medical University of Innsbruck, Biocenter/ Neurobiochemistry, Innrain 80-82, A-6020 Innsbruck, Austria
| |
Collapse
|
10
|
Arencibia JM, Pastor-Flores D, Bauer AF, Schulze JO, Biondi RM. AGC protein kinases: from structural mechanism of regulation to allosteric drug development for the treatment of human diseases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1302-21. [PMID: 23524293 DOI: 10.1016/j.bbapap.2013.03.010] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/07/2013] [Indexed: 01/15/2023]
Abstract
The group of AGC protein kinases includes more than 60 protein kinases in the human genome, classified into 14 families: PDK1, AKT/PKB, SGK, PKA, PKG, PKC, PKN/PRK, RSK, NDR, MAST, YANK, DMPK, GRK and SGK494. This group is also widely represented in other eukaryotes, including causative organisms of human infectious diseases. AGC kinases are involved in diverse cellular functions and are potential targets for the treatment of human diseases such as cancer, diabetes, obesity, neurological disorders, inflammation and viral infections. Small molecule inhibitors of AGC kinases may also have potential as novel therapeutic approaches against infectious organisms. Fundamental in the regulation of many AGC kinases is a regulatory site termed the "PIF-pocket" that serves as a docking site for substrates of PDK1. This site is also essential to the mechanism of activation of AGC kinases by phosphorylation and is involved in the allosteric regulation of N-terminal domains of several AGC kinases, such as PKN/PRKs and atypical PKCs. In addition, the C-terminal tail and its interaction with the PIF-pocket are involved in the dimerization of the DMPK family of kinases and may explain the molecular mechanism of allosteric activation of GRKs by GPCR substrates. In this review, we briefly introduce the AGC kinases and their known roles in physiology and disease and the discovery of the PIF-pocket as a regulatory site in AGC kinases. Finally, we summarize the current status and future therapeutic potential of small molecules directed to the PIF-pocket; these molecules can allosterically activate or inhibit the kinase as well as act as substrate-selective inhibitors. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
Affiliation(s)
- José M Arencibia
- Research Group PhosphoSites, Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
11
|
Bauer AF, Sonzogni S, Meyer L, Zeuzem S, Piiper A, Biondi RM, Neimanis S. Regulation of protein kinase C-related protein kinase 2 (PRK2) by an intermolecular PRK2-PRK2 interaction mediated by Its N-terminal domain. J Biol Chem 2012; 287:20590-602. [PMID: 22511787 DOI: 10.1074/jbc.m111.327437] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Protein kinase C-related protein kinases (PRKs) are effectors of the Rho family of small GTPases and play a role in the development of diseases such as prostate cancer and hepatitis C. Here we examined the mechanism underlying the regulation of PRK2 by its N-terminal region. We show that the N-terminal region of PRK2 prevents the interaction with its upstream kinase, the 3-phosphoinositide-dependent kinase 1 (PDK1), which phosphorylates the activation loop of PRK2. We confirm that the N-terminal region directly inhibits the kinase activity of PRK2. However, in contrast to previous models, our data indicate that this inhibition is mediated in trans through an intermolecular PRK2-PRK2 interaction. Our results also suggest that amino acids 487-501, located in the linker region between the N-terminal domains and the catalytic domain, contribute to the PRK2-PRK2 dimer formation. This dimerization is further supported by other N-terminal domains. Additionally, we provide evidence that the region C-terminal to the catalytic domain intramolecularly activates PRK2. Finally, we discovered that the catalytic domain mediates a cross-talk between the inhibitory N-terminal region and the activating C-terminal region. The results presented here describe a novel mechanism of regulation among AGC kinases and offer new insights into potential approaches to pharmacologically regulate PRK2.
Collapse
Affiliation(s)
- Angelika F Bauer
- Department of Internal Medicine I, Research Group PhosphoSites, Goethe University Hospital Frankfurt, Frankfurt 60590, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The PRKs [protein kinase C-related kinases; also referred to as PKNs (protein kinase Ns)] are a kinase family important in diverse functions including migration and cytokinesis. In the present study, we have re-evaluated and compared the specificity of PKN1 and PKN3 and assessed the predictive value in substrates. We analysed the phosphorylation consensus motif of PKNs using a peptide library approach and demonstrate that both PKN1 and PKN3 phosphorylate serine residues in sequence contexts that have an arginine residue in position -3. In contrast, PKN1 and PKN3 do not tolerate arginine residues in position +1 and -1 respectively. To test the predictive value of this motif, site analysis was performed on the PKN substrate CLIP-170 (cytoplasmic linker protein of 170 kDa); a PKN target site was identified that conformed to the predicted pattern. Using a protein array, we identified 22 further substrates for PKN1, of which 20 were previously undescribed substrates. To evaluate further the recognition signature, the site on one of these hits, EGFR (epidermal growth factor receptor), was identified. This identified Thr⁶⁵⁴ in EGFR as the PKN1 phosphorylation site and this retains an arginine residue at the -3 position. Finally, the constitutive phosphorylation of EGFR on Thr⁶⁵⁴ is shown to be modulated by PKN in vivo.
Collapse
|
13
|
Hutchinson CL, Lowe PN, McLaughlin SH, Mott HR, Owen D. Mutational analysis reveals a single binding interface between RhoA and its effector, PRK1. Biochemistry 2011; 50:2860-9. [PMID: 21351730 DOI: 10.1021/bi200039u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Protein kinase C-related kinases (PRKs) are serine/threonine kinases that are members of the protein kinase C superfamily and can be activated by binding to members of the Rho family of small G proteins via a Rho binding motif known as an HR1 domain. The PRKs contain three tandem HR1 domains at their N-termini. The structure of the HR1a domain from PRK1 in complex with RhoA [Maesaki, R., et al. (1999) Mol. Cell 4, 793-803] identified two potential contact interfaces between the G protein and the HR1a domain. In this work, we have used an alanine scanning mutagenesis approach to identify whether both contact sites are used when the two proteins interact in solution and also whether HR1b, the second HR1 domain from PRK1, plays a role in binding to RhoA. The mutagenesis identified just one contact site as being relevant for binding of RhoA and HR1a in solution, and the HR1b domain was found not to contribute to RhoA binding. The folded state and thermal stability of the HR1a and HR1b domains were also investigated. HR1b was found to be more thermally stable than HR1a, and it is hypothesized that the differences in the biophysical properties of these two domains govern their interaction with small G proteins.
Collapse
Affiliation(s)
- Catherine L Hutchinson
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | |
Collapse
|
14
|
The Rho target PRK2 regulates apical junction formation in human bronchial epithelial cells. Mol Cell Biol 2010; 31:81-91. [PMID: 20974804 DOI: 10.1128/mcb.01001-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rho GTPases regulate multiple signaling pathways to control a number of cellular processes during epithelial morphogenesis. To investigate the downstream pathways through which Rho regulates epithelial apical junction formation, we screened a small interfering RNA (siRNA) library targeting 28 known Rho target proteins in 16HBE human bronchial epithelial cells. This led to the identification of the serine-threonine kinase PRK2 (protein kinase C-related kinase 2, also called PKN2). Depletion of PRK2 does not block the initial formation of primordial junctions at nascent cell-cell contacts but does prevent their maturation into apical junctions. PRK2 is recruited to primordial junctions, and this localization depends on its C2-like domain. Rho binding is essential for PRK2 function and also facilitates PRK2 recruitment to junctions. Kinase-dead PRK2 acts as a dominant-negative mutant and prevents apical junction formation. We conclude that PRK2 is recruited to nascent cell-cell contacts through its C2-like and Rho-binding domains and promotes junctional maturation through a kinase-dependent pathway.
Collapse
|
15
|
Abstract
Networks of signal transducers determine the conversion of environmental cues into cellular actions. Among the main players in these networks are protein kinases, which can acutely and reversibly modify protein functions to influence cellular events. One group of kinases, the protein kinase C (PKC) family, have been increasingly implicated in the organization of signal propagation, particularly in the spatial distribution of signals. Examples of where and how various PKC isoforms direct this tier of signal organization are becoming more evident.
Collapse
|
16
|
Dettori R, Sonzogni S, Meyer L, Lopez-Garcia LA, Morrice NA, Zeuzem S, Engel M, Piiper A, Neimanis S, Frödin M, Biondi RM. Regulation of the interaction between protein kinase C-related protein kinase 2 (PRK2) and its upstream kinase, 3-phosphoinositide-dependent protein kinase 1 (PDK1). J Biol Chem 2009; 284:30318-27. [PMID: 19723632 DOI: 10.1074/jbc.m109.051151] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The members of the AGC kinase family frequently exhibit three conserved phosphorylation sites: the activation loop, the hydrophobic motif (HM), and the zipper (Z)/turn-motif (TM) phosphorylation site. 3-Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates the activation loop of numerous AGC kinases, including the protein kinase C-related protein kinases (PRKs). Here we studied the docking interaction between PDK1 and PRK2 and analyzed the mechanisms that regulate this interaction. In vivo labeling of recombinant PRK2 by (32)P(i) revealed phosphorylation at two sites, the activation loop and the Z/TM in the C-terminal extension. We provide evidence that phosphorylation of the Z/TM site of PRK2 inhibits its interaction with PDK1. Our studies further provide a mechanistic model to explain different steps in the docking interaction and regulation. Interestingly, we found that the mechanism that negatively regulates the docking interaction of PRK2 to the upstream kinase PDK1 is directly linked to the activation mechanism of PRK2 itself. Finally, our results indicate that the mechanisms underlying the regulation of the interaction between PRK2 and PDK1 are specific for PRK2 and do not apply for other AGC kinases.
Collapse
Affiliation(s)
- Rosalia Dettori
- Department of Internal Medicine I, Research Group PhosphoSites, Johann Wolfgang Goethe University Hospital, D-60590 Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Modha R, Campbell LJ, Nietlispach D, Buhecha HR, Owen D, Mott HR. The Rac1 polybasic region is required for interaction with its effector PRK1. J Biol Chem 2008; 283:1492-1500. [PMID: 18006505 DOI: 10.1074/jbc.m706760200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase C-related kinase 1 (PRK1 or PKN) is involved in regulation of the intermediate filaments of the actin cytoskeleton, as well as having effects on processes as diverse as mitotic timing and apoptosis. It is activated by interacting with the Rho family small G proteins and arachidonic acid or by caspase cleavage. We have previously shown that the HR1b of PRK1 binds exclusively to Rac1, whereas the HR1a domain binds to both Rac1 and RhoA. Here, we have determined the solution structure of the HR1b-Rac complex. We show that HR1b binds to the C-terminal end of the effector loop and switch 2 of Rac1. Comparison with the HR1a-RhoA structure shows that this part of the Rac1-HR1b interaction is homologous to one of the contact sites that HR1a makes with RhoA. The Rac1 used in this study included the C-terminal polybasic region, which is frequently omitted from structural studies, as well as the core G domain. The Rac1 C-terminal region reverses in direction to interact with residues in switch 2, and the polybasic region itself interacts with residues in HR1b. The interactions with HR1b do not prevent the polybasic region being available to contact the negatively charged membrane phospholipids, which is considered to be its primary role. This is the first structural demonstration that the C terminus of a G protein forms a novel recognition element for effector binding.
Collapse
Affiliation(s)
- Rakhee Modha
- Department of Biochemistry, University of Cambridge, 80, Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Louise J Campbell
- Department of Biochemistry, University of Cambridge, 80, Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Daniel Nietlispach
- Department of Biochemistry, University of Cambridge, 80, Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Heeran R Buhecha
- Department of Biochemistry, University of Cambridge, 80, Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Darerca Owen
- Department of Biochemistry, University of Cambridge, 80, Tennis Court Road, Cambridge CB2 1GA, United Kingdom.
| | - Helen R Mott
- Department of Biochemistry, University of Cambridge, 80, Tennis Court Road, Cambridge CB2 1GA, United Kingdom.
| |
Collapse
|
18
|
Betson M, Settleman J. A rho-binding protein kinase C-like activity is required for the function of protein kinase N in Drosophila development. Genetics 2007; 176:2201-12. [PMID: 17507675 PMCID: PMC1950625 DOI: 10.1534/genetics.107.072967] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Rho GTPases interact with multiple downstream effectors to exert their biological functions, which include important roles in tissue morphogenesis during the development of multicellular organisms. Among the Rho effectors are the protein kinase N (PKN) proteins, which are protein kinase C (PKC)-like kinases that bind activated Rho GTPases. The PKN proteins are well conserved evolutionarily, but their biological role in any organism is poorly understood. We previously determined that the single Drosophila ortholog of mammalian PKN proteins, Pkn, is a Rho/Rac-binding kinase essential for Drosophila development. By performing "rescue" studies with various Pkn mutant constructs, we have defined the domains of Pkn required for its role during Drosophila development. These studies suggested that Rho, but not Rac binding is important for Pkn function in development. In addition, we determined that the kinase domain of PKC53E, a PKC family kinase, can functionally substitute for the kinase domain of Pkn during development, thereby exemplifying the evolutionary strategy of "combining" functional domains to produce proteins with distinct biological activities. Interestingly, we also identified a requirement for Pkn in wing morphogenesis, thereby revealing the first postembryonic function for Pkn.
Collapse
Affiliation(s)
- Martha Betson
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | | |
Collapse
|
19
|
Steuve S, Devosse T, Lauwers E, Vanderwinden JM, André B, Courtoy PJ, Pirson I. Rhophilin-2 is targeted to late-endosomal structures of the vesicular machinery in the presence of activated RhoB. Exp Cell Res 2006; 312:3981-9. [PMID: 17054945 DOI: 10.1016/j.yexcr.2006.08.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 07/23/2006] [Accepted: 08/16/2006] [Indexed: 11/29/2022]
Abstract
Rhophilin-2 or p76(RBE), a protein whose expression is induced by the cyclic AMP pathway in thyrocytes, contains several protein-protein interaction domains including HR-1, Bro1 and PDZ domains, and is a partner of RhoB in its GTP-bound form (Eur J Biochem, 269(24): 6241-9, 2002). We here define its subcellular localization and dissect the significance of its domains. By subcellular fractionation and colocalization experiments, rhophilin-2 is recruited to subcellular organelles by activated RhoB-GTP. As for its yeast homologue, Npi3/Bro1p, the Bro1 domain of rhophilin-2 is necessary to its recruitment to the vesicular structures, which are not labeled for EEA1 nor Lamp1, but well with the late endosome marker CD63.
Collapse
Affiliation(s)
- Séverine Steuve
- Free University of Brussels-Campus Erasme, Institute of Interdisciplinary Research, 808 route de Lennik-1070 Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
20
|
Haraga A, Miller SI. A Salmonella type III secretion effector interacts with the mammalian serine/threonine protein kinase PKN1. Cell Microbiol 2006; 8:837-46. [PMID: 16611232 DOI: 10.1111/j.1462-5822.2005.00670.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Essential to salmonellae pathogenesis is an export device called the type III secretion system (TTSS), which mediates the transfer of bacterial effector proteins from the bacterial cell into the host cell cytoplasm. Once inside the host cell, these effectors are then capable of altering a variety of host cellular functions in order to promote bacterial survival and colonization. SspH1 is a Salmonella enterica serovar Typhimurium TTSS effector that localizes to the mammalian nucleus and down-modulates production of proinflammatory cytokines by inhibiting nuclear factor (NF)-kappaB-dependent gene expression. To identify mammalian binding partners of SspH1 a yeast two-hybrid screen against a human spleen cDNA library was performed. It yielded a serine/threonine protein kinase called protein kinase N 1 (PKN1). The leucine-rich repeat domain of SspH1 was demonstrated to mediate this interaction and also inhibition of NF-kappaB-dependent gene expression. This suggested that PKN1 may play a role in modulation of the NF-kappaB signalling pathway. Indeed, we found that expression of constitutively active PKN1 in mammalian cells results in a decrease, while depletion of PKN1 by RNA interference causes an increase in NF-kappaB-dependent reporter gene expression. These data indicate that SspH1 may inhibit the host's inflammatory response by interacting with PKN1.
Collapse
Affiliation(s)
- Andrea Haraga
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
21
|
Zhao ZS, Manser E. PAK and other Rho-associated kinases--effectors with surprisingly diverse mechanisms of regulation. Biochem J 2005; 386:201-14. [PMID: 15548136 PMCID: PMC1134783 DOI: 10.1042/bj20041638] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 11/09/2004] [Accepted: 11/17/2004] [Indexed: 11/17/2022]
Abstract
The Rho GTPases are a family of molecular switches that are critical regulators of signal transduction pathways in eukaryotic cells. They are known principally for their role in regulating the cytoskeleton, and do so by recruiting a variety of downstream effector proteins. Kinases form an important class of Rho effector, and part of the biological complexity brought about by switching on a single GTPase results from downstream phosphorylation cascades. Here we focus on our current understanding of the way in which different Rho-associated serine/threonine kinases, denoted PAK (p21-activated kinase), MLK (mixed-lineage kinase), ROK (Rho-kinase), MRCK (myotonin-related Cdc42-binding kinase), CRIK (citron kinase) and PKN (protein kinase novel), interact with and are regulated by their partner GTPases. All of these kinases have in common an ability to dimerize, and in most cases interact with a variety of other proteins that are important for their function. A diversity of known structures underpin the Rho GTPase-kinase interaction, but only in the case of PAK do we have a good molecular understanding of kinase regulation. The ability of Rho GTPases to co-ordinate spatial and temporal phosphorylation events explains in part their prominent role in eukaryotic cell biology.
Collapse
Key Words
- cdc42
- mlk (mixed-lineage kinase)
- pak (p21-activated kinase)
- rac
- rho
- rok (rho-kinase)
- acc, anti-parallel coiled-coil
- crib, cdc42 and rac interactive binding
- crik, citron kinase
- crmp, collapsin response mediator protein
- dmpk, myotonic dystrophy kinase
- gef, guanine nucleotide exchange factor
- git1, g-protein-coupled receptor kinase-interacting target 1
- hsp90, heat shock protein 90
- jnk, c-jun n-terminal kinase
- ki, kinase inhibitory
- kim, ki motif
- limk, lim domain kinase
- mapk, mitogen-activated protein kinase
- mbs, myosin-binding subunit
- mekk, mapk/erk (extracellular-signal-regulated kinase) kinase kinase
- mkk, mapk kinase
- mlk, mixed-lineage kinase
- mrck, myotonin-related cdc42-binding kinase
- pak, p21-activated kinase
- pbd, p21-binding domain
- pdk1, 3-phosphoinositide-dependent kinase 1
- ph, pleckstrin homology
- pix, pak-interacting exchange factor
- pkc, protein kinase c
- pkn, protein kinase novel
- pp1, protein phosphatase type 1
- r-mlc, regulatory myosin light chain
- rok, rho-kinase
- sh3, src homology 3
Collapse
Affiliation(s)
- Zhou-shen Zhao
- GSK-IMCB Laboratory, Institute of Molecular and Cell Biology, Proteos Building, 61 Biopolis Drive, Singapore 138673
| | - Ed Manser
- GSK-IMCB Laboratory, Institute of Molecular and Cell Biology, Proteos Building, 61 Biopolis Drive, Singapore 138673
| |
Collapse
|
22
|
Zhu Y, Stolz DB, Guo F, Ross MA, Watkins SC, Tan BJ, Qi RZ, Manser E, Li QT, Bay BH, Teo TS, Duan W. Signaling via a novel integral plasma membrane pool of a serine/threonine protein kinase PRK1 in mammalian cells. FASEB J 2004; 18:1722-4. [PMID: 15375078 DOI: 10.1096/fj.04-1876fje] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mammalian serine/threonine protein kinases, except for TGF-beta receptor kinase family, are intracellular proteins. PRK1/PKN is a member of the protein kinase C superfamily of serine/threonine kinases and is one of the first identified effectors for RhoA GTPase. However, the role of PRK1 in mediating signaling downstream of activated RhoA is largely unknown. Here, we present evidence that identifies a novel plasma membrane pool of PRK1. This integral membrane form of PRK1 is catalytically active. The phosphorylation of serine377 of PRK1 is required for its integration into membranes. This integration is essential for PRK1 to function as a Rho effector as only the integral plasma membrane PRK1 is able to initiate RhoA-mediated and ligand-dependent transcriptional activation of the androgen receptor in human epithelial cells and to mediate RhoA-induced neurite retraction in mouse neuronal cells. These results indicate that RhoA signals via the integral membrane pool of its effectors in its immediate vicinity at the plasma membrane, thus establishing a new paradigm in mammalian cell signaling.
Collapse
Affiliation(s)
- Yimin Zhu
- Department of Biochemistry, Faculty of Medicine, The National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Owen D, Lowe PN, Nietlispach D, Brosnan CE, Chirgadze DY, Parker PJ, Blundell TL, Mott HR. Molecular dissection of the interaction between the small G proteins Rac1 and RhoA and protein kinase C-related kinase 1 (PRK1). J Biol Chem 2003; 278:50578-87. [PMID: 14514689 DOI: 10.1074/jbc.m304313200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PRK1 is a serine/threonine kinase that belongs to the protein kinase C superfamily. It can be activated either by members of the Rho family of small G proteins, by proteolysis, or by interaction with lipids. Here we investigate the binding of PRK1 to RhoA and Rac1, two members of the Rho family. We demonstrate that PRK1 binds with a similar affinity to RhoA and Rac1. We present the solution structure of the second HR1 domain from the regulatory N-terminal region of PRK1, and we show that it forms an anti-parallel coiled-coil. In addition, we have used NMR to map the binding contacts of the HR1b domain with Rac1. These are compared with the contacts known to form between HR1a and RhoA. We have used mutagenesis to define the residues in Rac that are important for binding to HR1b. Surprisingly, as well as residues adjacent to Switch I, in Switch II, and in helix alpha5, it appears that the C-terminal stretch of basic amino acids in Rac is required for a high affinity interaction with HR1b.
Collapse
Affiliation(s)
- Darerca Owen
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Torbett NE, Casamassima A, Parker PJ. Hyperosmotic-induced protein kinase N 1 activation in a vesicular compartment is dependent upon Rac1 and 3-phosphoinositide-dependent kinase 1. J Biol Chem 2003; 278:32344-51. [PMID: 12783890 DOI: 10.1074/jbc.m303532200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase N 1 (PKN1), which in part resembles yeast protein kinase C, has been shown to be under the control of Rho GTPases and 3-phosphoinositide-dependent kinase 1 (PDK1). We show here that green fluorescent protein-tagged PKN1 has the ability to translocate in a reversible manner to a vesicular compartment following hyperosmotic stress. PKN1 kinase activity is not necessary for this translocation, and in fact the PKN inhibitor HA1077 is also shown to induce PKN1 vesicle accumulation. PKN1 translocation is dependent on Rac1 activation, although the GTPase binding HR1abc domain is not sufficient for this recruitment. The PKN1 kinase domain, however, localizes constitutively to this compartment, and we demonstrate that this behavior is selective for PKNs. Associated with vesicle recruitment, PKN1 is shown to undergo activation loop phosphorylation and activation. It is established that this activation pathway involves PDK1, which is shown to be recruited to this PKN1-positive compartment upon hyperosmotic stress. Taken together, our findings present a pathway for the selective hyperosmotic-induced Rac1-dependent PKN1 translocation and PDK1-dependent activation.
Collapse
Affiliation(s)
- Neil E Torbett
- Protein Phosphorylation Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | | | |
Collapse
|
25
|
Ueyama T, Ren Y, Sakai N, Takahashi M, Ono Y, Kondoh T, Tamaki N, Saito N. Generation of a constitutively active fragment of PKN in microglia/macrophages after middle cerebral artery occlusion in rats. J Neurochem 2001; 79:903-13. [PMID: 11723183 DOI: 10.1046/j.1471-4159.2001.00624.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PKN is a fatty acid- and Rho-activated serine/threonine kinase, which has a catalytic domain highly homologous to that of protein kinase C (PKC). Recent studies have demonstrated that PKN is proteolytically cleaved after apoptotic stimulation and then a constitutively active 55-kDa fragment is generated. However, the role of the 55-kDa fragment are poorly understood. Adult Sprague-Dawley (SD) rats underwent middle cerebral artery occlusion (MCAO), and the temporal and spatial changes in the fragmentation of PKN and of PKC delta were examined by immunoblotting. No proteolytic fragment of PKC delta (about 40 kDa) was detected. The 55-kDa fragment of PKN appeared transiently from 3 days after MCAO at the ipsilateral normal cortex. At the boundary zone of infarction, the 55-kDa fragment was markedly induced from day 5 then peaked on day 21 and persisted until day 28. Analysis of anti-phosphoserine immunoprecipitates with an anti-PKN antibody revealed phosphorylation of the 55-kDa band. Double staining for PKN and Ox42 was used to examine the source of the 55-kDa fragment. PKN immunoreactivity was significantly increased in Ox42-positive cells (microglia/hematogenous macrophages). No DNA laddering and only a few terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive cells were observed on day 14 in despite of the high level appearance of the 55-kDa band. These results suggest that the constitutively active 55-kDa fragment of PKN does not contribute to apoptosis, but may contribute to a function of microglia/macrophages.
Collapse
Affiliation(s)
- T Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Rokkodai-cho, Nada-ku, Kobe, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Oishi K, Takahashi M, Mukai H, Banno Y, Nakashima S, Kanaho Y, Nozawa Y, Ono Y. PKN regulates phospholipase D1 through direct interaction. J Biol Chem 2001; 276:18096-101. [PMID: 11259428 DOI: 10.1074/jbc.m010646200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The association of phospholipase (PLD)-1 with protein kinase C-related protein kinases, PKNalpha and PKNbeta, was analyzed. PLD1 interacted with PKNalpha and PKNbeta in COS-7 cells transiently transfected with PLD1 and PKNalpha or PKNbeta expression constructs. The interactions between endogenous PLD1 and PKNalpha or PKNbeta were confirmed by co-immunoprecipitation from mammalian cells. In vitro binding studies using the deletion mutants of PLD1 indicated that PKNalpha directly bound to residues 228-598 of PLD1 and that PKNbeta interacted with residues 1-228 and 228-598 of PLD1. PKNalpha stimulated the activity of PLD1 in the presence of phosphatidylinositol 4,5-bisphosphate in vitro, whereas PKNbeta had a modest effect on the stimulation of PLD1 activity. The stimulation of PLD1 activity by PKNalpha was slightly enhanced by the addition of arachidonic acid. These results suggest that the PKN family functions as a novel intracellular player of PLD1 signaling pathway.
Collapse
Affiliation(s)
- K Oishi
- Graduate School of Science and Technology, and the Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Rho GTPases are molecular switches that regulate many essential cellular processes, including actin dynamics, gene transcription, cell-cycle progression and cell adhesion. About 30 potential effector proteins have been identified that interact with members of the Rho family, but it is still unclear which of these are responsible for the diverse biological effects of Rho GTPases. This review will discuss how Rho GTPases physically interact with, and regulate the activity of, multiple effector proteins and how specific effector proteins contribute to cellular responses. To date most progress has been made in the cytoskeleton field, and several biochemical links have now been established between GTPases and the assembly of filamentous actin. The main focus of this review will be Rho, Rac and Cdc42, the three best characterized mammalian Rho GTPases, though the genetic analysis of Rho GTPases in lower eukaryotes is making increasingly important contributions to this field.
Collapse
|
28
|
Abstract
Rho GTPases are molecular switches that regulate many essential cellular processes, including actin dynamics, gene transcription, cell-cycle progression and cell adhesion. About 30 potential effector proteins have been identified that interact with members of the Rho family, but it is still unclear which of these are responsible for the diverse biological effects of Rho GTPases. This review will discuss how Rho GTPases physically interact with, and regulate the activity of, multiple effector proteins and how specific effector proteins contribute to cellular responses. To date most progress has been made in the cytoskeleton field, and several biochemical links have now been established between GTPases and the assembly of filamentous actin. The main focus of this review will be Rho, Rac and Cdc42, the three best characterized mammalian Rho GTPases, though the genetic analysis of Rho GTPases in lower eukaryotes is making increasingly important contributions to this field.
Collapse
|
29
|
Flynn P, Mellor H, Casamassima A, Parker PJ. Rho GTPase control of protein kinase C-related protein kinase activation by 3-phosphoinositide-dependent protein kinase. J Biol Chem 2000; 275:11064-70. [PMID: 10753910 DOI: 10.1074/jbc.275.15.11064] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein kinase C-related protein kinases (PRKs) have been shown to be under the control of the Rho GTPases and influenced by autophosphorylation. In analyzing the relationship between these inputs, it is shown that activation in vitro and in vivo involves the activation loop phosphorylation of PRK1/2 by 3-phosphoinositide-dependent protein kinase-1 (PDK1). Rho overexpression in cultured cells is shown to increase the activation loop phosphorylation of endogenous PRKs and is demonstrated to influence this process by controlling the ability of PRKs to bind to PDK1. The interaction of PRK1/2 with PDK1 is shown to be dependent upon Rho. Direct demonstration of ternary (Rho.PRK.PDK1) complex formation in situ is provided by the observation that PDK1 is recruited to RhoB-containing endosomes only if PRK is coexpressed. Furthermore, this in vivo complex is maintained after phosphoinositide 3-kinase inhibition. The control of PRKs by PDK1 thus evidences a novel strategy of substrate-directed control involving GTPases.
Collapse
Affiliation(s)
- P Flynn
- Imperial Cancer Research Fund, Protein Phosphorylation Laboratory, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | | | | | |
Collapse
|
30
|
Shibata H, Oda H, Mukai H, Oishi K, Misaki K, Ohkubo H, Ono Y. Interaction of PKN with a neuron-specific basic helix-loop-helix transcription factor, NDRF/NeuroD2. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 74:126-34. [PMID: 10640683 DOI: 10.1016/s0169-328x(99)00273-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
By the yeast two-hybrid screening of a human brain cDNA library with the amino-terminal regulatory region of PKN as a bait, a clone encoding a neuron-specific basic Helix-Loop-Helix (bHLH) transcription factor, NDRF/NeuroD2 was isolated. NDRF/NeuroD2 was co-precipitated with PKN from the lysate of COS-7 cells transfected with both expression constructs for NDRF/NeuroD2 and PKN. In vitro binding studies using the deletion mutants of NDRF/NeuroD2 synthesized in a rabbit reticulocyte lysate indicated that the internal region containing the bHLH domain of NDRF/NeuroD2 was necessary and sufficient for the interaction with PKN. In addition, recombinant NDRF/NeuroD2 purified from Escherichia coli could bind PKN, suggesting the direct interaction between NDRF/NeuroD2 and PKN. Transient transfection assays using P19 cells revealed that expression of NDRF/NeuroD2 increased the transactivation of the rat insulin promoter element 3 (RIPE3) enhancer up to approximately 12-fold and that co-expression of catalytically active form of PKN, but not kinase-deficient derivative, resulted in a further threefold increase of NDRF/NeuroD2-mediated transcription. These findings suggest that PKN may contribute to transcriptional responses through the post-translational modification of the NDRF/NeuroD2-dependent transcriptional machinery.
Collapse
Affiliation(s)
- H Shibata
- Department of Biology, Faculty of Science, Kobe University, Kobe, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Maesaki R, Ihara K, Shimizu T, Kuroda S, Kaibuchi K, Hakoshima T. The structural basis of Rho effector recognition revealed by the crystal structure of human RhoA complexed with the effector domain of PKN/PRK1. Mol Cell 1999; 4:793-803. [PMID: 10619026 DOI: 10.1016/s1097-2765(00)80389-5] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The small G protein Rho has emerged as a key regulator of cellular events involving cytoskeletal reorganization. Here we report the 2.2 A crystal structure of RhoA bound to an effector domain of protein kinase PKN/PRK1. The structure reveals the antiparallel coiled-coil finger (ACC finger) fold of the effector domain that binds to the Rho specificity-determining regions containing switch I, beta strands B2 and B3, and the C-terminal alpha helix A5, predominantly by specific hydrogen bonds. The ACC finger fold is distinct from those for other small G proteins and provides evidence for the diverse ways of effector recognition. Sequence analysis based on the structure suggests that the ACC finger fold is widespread in Rho effector proteins.
Collapse
Affiliation(s)
- R Maesaki
- Division of Structural Biology, Nara Institute of Science and Technology, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Lu Y, Settleman J. The Drosophila Pkn protein kinase is a Rho/Rac effector target required for dorsal closure during embryogenesis. Genes Dev 1999; 13:1168-80. [PMID: 10323867 PMCID: PMC316938 DOI: 10.1101/gad.13.9.1168] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The PKN family of PKC-related protein kinases constitutes the major Rho GTPase-associated protein kinase activities detected in mammalian tissues. However, the biological functions of these kinases are unknown. We have identified a closely related PKN homolog in Drosophila (Pkn) that binds specifically to GTP-activated Rho1 and Rac1 GTPases through distinct binding sites on Pkn. The interaction of Pkn with either of these GTPases results in increased kinase activity, suggesting that Pkn is a shared Rho/Rac effector target. Characterization of a loss-of-function mutant of Drosophila Pkn revealed that this kinase is required specifically for the epidermal cell shape changes during the morphogenetic process of dorsal closure of the developing embryo. Moreover, Pkn, as well as the Rho1 GTPase, mediate a pathway for cell shape changes in dorsal closure that is independent of the previously reported Rac GTPase-mediated Jun amino (N)-terminal kinase (JNK) cascade that regulates gene expression required for dorsal closure. Thus, it appears that distinct but coordinated Rho- and Rac-mediated signaling pathways regulate the cell shape changes required for dorsal closure and that Pkn provides a GTPase effector function for cell shape changes in vivo, which acts together with a Rac-JNK transcriptional pathway in the morphogenesis of the Drosophila embryo.
Collapse
Affiliation(s)
- Y Lu
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | |
Collapse
|
33
|
Abstract
Members of the mammalian protein kinase C (PKC) superfamily play key regulatory roles in a multitude of cellular processes, ranging from control of fundamental cell autonomous activities, such as proliferation, to more organismal functions, such as memory. However, understanding of mammalian PKC signalling systems is complicated by the large number of family members. Significant progress has been made through studies based on comparative analysis, which have defined a number of regulatory elements in PKCs which confer specific location and activation signals to each isotype. Further studies on simple organisms have shown that PKC signalling paradigms are conserved through evolution from yeast to humans, underscoring the importance of this family in cellular signalling and giving novel insights into PKC function in complex mammalian systems.
Collapse
Affiliation(s)
- H Mellor
- Protein Phosphorylation Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | |
Collapse
|
34
|
Flynn P, Mellor H, Palmer R, Panayotou G, Parker PJ. Multiple interactions of PRK1 with RhoA. Functional assignment of the Hr1 repeat motif. J Biol Chem 1998; 273:2698-705. [PMID: 9446575 DOI: 10.1074/jbc.273.5.2698] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PRK1 (PKN) is a serine/threonine kinase that has been shown to be activated by RhoA (Amano, M., Mukai, H., Ono, Y., Chihara, K., Matsui, T., Hamajima, Y., Okawa, K., Iwamatsu, A., and Kaibuchi, K. (1996) Science 271, 648-650). Detailed analysis of the PRK1 region involved in RhoA binding has revealed that two homologous sequences within the HR1 domain (HR1a and HR1b) both bind to RhoA; the third repeat within this domain, HR1cPRK1, does not bind RhoA. The related HR1 motif is also found to confer RhoA binding activity to the only other fully cloned member of this kinase family, PRK2. Furthermore, the predictive value of this motif is established for an HR1a sequence derived from a Caenorhabditis elegans open reading frame encoding a protein kinase of unknown function. Interestingly, the HR1aPRK1 and HR1bPRK1 subdomains are shown to display a distinctive nucleotide dependence for RhoA binding. HRIaPRK1 is entirely GTP-dependent, while HR1bPRK1 binds both GTP- and GDP-bound forms of RhoA. This distinction indicates that there are two sites of contact between RhoA and PRK1, one contact through a region that is conformationally dependent upon the nucleotide-bound state of RhoA and one that is not. Analysis of binding to Rho/Rac chimera provides evidence for a HR1aPRK1 but not HR1bPRK1 interaction in the central third of Rho. Additionally, it is observed that the V14RhoA mutant binds HR1a but does not bind HR1b. This distinct binding behavior corroborates the conclusion that there are independent contacts on RhoA for the HR1aPRK1 and HR1bPRK1 motifs.
Collapse
Affiliation(s)
- P Flynn
- Protein Phosphorylation Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | | | | | | | |
Collapse
|
35
|
Stapleton G, Nguyen CP, Lease KA, Hille MB. Phosphorylation of protein kinase C-related kinase PRK2 during meiotic maturation of starfish oocytes. Dev Biol 1998; 193:36-46. [PMID: 9466886 DOI: 10.1006/dbio.1997.8791] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The resumption of meiosis in the developing starfish oocyte is the result of intracellular signaling events initiated by 1-methyladenine stimulation. One of the earliest detectable kinase activities during meiotic maturation of starfish oocytes is a protein kinase C or PKC-like activity. In this study, several isoforms of protein kinase C were cloned from the oocyte; however, the most abundant PKC-like maternal transcript corresponds to protein kinase C-related kinase 2 (PRK2). PRK2 is expressed in the immature oocyte and at least until germinal vesicle breakdown. Subcellular localization of PRK2 revealed a cytoplasmic distribution in the immature oocyte, which, during meiotic maturation, remained in the cytoplasm but also localized to the disintegrating germinal vesicle. Significantly, PRK2 is phosphorylated in vivo in response to 1-methyladenine which precedes MPF activation, making PRK2 a candidate regulator of early signaling events of meiotic maturation.
Collapse
Affiliation(s)
- G Stapleton
- Department of Zoology, University of Washington, Seattle 98195-1800, USA
| | | | | | | |
Collapse
|
36
|
Cryns VL, Byun Y, Rana A, Mellor H, Lustig KD, Ghanem L, Parker PJ, Kirschner MW, Yuan J. Specific proteolysis of the kinase protein kinase C-related kinase 2 by caspase-3 during apoptosis. Identification by a novel, small pool expression cloning strategy. J Biol Chem 1997; 272:29449-53. [PMID: 9368003 DOI: 10.1074/jbc.272.47.29449] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The caspase family of proteases plays a critical role in the execution of apoptosis. However, efforts to decipher the molecular mechanisms by which caspases induce cell death have been greatly hindered by the lack of systematic and broadly applicable strategies to identify their substrates. Here we describe a novel expression cloning strategy to rapidly isolate cDNAs encoding caspase substrates that are cleaved during apoptosis. Small cDNA pools (approximately 100 clones each) are transcribed/translated in vitro in the presence of [35S]methionine; these labeled protein pools are then incubated with cytosolic extracts from control and apoptotic cells. cDNA pools encoding proteins that are specifically cleaved by the apoptotic extract and whose cleavage is prevented by the caspase inhibitor acetyl-Tyr-Val-Ala-Asp chloromethylketone are subdivided and retested until a single cDNA is isolated. Using this approach, we isolated a partial cDNA encoding protein kinase C-related kinase 2 (PRK2), a serine-threonine kinase, and demonstrate that full-length human PRK2 is proteolyzed by caspase-3 at Asp117 and Asp700 in vitro. In addition, PRK2 is cleaved rapidly during Fas- and staurosporine-induced apoptosis in vivo by caspase-3 or a closely related caspase. Both of the major apoptotic cleavage sites of PRK2 in vivo lie within its regulatory domain, suggesting that its activity may be deregulated by proteolysis.
Collapse
Affiliation(s)
- V L Cryns
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Matsuzawa K, Kosako H, Inagaki N, Shibata H, Mukai H, Ono Y, Amano M, Kaibuchi K, Matsuura Y, Azuma I, Inagaki M. Domain-specific phosphorylation of vimentin and glial fibrillary acidic protein by PKN. Biochem Biophys Res Commun 1997; 234:621-5. [PMID: 9175763 DOI: 10.1006/bbrc.1997.6669] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PKN is a serine/threonine protein kinase with a catalytic domain homologous to the protein kinase C family and unique N-terminal leucine zipper-like sequences. Using analyses with the yeast two-hybrid system and in vitro binding assay, we found that the regulatory domain of PKN interacted with vimentin. We then examined whether PKN would phosphorylate vimentin in vitro. Vimentin proved to be an excellent substrate for PKN, and the phosphorylation of vimentin by PKN occurred in the head domain with the result of a nearly complete inhibition of its filament formation in vitro. Similar results were also obtained with another type III intermediate filament protein, glial fibrillary acidic protein (GFAP). These results raise the possibility that PKN may regulate filament structures of vimentin and GFAP by domain-specific phosphorylation.
Collapse
Affiliation(s)
- K Matsuzawa
- Laboratory of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Peng B, Morrice NA, Groenen LC, Wettenhall RE. Phosphorylation events associated with different states of activation of a hepatic cardiolipin/protease-activated protein kinase. Structural identity to the protein kinase N-type protein kinases. J Biol Chem 1996; 271:32233-40. [PMID: 8943281 DOI: 10.1074/jbc.271.50.32233] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cardiolipin- or protease-activated protein kinase, isolated from rat liver cytosol and originally named liver PAK-1, was found to be the natural form of protein kinase N (PKN) by comparing the sequences of 43 tryptic peptides of the purified liver enzyme and determining the corresponding liver cDNA sequence. These analyses also identified (i) Arg-546 as the major site of proteolytic activation, (ii) the protease resistance of the C-terminal extension beyond the catalytic domain, and (iii) in vivo stoichiometric phosphorylation of Thr-778 in the mature enzyme. Homology modeling of the catalytic domain indicated that phosphothreonine 778 functions as an anchoring site similar to Thr-197 in cAMP-dependent protein kinase, which stabilizes an active site compatible with preferred substrate sequences of PAK-1/PKN. Sigmoidal autophosphorylation kinetics and increased S6-(229-239) peptide kinase activity following preincubation with ATP suggested phosphorylation-dependent activation of PAK-1/PKN. The onset of activation corresponded with phosphorylation of the regulatory domain site Ser-377 (located within a spectrin homology region), followed by Thr-504 (within a limited protein kinase C homology region), and, to a lesser extent, Thr-64 (in the RhoA-binding region). Several additional sites in the hinge region adjacent to a PEST protein degradation signal were selectively autophosphorylated following cardiolipin activation. Overall, these observations suggest that the regulation of this class of protein kinase involves complex interactions among phosphorylation-, lipid-, and other ligand-dependent activation events.
Collapse
Affiliation(s)
- B Peng
- Russell Grimwade School of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | | | |
Collapse
|