1
|
Chodavarapu S, Jones AD, Feig M, Kaguni JM. DnaC traps DnaB as an open ring and remodels the domain that binds primase. Nucleic Acids Res 2015; 44:210-20. [PMID: 26420830 PMCID: PMC4705694 DOI: 10.1093/nar/gkv961] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/11/2015] [Indexed: 11/23/2022] Open
Abstract
Helicase loading at a DNA replication origin often requires the dynamic interactions between the DNA helicase and an accessory protein. In E. coli, the DNA helicase is DnaB and DnaC is its loading partner. We used the method of hydrogen/deuterium exchange mass spectrometry to address the importance of DnaB–DnaC complex formation as a prerequisite for helicase loading. Our results show that the DnaB ring opens and closes, and that specific amino acids near the N-terminus of DnaC interact with a site in DnaB's C-terminal domain to trap it as an open ring. This event correlates with conformational changes of the RecA fold of DnaB that is involved in nucleotide binding, and of the AAA+ domain of DnaC. DnaC also causes an alteration of the helical hairpins in the N-terminal domain of DnaB, presumably occluding this region from interacting with primase. Hence, DnaC controls the access of DnaB by primase.
Collapse
Affiliation(s)
- Sundari Chodavarapu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA Department of Chemistry, Michigan State University, East Lansing, MI 48824-1319, USA
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA Department of Chemistry, Michigan State University, East Lansing, MI 48824-1319, USA
| | - Jon M Kaguni
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| |
Collapse
|
2
|
Carraher C, Nazmi AR, Newcomb RD, Kralicek A. Recombinant expression, detergent solubilisation and purification of insect odorant receptor subunits. Protein Expr Purif 2013; 90:160-9. [PMID: 23770557 DOI: 10.1016/j.pep.2013.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 12/16/2022]
Abstract
Insect odorant receptors (ORs) are seven transmembrane domain proteins that comprise a novel family of ligand-gated non-selective cation channels. The functional channel is made up of an odour activated ligand-binding OR and the OR co-receptor, Orco. However, the structure, stoichiometry and mechanism of activation of the receptor complex are not well understood. Here we demonstrate that baculovirus-mediated Sf9 cell expression and wheat germ cell-free expression, but not Escherichia coli cell-based or cell-free expression, can be used successfully to over-express a selection of insect ORs. From a panel of 19 detergents, 1%w/v Zwittergent 3-16 was able to solubilise five Drosophila melanogaster ORs produced from both eukaryotic expression systems. A large-scale purification protocol was then developed for DmOrco and the ligand-binding receptor, DmOr22a. The proteins were nickel-affinity purified using a deca-histidine tag in a buffer containing 0.2 mM Zwittergent 3-16, followed by size exclusion chromatography. These purified ORs appear to form similarly sized protein-detergent complexes when isolated from both expression systems. Circular dichroism analysis of both purified proteins suggests they are folded correctly. We also provide evidence that when DmOrco is expressed in Sf9 cells it undergoes post translational modification, probably glycosylation. Finally we show that the recombinant ORs can be incorporated into pre-formed liposomes. The ability to recombinantly express and purify insect ORs to homogeneity on a preparative scale, as well as insert them into liposomes, is a major step forward in enabling future structural and functional studies, as well as their use in OR based biosensors.
Collapse
Affiliation(s)
- Colm Carraher
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | | | | | | |
Collapse
|
3
|
Replication initiation at the Escherichia coli chromosomal origin. Curr Opin Chem Biol 2011; 15:606-13. [PMID: 21856207 DOI: 10.1016/j.cbpa.2011.07.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/20/2011] [Accepted: 07/22/2011] [Indexed: 11/24/2022]
Abstract
To initiate DNA replication, DnaA recognizes and binds to specific sequences within the Escherichia coli chromosomal origin (oriC), and then unwinds a region within oriC. Next, DnaA interacts with DnaB helicase in loading the DnaB-DnaC complex on each separated strand. Primer formation by primase (DnaG) induces the dissociation of DnaC from DnaB, which involves the hydrolysis of ATP bound to DnaC. Recent evidence indicates that DnaC acts as a checkpoint in the transition from initiation to the elongation stage of DNA replication. Freed from DnaC, DnaB helicase unwinds the parental duplex DNA while interacting the cellular replicase, DNA polymerase III holoenzyme, and primase as it intermittently forms primers that are extended by the replicase in duplicating the chromosome.
Collapse
|
4
|
Makowska-Grzyska M, Kaguni JM. Primase directs the release of DnaC from DnaB. Mol Cell 2010; 37:90-101. [PMID: 20129058 DOI: 10.1016/j.molcel.2009.12.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 09/03/2009] [Accepted: 12/18/2009] [Indexed: 10/20/2022]
Abstract
An AAA+ ATPase, DnaC, delivers DnaB helicase at the E. coli chromosomal origin by a poorly understood process. This report shows that mutant proteins bearing alanine substitutions for two conserved arginines in a motif named box VII are defective in DNA replication, but this deficiency does not arise from impaired interactions with ATP, DnaB, or single-stranded DNA. Despite their ability to deliver DnaB to the chromosomal origin to form the prepriming complex, this intermediate is inactive. Quantitative analysis of the prepriming complex suggests that the DnaB-DnaC complex contains three DnaC monomers per DnaB hexamer and that the interaction of primase with DnaB and primer formation triggers the release of DnaC, but not the mutants, from DnaB. The interaction of primase with DnaB and the release of DnaC mark discrete events in the transition from initiation to the elongation stage of DNA replication.
Collapse
Affiliation(s)
- Magdalena Makowska-Grzyska
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| | | |
Collapse
|
5
|
Biswas T, Tsodikov OV. Hexameric ring structure of the N-terminal domain of Mycobacterium tuberculosis DnaB helicase. FEBS J 2008; 275:3064-71. [PMID: 18479467 DOI: 10.1111/j.1742-4658.2008.06460.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hexameric DnaB helicase unwinds the DNA double helix during replication of genetic material in bacteria. DnaB is an essential bacterial protein; therefore, it is an important potential target for antibacterial drug discovery. We report a crystal structure of the N-terminal region of DnaB from the pathogen Mycobacterium tuberculosis (MtDnaBn), determined at 2.0 A resolution. This structure provides atomic resolution details of formation of the hexameric ring of DnaB by two distinct interfaces. An extensive hydrophobic interface stabilizes a dimer of MtDnaBn by forming a four-helix bundle. The other, less extensive, interface is formed between the dimers, connecting three of them into a hexameric ring. On the basis of crystal packing interactions between MtDnaBn rings, we suggest a model of a helicase-primase complex that explains previously observed effects of DnaB mutations on DNA priming.
Collapse
Affiliation(s)
- Tapan Biswas
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
6
|
Su XC, Schaeffer PM, Loscha KV, Gan PHP, Dixon NE, Otting G. Monomeric solution structure of the helicase-binding domain of Escherichia coli DnaG primase. FEBS J 2006; 273:4997-5009. [PMID: 17010164 DOI: 10.1111/j.1742-4658.2006.05495.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DnaG is the primase that lays down RNA primers on single-stranded DNA during bacterial DNA replication. The solution structure of the DnaB-helicase-binding C-terminal domain of Escherichia coli DnaG was determined by NMR spectroscopy at near-neutral pH. The structure is a rare fold that, besides occurring in DnaG C-terminal domains, has been described only for the N-terminal domain of DnaB. The C-terminal helix hairpin present in the DnaG C-terminal domain, however, is either less stable or absent in DnaB, as evidenced by high mobility of the C-terminal 35 residues in a construct comprising residues 1-171. The present structure identifies the previous crystal structure of the E. coli DnaG C-terminal domain as a domain-swapped dimer. It is also significantly different from the NMR structure reported for the corresponding domain of DnaG from the thermophile Bacillus stearothermophilus. NMR experiments showed that the DnaG C-terminal domain does not bind to residues 1-171 of the E. coli DnaB helicase with significant affinity.
Collapse
Affiliation(s)
- Xun-Cheng Su
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | | | | | | | | | | |
Collapse
|
7
|
Neylon C, Kralicek AV, Hill TM, Dixon NE. Replication termination in Escherichia coli: structure and antihelicase activity of the Tus-Ter complex. Microbiol Mol Biol Rev 2005; 69:501-26. [PMID: 16148308 PMCID: PMC1197808 DOI: 10.1128/mmbr.69.3.501-526.2005] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The arrest of DNA replication in Escherichia coli is triggered by the encounter of a replisome with a Tus protein-Ter DNA complex. A replication fork can pass through a Tus-Ter complex when traveling in one direction but not the other, and the chromosomal Ter sites are oriented so replication forks can enter, but not exit, the terminus region. The Tus-Ter complex acts by blocking the action of the replicative DnaB helicase, but details of the mechanism are uncertain. One proposed mechanism involves a specific interaction between Tus-Ter and the helicase that prevents further DNA unwinding, while another is that the Tus-Ter complex itself is sufficient to block the helicase in a polar manner, without the need for specific protein-protein interactions. This review integrates three decades of experimental information on the action of the Tus-Ter complex with information available from the Tus-TerA crystal structure. We conclude that while it is possible to explain polar fork arrest by a mechanism involving only the Tus-Ter interaction, there are also strong indications of a role for specific Tus-DnaB interactions. The evidence suggests, therefore, that the termination system is more subtle and complex than may have been assumed. We describe some further experiments and insights that may assist in unraveling the details of this fascinating process.
Collapse
Affiliation(s)
- Cameron Neylon
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom.
| | | | | | | |
Collapse
|
8
|
Williams NK, Liepinsh E, Watt SJ, Prosselkov P, Matthews JM, Attard P, Beck JL, Dixon NE, Otting G. Stabilization of Native Protein Fold by Intein-Mediated Covalent Cyclization. J Mol Biol 2005; 346:1095-108. [PMID: 15701520 DOI: 10.1016/j.jmb.2004.12.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2004] [Revised: 12/14/2004] [Accepted: 12/16/2004] [Indexed: 10/26/2022]
Abstract
A mutant version of the N-terminal domain of Escherichia coli DnaB helicase was used as a model system to assess the stabilization against unfolding gained by covalent cyclization. Cyclization was achieved in vivo by formation of an amide bond between the N and C termini with the help of a split mini-intein. Linear and circular proteins were constructed to be identical in amino acid sequence. Mutagenesis of Phe102 to Glu rendered the protein monomeric even at high concentration. A difference in free energy of unfolding, DeltaDeltaG, between circular and linear protein of 2.3(+/-0.5) kcal mol(-1) was measured at 10 degrees C by circular dichroism. A theoretical estimate of the difference in conformational entropy of linear and circular random chains in a three-dimensional cubic lattice model predicted DeltaDeltaG=2.3 kcal mol(-1), suggesting that stabilization by protein cyclization is driven by the reduced conformational entropy of the unfolded state. Amide-proton exchange rates measured by NMR spectroscopy and mass spectrometry showed a uniform, approximately tenfold decrease of the exchange rates of the most slowly exchanging amide protons, demonstrating that cyclization globally decreases the unfolding rate of the protein. The amide proton exchange was found to follow EX1 kinetics at near-neutral pH, in agreement with an unusually slow refolding rate of less than 4 min(-1) measured by stopped-flow circular dichroism. The linear and circular proteins differed more in their unfolding than in their folding rates. Global unfolding of the N-terminal domain of E.coli DnaB is thus promoted strongly by spatial separation of the N and C termini, whereas their proximity is much less important for folding.
Collapse
Affiliation(s)
- Neal K Williams
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Oakley AJ, Loscha KV, Schaeffer PM, Liepinsh E, Pintacuda G, Wilce MCJ, Otting G, Dixon NE. Crystal and Solution Structures of the Helicase-binding Domain of Escherichia coli Primase. J Biol Chem 2005; 280:11495-504. [PMID: 15649896 DOI: 10.1074/jbc.m412645200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During bacterial DNA replication, the DnaG primase interacts with the hexameric DnaB helicase to synthesize RNA primers for extension by DNA polymerase. In Escherichia coli, this occurs by transient interaction of primase with the helicase. Here we demonstrate directly by surface plasmon resonance that the C-terminal domain of primase is responsible for interaction with DnaB6. Determination of the 2.8-angstroms crystal structure of the C-terminal domain of primase revealed an asymmetric dimer. The monomers have an N-terminal helix bundle similar to the N-terminal domain of DnaB, followed by a long helix that connects to a C-terminal helix hairpin. The connecting helix is interrupted differently in the two monomers. Solution studies using NMR showed that an equilibrium exists between a monomeric species with an intact, extended but naked, connecting helix and a dimer in which this helix is interrupted in the same way as in one of the crystal conformers. The other conformer is not significantly populated in solution, and its presence in the crystal is due largely to crystal packing forces. It is proposed that the connecting helix contributes necessary structural flexibility in the primase-helicase complex at replication forks.
Collapse
Affiliation(s)
- Aaron J Oakley
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Yang S, Yu X, VanLoock MS, Jezewska MJ, Bujalowski W, Egelman EH. Flexibility of the rings: structural asymmetry in the DnaB hexameric helicase. J Mol Biol 2002; 321:839-49. [PMID: 12206765 DOI: 10.1016/s0022-2836(02)00711-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DnaB is the primary replicative helicase in Escherichia coli and the hexameric DnaB ring has previously been shown to exist in two states in the presence of nucleotides. In one, all subunits are equivalent, while in the other, there are two different subunit conformations resulting in a trimer of dimers. Under all conditions that we have used for electron microscopy, including the absence of nucleotide, some rings exist as trimers of dimers, showing that the symmetry of the DnaB hexamer can be broken prior to nucleotide binding. Three-dimensional reconstructions reveal that the N-terminal domain of DnaB makes two very different contacts with neighboring subunits in the trimer of dimers, but does not form a predicted dimer with a neighboring N-terminal domain. Within the trimer of dimers, the helicase domain exists in two alternate conformations, each of which can form symmetrical hexamers depending upon the nucleotide cofactor used. These results provide new information about the modular architecture and domain dynamics of helicases, and suggest, by comparison with the hexameric bacteriophage T7 gp4 and SV40 large T-antigen helicases, that a great structural and mechanistic diversity may exist among the hexameric helicases.
Collapse
Affiliation(s)
- Shixin Yang
- Department of Biochemistry and Molecular Genetics, University of Virginia Health Sciences Center, Jordan Hall, Box 800773, Charlottesville 22908-0733, USA
| | | | | | | | | | | |
Collapse
|
11
|
Williams NK, Prosselkov P, Liepinsh E, Line I, Sharipo A, Littler DR, Curmi PMG, Otting G, Dixon NE. In vivo protein cyclization promoted by a circularly permuted Synechocystis sp. PCC6803 DnaB mini-intein. J Biol Chem 2002; 277:7790-8. [PMID: 11742000 DOI: 10.1074/jbc.m110303200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A synthetic Synechocystis sp. PCC6803 DnaB split mini-intein gene was constructed for the in vivo cyclization of recombinant proteins expressed in Escherichia coli. The system was used to cyclize the NH(2)-terminal domain of E. coli DnaB, the structure of which had been determined previously by NMR spectroscopy. Cyclization was found to proceed efficiently, with little accumulation of precursor, and the product was purified in high yield. The solution structure of cyclic DnaB-N is not significantly different from that of linear DnaB-N and it unfolds reversibly at temperatures approximately 14 degrees C higher. Improved hydrogen bonding was observed in the first and last helices, and the length of the last helix was increased, while the 9-amino acid linker used to join the NH(2) and COOH termini was found to be highly mobile. The measured thermodynamic stabilization of the structure (Delta Delta G approximately 2 kcal/mol) agrees well with the value estimated from the reduced conformational entropy in the unfolded form. Simple polymer theory can be used to predict likely free energy changes resulting from protein cyclization and how the stabilization depends on the size of the protein and the length of the linker used to connect the termini.
Collapse
Affiliation(s)
- Neal K Williams
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Caspi R, Pacek M, Consiglieri G, Helinski DR, Toukdarian A, Konieczny I. A broad host range replicon with different requirements for replication initiation in three bacterial species. EMBO J 2001; 20:3262-71. [PMID: 11406602 PMCID: PMC150194 DOI: 10.1093/emboj/20.12.3262] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Plasmid RK2 is unusual in its ability to replicate stably in a wide range of Gram-negative bacteria. The replication origin (oriV) and a plasmid-encoded initiation protein (TrfA; expressed as 33 and 44 kDa forms) are essential for RK2 replication. To examine initiation events in bacteria unrelated to Escherichia coli, the genes encoding the replicative helicase, DnaB, of Pseudomonas putida and Pseudomonas aeruginosa were isolated and used to construct protein expression vectors. The purified proteins were tested for activity along with E.coli DnaB at RK2 oriV. Each helicase could be recruited and activated at the RK2 origin in the presence of the host-specific DnaA protein and the TrfA protein. Escherichia coli or P.putida DnaB was active with either TrfA-33 or TrfA-44, while P.aeruginosa DnaB required TrfA-44 for activation. Moreover, unlike the E.coli DnaB helicase, both Pseudomonas helicases could be delivered and activated at oriV in the absence of an ATPase accessory protein. Thus, a DnaC-like accessory ATPase is not universally required for loading the essential replicative helicase at a replication origin.
Collapse
Affiliation(s)
- Ron Caspi
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0322, USA and Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland Present address: Pangene Corporation, 5500 Stewart Avenue, Fremont, CA 94538, USA Corresponding author e-mail:
| | - Marcin Pacek
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0322, USA and Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland Present address: Pangene Corporation, 5500 Stewart Avenue, Fremont, CA 94538, USA Corresponding author e-mail:
| | - Giac Consiglieri
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0322, USA and Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland Present address: Pangene Corporation, 5500 Stewart Avenue, Fremont, CA 94538, USA Corresponding author e-mail:
| | - Donald R. Helinski
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0322, USA and Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland Present address: Pangene Corporation, 5500 Stewart Avenue, Fremont, CA 94538, USA Corresponding author e-mail:
| | - Aresa Toukdarian
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0322, USA and Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland Present address: Pangene Corporation, 5500 Stewart Avenue, Fremont, CA 94538, USA Corresponding author e-mail:
| | - Igor Konieczny
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0322, USA and Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland Present address: Pangene Corporation, 5500 Stewart Avenue, Fremont, CA 94538, USA Corresponding author e-mail:
| |
Collapse
|
13
|
Bárcena M, Ruiz T, Donate LE, Brown SE, Dixon NE, Radermacher M, Carazo JM. The DnaB.DnaC complex: a structure based on dimers assembled around an occluded channel. EMBO J 2001; 20:1462-8. [PMID: 11250911 PMCID: PMC145514 DOI: 10.1093/emboj/20.6.1462] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Replicative helicases are motor proteins that unwind DNA at replication forks. Escherichia coli DnaB is the best characterized member of this family of enzymes. We present the 26 A resolution three-dimensional structure of the DnaB hexamer in complex with its loading partner, DnaC, obtained from cryo-electron microscopy. Analysis of the volume brings insight into the elaborate way the two proteins interact, and provides a structural basis for control of the symmetry state and inactivation of the helicase by DnaC. The complex is arranged on the basis of interactions among DnaC and DnaB dimers. DnaC monomers are observed for the first time to arrange as three dumb-bell-shaped dimers that interlock into one of the faces of the helicase. This could be responsible for the freezing of DnaB in a C(3) architecture by its loading partner. The central channel of the helicase is almost occluded near the end opposite to DnaC, such that even single-stranded DNA could not pass through. We propose that the DnaB N-terminal domain is located at this face.
Collapse
Affiliation(s)
| | - Teresa Ruiz
- Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain,
Max-Planck Institut für Biophysik, Heinrich Hoffmann Strasse 7, 60528 Frankfurt am Main, Germany and Research School of Chemistry, Australian National University, Canberra 0200, Australia Corresponding author e-mail:
| | | | - Susan E. Brown
- Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain,
Max-Planck Institut für Biophysik, Heinrich Hoffmann Strasse 7, 60528 Frankfurt am Main, Germany and Research School of Chemistry, Australian National University, Canberra 0200, Australia Corresponding author e-mail:
| | - Nicholas E. Dixon
- Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain,
Max-Planck Institut für Biophysik, Heinrich Hoffmann Strasse 7, 60528 Frankfurt am Main, Germany and Research School of Chemistry, Australian National University, Canberra 0200, Australia Corresponding author e-mail:
| | - Michael Radermacher
- Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain,
Max-Planck Institut für Biophysik, Heinrich Hoffmann Strasse 7, 60528 Frankfurt am Main, Germany and Research School of Chemistry, Australian National University, Canberra 0200, Australia Corresponding author e-mail:
| | - José María Carazo
- Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain,
Max-Planck Institut für Biophysik, Heinrich Hoffmann Strasse 7, 60528 Frankfurt am Main, Germany and Research School of Chemistry, Australian National University, Canberra 0200, Australia Corresponding author e-mail:
| |
Collapse
|
14
|
Donate LE, Llorca O, Bárcena M, Brown SE, Dixon NE, Carazo JM. pH-controlled quaternary states of hexameric DnaB helicase. J Mol Biol 2000; 303:383-93. [PMID: 11031115 DOI: 10.1006/jmbi.2000.4132] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DnaB is the major helicase in the Escherichia coli replisome. It is a homohexameric enzyme that interacts with many other replisomal proteins and cofactors. It is usually loaded onto a single strand of DNA at origins of replication from its complex with its loading partner DnaC, then translocates in the 5' to 3' direction, unwinding duplex DNA in an NTP-driven process. Quaternary polymorphism has been described for the DnaB oligomer, a feature it has in common with some other hexameric helicases. In the present work, electron microscopy and in- depth rotational analysis studies of negatively stained specimens has allowed the establishment of conditions that govern the transition between the two different rotational symmetry states (C(3) and C(6)) of DnaB. It is shown: (a) that the pH value of the sample buffer, within the physiological range, dictates the quaternary organisation of the DnaB oligomer; (b) that the pH-induced transition is fully reversible; (c) that the type of adenine nucleotide complexed to DnaB, whether hydrolysable or not, does not affect its quaternary architecture; (d) that the DnaB.DnaC complex exists only as particles with C(3) symmetry; and (e) that DnaC interacts only with DnaB particles that have C(3) symmetry. Structural consequences of this quaternary polymorphism, as well as its functional implications for helicase activity, are discussed.
Collapse
Affiliation(s)
- L E Donate
- Campus de Cantoblanco, Centro Nacional de Biotecnología (CSIC), Madrid, 28049, Spain
| | | | | | | | | | | |
Collapse
|
15
|
Hamdan S, Brown SE, Thompson PR, Yang JY, Carr PD, Ollis DL, Otting G, Dixon NE. Preliminary X-ray crystallographic and NMR studies on the exonuclease domain of the epsilon subunit of Escherichia coli DNA polymerase III. J Struct Biol 2000; 131:164-9. [PMID: 11042088 DOI: 10.1006/jsbi.2000.4291] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structured core of the N-terminal 3'-5' exonuclease domain of epsilon, the proofreading subunit of Escherichia coli DNA polymerase III, was defined by multidimensional NMR experiments with uniformly (15)N-labeled protein: it comprises residues between Ile-4 and Gln-181. A 185-residue fragment, termed epsilon(1-185), was crystallized by the hanging drop vapor diffusion method in the presence of thymidine-5'-monophosphate, a product inhibitor, and Mn(2+) at pH 5.8. The crystals are tetragonal, with typical dimensions 0.2 mm x 0.2 mm x 1.0 mm, grow over about 2 weeks at 4 degrees C, and diffract X-rays to 2.0 A. The space group was determined to be P4(n)2(1)2 (n = 0, 1, 2, 3), with unit cell dimensions a = 60.8 A, c = 111.4 A.
Collapse
Affiliation(s)
- S Hamdan
- Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Keniry MA, Berthon HA, Yang JY, Miles CS, Dixon NE. NMR solution structure of the theta subunit of DNA polymerase III from Escherichia coli. Protein Sci 2000; 9:721-33. [PMID: 10794414 PMCID: PMC2144624 DOI: 10.1110/ps.9.4.721] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The catalytic core of Escherichia coli DNA polymerase III contains three tightly associated subunits (alpha, epsilon, and theta). The theta subunit is the smallest, but the least understood of the three. As a first step in a program aimed at understanding its function, the structure of the theta subunit has been determined by triple-resonance multidimensional NMR spectroscopy. Although only a small protein, theta was difficult to assign fully because approximately one-third of the protein is unstructured, and some sections of the remaining structured parts undergo intermediate intramolecular exchange. The secondary structure was deduced from the characteristic nuclear Overhauser effect patterns, the 3J(HN alpha) coupling constants and the consensus chemical shift index. The C-terminal third of the protein, which has many charged and hydrophilic amino acid residues, has no well-defined secondary structure and exists in a highly dynamic state. The N-terminal two-thirds has three helical segments (Gln10-Asp19, Glu38-Glu43, and His47-Glu54), one short extended segment (Pro34-Ala37), and a long loop (Ala20-Glu29), of which part may undergo intermediate conformational exchange. Solution of the three-dimensional structure by NMR techniques revealed that the helices fold in such a way that the surface of theta is bipolar, with one face of the protein containing most of the acidic residues and the other face containing most of the long chain basic residues. Preliminary chemical shift mapping experiments with a domain of the epsilon subunit have identified a loop region (Ala20-Glu29) in theta as the site of association with epsilon.
Collapse
Affiliation(s)
- M A Keniry
- Research School of Chemistry, The Australian National University, Canberra, ACT.
| | | | | | | | | |
Collapse
|
17
|
Abstract
BACKGROUND The hexameric helicase DnaB unwinds the DNA duplex at the Escherichia coli chromosome replication fork. Although the mechanism by which DnaB both couples ATP hydrolysis to translocation along DNA and denatures the duplex is unknown, a change in the quaternary structure of the protein involving dimerization of the N-terminal domain has been observed and may occur during the enzymatic cycle. This N-terminal domain is required both for interaction with other proteins in the primosome and for DnaB helicase activity. Knowledge of the structure of this domain may contribute to an understanding of its role in DnaB function. RESULTS We have determined the structure of the N-terminal domain of DnaB crystallographically. The structure is globular, highly helical and lacks a close structural relative in the database of known protein folds. Conserved residues and sites of dominant-negative mutations have structurally significant roles. Each asymmetric unit in the crystal contains two independent and identical copies of a dimer of the DnaB N-terminal domain. CONCLUSIONS The large-scale domain or subunit reorientation that is seen in DnaB by electron microscopy might result from the formation of a true twofold symmetric dimer of N-terminal domains, while maintaining a head-to-tail arrangement of C-terminal domains. The N-terminal domain of DnaB is the first region of a hexameric DNA replicative helicase to be visualized at high resolution. Comparison of this structure to the analogous region of the Rho RNA/DNA helicase indicates that the N-terminal domains of these hexameric helicases are structurally dissimilar.
Collapse
Affiliation(s)
- D Fass
- Whitehead Institute, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
18
|
Weigelt J, Brown SE, Miles CS, Dixon NE, Otting G. NMR structure of the N-terminal domain of E. coli DnaB helicase: implications for structure rearrangements in the helicase hexamer. Structure 1999; 7:681-90. [PMID: 10404597 DOI: 10.1016/s0969-2126(99)80089-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND DnaB is the primary replicative helicase in Escherichia coli. Native DnaB is a hexamer of identical subunits, each consisting of a larger C-terminal domain and a smaller N-terminal domain. Electron-microscopy data show hexamers with C6 or C3 symmetry, indicating large domain movements and reversible pairwise association. RESULTS The three-dimensional structure of the N-terminal domain of E. coli DnaB was determined by nuclear magnetic resonance (NMR) spectroscopy. Structural similarity was found with the primary dimerisation domain of a topoisomerase, the gyrase A subunit from E. coli. A monomer-dimer equilibrium was observed for the isolated N-terminal domain of DnaB. A dimer model with C2 symmetry was derived from intermolecular nuclear Overhauser effects, which is consistent with all available NMR data. CONCLUSIONS The monomer-dimer equilibrium observed for the N-terminal domain of DnaB is likely to be of functional significance for helicase activity, by participating in the switch between C6 and C3 symmetry of the helicase hexamer.
Collapse
Affiliation(s)
- J Weigelt
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|