1
|
Brown-Borg HM, Rakoczy S. Metabolic adaptations to short-term every-other-day feeding in long-living Ames dwarf mice. Exp Gerontol 2013; 48:905-19. [PMID: 23832075 DOI: 10.1016/j.exger.2013.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 06/24/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
Abstract
Restrictive dietary interventions exert significant beneficial physiological effects in terms of aging and age-related disease in many species. Every other day feeding (EOD) has been utilized in aging research and shown to mimic many of the positive outcomes consequent with dietary restriction. This study employed long living Ames dwarf mice subjected to EOD feeding to examine the adaptations of the oxidative phosphorylation and antioxidative defense systems to this feeding regimen. Every other day feeding lowered liver glutathione (GSH) concentrations in dwarf and wild type (WT) mice but altered GSH biosynthesis and degradation in WT mice only. The activities of liver OXPHOS enzymes and corresponding proteins declined in WT mice fed EOD while in dwarf animals, the levels were maintained or increased with this feeding regimen. Antioxidative enzymes were differentially affected depending on the tissue, whether proliferative or post-mitotic. Gene expression of components of liver methionine metabolism remained elevated in dwarf mice when compared to WT mice as previously reported however, enzymes responsible for recycling homocysteine to methionine were elevated in both genotypes in response to EOD feeding. The data suggest that the differences in anabolic hormone levels likely affect the sensitivity of long living and control mice to this dietary regimen, with dwarf mice exhibiting fewer responses in comparison to WT mice. These results provide further evidence that dwarf mice may be better protected against metabolic and environmental perturbations which may in turn, contribute to their extended longevity.
Collapse
Affiliation(s)
- Holly M Brown-Borg
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA.
| | | |
Collapse
|
2
|
The multi-functional roles of GNMT in toxicology and cancer. Toxicol Appl Pharmacol 2012; 266:67-75. [PMID: 23147572 DOI: 10.1016/j.taap.2012.11.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 11/02/2012] [Accepted: 11/03/2012] [Indexed: 11/23/2022]
Abstract
Although glycine N-methyltransferase (GNMT) has been discovered for five decades, its function was not elucidated until recently. In this review, we discuss the multiple roles of GNMT in toxicology and cancer. Besides catalyzing the production of methylglycine (sarcosine) in one carbon metabolism pathway, GNMT was found to be able to bind a number of polycyclic aromatic hydrocarbons and inhibit DNA adducts formation. Moreover, GNMT exerts protective effects against the cytotoxicity and carcinogenicity of benzo(a)pyrene and aflatoxin B(1) in vitro and in vivo. Occupational study showed that workers who had genotypes with higher GNMT promoter activity may have lower content of oxidative damaged DNA products in their urine. In terms of cancer, recent studies using GNMT knockout mouse models demonstrated that GNMT deficiency has high penetrance in inducing the development of steatohepatitis and hepatocellular carcinoma. In terms of the mechanism, besides dysregulation of epigenetic modification, insights have been provided by recent identification of two novel proteins interacting with GNMT-DEPTOR and NPC2. These studies suggest that GNMT not only is involved in mTOR signaling pathway, but also plays an important role in the intracellular trafficking of cholesterol. The implication of these findings to the preventive medicine and translational research will be discussed.
Collapse
|
3
|
Fang X, Dong W, Thornton C, Willett KL. Benzo[a]pyrene effects on glycine N-methyltransferase mRNA expression and enzyme activity in Fundulus heteroclitus embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 98:130-138. [PMID: 20185185 PMCID: PMC2873104 DOI: 10.1016/j.aquatox.2010.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/28/2010] [Accepted: 02/01/2010] [Indexed: 05/28/2023]
Abstract
Benzo[a]pyrene (BaP) is a ubiquitous environmental polycyclic aromatic hydrocarbon (PAH) contaminant that is both a carcinogen and a developmental toxicant. We hypothesize that some of BaP's developmental toxicity may be mediated by effects on glycine N-methyltransferase (GNMT). GNMT is a mediator in the methionine and folate cycles, and the homotetrameric form enzymatically transfers a methyl group from S-adenosylmethionine (SAM) to glycine forming S-adenosylhomocysteine (SAH) and sarcosine. SAM homeostasis, as regulated by GNMT, is critically involved in regulation of DNA methylation, and altered GNMT expression is associated with liver pathologies. The homodimeric form of GNMT has been suggested as the 4S PAH-binding protein. To further study BaP-GNMT interactions, Fundulus heteroclitus embryos were exposed to waterborne BaP at 10 and 100mug/L and both GNMT mRNA expression and enzyme activity were determined. Whole mount in situ hybridization showed GNMT mRNA expression was increased by BaP in the liver region of 7, 10 and 14dpf F. heteroclitus embryos. In contrast to mRNA induction, in vivo BaP exposure decreased GNMT enzyme activity in 4, 10 and 14dpf embryos. However, in vitro incubations of adult F. heteroclitus liver cytosol with BaP did not cause decreased enzyme activity. In conclusion, BaP exposure altered GNMT expression, which may represent a new target pathway for BaP-mediated embryonic toxicities and DNA methylation changes.
Collapse
Affiliation(s)
- Xiefan Fang
- Department of Pharmacology and Environmental Toxicology Research Program, School of Pharmacy, University of Mississippi, University, Mississippi, USA, 38677
| | - Wu Dong
- Department of Pharmacology and Environmental Toxicology Research Program, School of Pharmacy, University of Mississippi, University, Mississippi, USA, 38677
| | - Cammi Thornton
- Department of Pharmacology and Environmental Toxicology Research Program, School of Pharmacy, University of Mississippi, University, Mississippi, USA, 38677
| | - Kristine L. Willett
- Department of Pharmacology and Environmental Toxicology Research Program, School of Pharmacy, University of Mississippi, University, Mississippi, USA, 38677
| |
Collapse
|
4
|
Luka Z, Mudd SH, Wagner C. Glycine N-methyltransferase and regulation of S-adenosylmethionine levels. J Biol Chem 2009; 284:22507-11. [PMID: 19483083 DOI: 10.1074/jbc.r109.019273] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Methylation is a major biological process. It has been shown to be important in formation of compounds such as phosphatidylcholine, creatine, and many others and also participates in epigenetic effects through methylation of histones and DNA. The donor of methyl groups for almost all cellular methylation reactions is S-adenosylmethionine. It seems that the level of S-adenosylmethionine must be regulated in response to developmental stages and metabolic changes, and the enzyme glycine N-methyltransferase has been shown to play a major role in such regulation in mammals. This minireview will focus on the latest discoveries in the elucidation of the mechanism of that regulation.
Collapse
Affiliation(s)
- Zigmund Luka
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
5
|
Masuda T, Ogawa H, Matsushima T, Kawamata S, Sasahara M, Kuroda K, Suzuki Y, Takata Y, Yamazaki M, Takusagawa F, Pitot HC. Localization and hormonal control of serine dehydratase during metabolic acidosis differ markedly from those of phosphoenolpyruvate carboxykinase in rat kidney. Int J Biochem Cell Biol 2003; 35:1234-47. [PMID: 12757760 DOI: 10.1016/s1357-2725(02)00302-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Serine dehydratase (SDH) is abundant in the rat liver but scarce in the kidney. When administrated with dexamethasone, the renal SDH activity was augmented 20-fold, whereas the hepatic SDH activity was affected little. In situ hybridization and immunohistochemistry revealed that SDH was localized to the proximal straight tubule of the nephron. To address the role of this hormone, rats were made acidotic by gavage of NH(4)Cl. Twenty-two hours later, the SDH activity was increased three-fold along with a six-fold increment in the phosphoenolpyruvate carboxykinase (PEPCK) activity, a rate-limiting enzyme of gluconeogenesis. PEPCK, which is localized to the proximal tubules under the normal condition, spreads throughout the entire cortex to the outer medullary rays by acidosis, whereas SDH does not change regardless of treatment with dexamethasone or NH(4)Cl. When NH(4)Cl was given to adrenalectomized rats, in contrast to the SDH activity no longer increasing, the PEPCK activity responded to acidosis to the same extent as in the intact rats. A simultaneous administration of dexamethasone and NH(4)Cl into the adrenalectomized rats fully restored the SDH activity, demonstrating that the rise in the SDH activity during acidosis is primarily controlled by glucocorticoids. The present findings clearly indicate that the localization of SDH and its hormonal regulation during acidosis are strikingly different from those of PEPCK.
Collapse
Affiliation(s)
- Tohru Masuda
- Department of Biochemistry, Faculty of Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Møller MTN, Samari HR, Fengsrud M, Strømhaug PE, øStvold AC, Seglen PO. Okadaic acid-induced, naringin-sensitive phosphorylation of glycine N-methyltransferase in isolated rat hepatocytes. Biochem J 2003; 373:505-13. [PMID: 12697024 PMCID: PMC1223502 DOI: 10.1042/bj20030502] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2003] [Revised: 04/15/2003] [Accepted: 04/16/2003] [Indexed: 11/17/2022]
Abstract
Glycine N-methyltransferase (GNMT) is an abundant cytosolic enzyme that catalyses the methylation of glycine into sarcosine, coupled with conversion of the methyl donor, S -adenosylmethionine (AdoMet), into S -adenosylhomocysteine (AdoHcy). GNMT is believed to play a role in monitoring the AdoMet/AdoHcy ratio, and hence the cellular methylation capacity, but regulation of the enzyme itself is not well understood. In the present study, treatment of isolated rat hepatocytes with the protein phosphatase inhibitor okadaic acid, was found to induce an overphosphorylation of GNMT, as shown by proteomic analysis. The analysis comprised two-dimensional gel electrophoretic separation of (32)P-labelled phosphoproteins and identification of individual protein spots by matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry. The identity of GNMT was verified by N-terminal Edman sequencing of tryptic peptides. Chromatographic separation of proteolytic peptides and (32)P-labelled amino acids suggested that GNMT was phosphorylated within a limited region, and only at serine residues. GNMT phosphorylation could be suppressed by naringin, an okadaic acid-antagonistic flavonoid. To assess the possible functional role of GNMT phosphorylation, the effect of okadaic acid on hepatocytic AdoMet and AdoHcy levels was examined, using HPLC separation for metabolite analysis. Surprisingly, okadaic acid was found to have no effect on the basal levels of AdoMet or AdoHcy. An accelerated AdoMet-AdoHcy flux, induced by the addition of methionine (1 mM), was likewise unaffected by okadaic acid. 5-Aminoimidazole-4-carboxamide riboside, an activator of the hepatocytic AMP-activated protein kinase, similarly induced GNMT phosphorylation without affecting AdoMet and AdoHcy levels. Activation of cAMP-dependent protein kinase by dibutyryl-cAMP, reported to cause GNMT phosphorylation under cell-free conditions, also had little effect on hepatocytic AdoMet and AdoHcy levels. Phosphorylation of GNMT would thus seem to play no role in regulation of the intracellular AdoMet/AdoHcy ratio, but could be involved in other GNMT functions, such as the binding of folates or aromatic hydrocarbons.
Collapse
Affiliation(s)
- Michael T N Møller
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, N-0310 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
7
|
Carretero MV, Latasa MU, Garcia-Trevijano ER, Corrales FJ, Wagner C, Mato JM, Avila MA. Inhibition of liver methionine adenosyltransferase gene expression by 3-methylcolanthrene: protective effect of S-adenosylmethionine. Biochem Pharmacol 2001; 61:1119-28. [PMID: 11301045 DOI: 10.1016/s0006-2952(01)00590-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Methionine adenosyltransferase (MAT) is an essential enzyme that catalyzes the synthesis of S-adenosylmethionine (AdoMet), the most important biological methyl donor. Liver MAT I/III is the product of the MAT1A gene. Hepatic MAT I/III activity and MAT1A expression are compromised under pathological conditions such as alcoholic liver disease and hepatic cirrhosis, and this gene is silenced upon neoplastic transformation of the liver. In the present work, we evaluated whether MAT1A expression could be targeted by the polycyclic arylhydrocarbon (PAH) 3-methylcholanthrene (3-MC) in rat liver and cultured hepatocytes. MAT1A mRNA levels were reduced by 50% following in vivo administration of 3-MC to adult male rats (100 mg/kg, p.o., 4 days' treatment). This effect was reproduced in a time- and dose-dependent fashion in cultured rat hepatocytes, and was accompanied by the induction of cytochrome P450 1A1 gene expression. This action of 3-MC was mimicked by other PAHs such as benzo[a]pyrene and benzo[e]pyrene, but not by the model arylhydrocarbon receptor (AhR) activator 2,3,7,8-tetrachlorodibenzo-p-dioxin. 3-MC inhibited transcription driven by a MAT1A promoter-reporter construct transfected into rat hepatocytes, but MAT1A mRNA stability was not affected. We recently showed that liver MAT1A expression is induced by AdoMet in cultured hepatocytes. Here, we observed that exogenously added AdoMet prevented the negative effects of 3-MC on MAT1A expression. Taken together, our data demonstrate that liver MAT1A gene expression is targeted by PAHs, independently of AhR activation. The effect of AdoMet may be part of the protective action of this molecule in liver damage.
Collapse
Affiliation(s)
- M V Carretero
- División de Hepatología y Terapia Génica, Facultad de Medicina (Ed. Los Castaños), Universidad de Navarra, C/ Irunlarrea 1, 31008 Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
8
|
Harvey JL, Paine AJ, Wright MC. Disruption of endogenous regulator homeostasis underlies the mechanism of rat CYP1A1 mRNA induction by metyrapone. Biochem J 1998; 331 ( Pt 1):273-81. [PMID: 9512490 PMCID: PMC1219349 DOI: 10.1042/bj3310273] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The transcriptional induction of the cytochrome P-450 1A1 (CYP1A1) gene by xenobiotics such as polyaromatic hydrocarbons is dependent on their interaction with the aryl hydrocarbon receptor. Administration of the structurally unrelated compounds metyrapone (a cytochrome P-450 inhibitor) or dexamethasone (a glucocorticoid) to male rats does not induce hepatic CYP1A1 mRNA. However, administration of both metyrapone and dexamethasone to male rats results in the induction of hepatic CYP1A1 mRNA expression. The induction response is mimicked in vitro in cultured rat hepatocytes by the addition of metyrapone and dexamethasone to a serum-free culture medium, suggesting that these compounds act directly on the liver in vivo to effect hepatic CYP1A1 mRNA induction. An examination of the characteristics of CYP1A1 induction by metyrapone and dexamethasone in combination in vitro indicate that at least 6 h of treatment is required for detectable levels of CYP1A1 mRNA to accumulate in hepatocytes. In contrast, beta-naphthoflavone, which is known to bind to the aryl hydrocarbon receptor to effect CYP1A1 gene expression, induces detectable levels of CYP1A1 mRNA within 2 h of treatment. CYP1A1 mRNA is also induced when hepatocytes are treated with metyrapone in combination with the protein synthesis inhibitor cycloheximide but not with dexamethasone in combination with cycloheximide, indicating that CYP1A1 mRNA induction is strictly dependent on the presence of metyrapone and suggesting that the metyrapone-associated induction of CYP1A1 mRNA is dependent on a loss of a constitutively expressed protein that functions to suppress CYP1A1 gene expression. The role of dexamethasone in metyrapone-associated induction of CYP1A1 is probably mediated through the glucocorticoid receptor since the glucocorticoid receptor antagonist RU486 reduces the levels of CYP1A1 mRNA induced by metyrapone and dexamethasone in combination. Increasing the levels of the photosensitizer riboflavin present in the culture medium 10-fold and exposure to light increases the levels of CYP1A1 mRNA induced by metyrapone and dexamethasone in combination in vitro, suggesting that photoactivation of inducing medium constituent(s) might be required for induction. Failure to induce CYP1A1 mRNA by co-administration of metyrapone and dexamethasone in hepatocytes cultured in a balanced salt solution with or without photoactivation indicates that induction is dependent on a photoactivated component of the culture medium and not on metyrapone or dexamethasone alone. The addition of tryptophan in the presence of riboflavin to the balanced salt solution restores CYP1A1 mRNA induction by metyrapone alone and induction is increased when medium is exposed to light, indicating that induction is dependent on tryptophan photoactivation in vitro. Metyrapone failed to compete with 2,3,7,8-tetrachlorodibenzo-p-dioxin for specific binding to the aryl hydrocarbon receptor in rat liver cytosolic fractions. These results suggest that CYP1A1 might be induced in rats by metyrapone through an indirect mechanism associated with an elevation in the level of an endogenously generated inducer such as photoactivated product(s) of tryptophan and not because of metyrapone's interacting with the aryl hydrocarbon receptor. The dependence of CYP1A1 induction on dexamethasone or cycloheximide suggests that derepression by a glucocorticoid receptor-modulated negative-acting factor of CYP1A1 gene expression might be critical to induction by metyrapone.
Collapse
Affiliation(s)
- J L Harvey
- Department of Toxicology, St. Bartholomew's and the Royal London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, U.K
| | | | | |
Collapse
|
9
|
Chen YM, Shiu JY, Tzeng SJ, Shih LS, Chen YJ, Lui WY, Chen PH. Characterization of glycine-N-methyltransferase-gene expression in human hepatocellular carcinoma. Int J Cancer 1998; 75:787-93. [PMID: 9495250 DOI: 10.1002/(sici)1097-0215(19980302)75:5<787::aid-ijc20>3.0.co;2-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Messenger RNA differential display was used to study liver-gene expression in paired tumor and non-tumor tissues from hepatocellular carcinoma (HCC) patients. mRNA differential display and Northern-blot analyses showed that a 0.8-kb cDNA fragment was diminished or absent from the tumorous tissues of 7 HCC patients. The cDNA fragment was sequenced and found to have 98.7% nucleotide sequence homology with human glycine-N-methyltransferase cDNA (GNMT). In addition, there was no detectable level of GNMT expression in 4 human HCC cell lines, SK-Hep1, Hep 3B, HuH-7 and HA22T, examined by Northern-blot assay. A full-length GNMT cDNA clone-9-1-2 was obtained by screening a Taiwanese liver cDNA library. In comparison with the GNMT cDNA sequence reported elsewhere, clone 9-1-2 had 4 nucleotide differences resulting in 1 amino-acid change. Immunohistochemical staining with rabbit anti-recombinant GNMT serum showed that GNMT protein almost completely disappeared in liver-cancer cells, while it was abundant in the non-tumorous liver cells. Down-regulation of GNMT gene expression may be involved in the pathogenesis of liver cancer.
Collapse
Affiliation(s)
- Y M Chen
- Division of Preventative Medicine, Institute of Public Health, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Foussat J, Costet P, Galtier P, Pineau T, Lesca P. The 4S benzo(a)pyrene-binding protein is not a transcriptional activator of Cyp1a1 gene in Ah receptor-deficient (AHR -/-) transgenic mice. Arch Biochem Biophys 1998; 349:349-55. [PMID: 9448724 DOI: 10.1006/abbi.1997.0465] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In an effort to better understand the role of the 4S benzo(a)pyrene-binding protein in the induction of CYP1A1 by PAHs, we used a genetically engineered mouse line deficient in Ah receptor (AHR -/-). First, we demonstrated through binding experiments analyzed by sucrose gradient sedimentation and gel permeation chromatography that AHR -/- mice have no detectable AHR protein. In contrast, this AHR-deficient line expressed a 4S protein which efficiently binds BP as it does in hepatic cytosol from C57BL/6 mice. In vivo BP exposure in AHR-deficient mice proved the inability to sustain any CYP1A1 mRNA or CYP1A1 protein induction. These findings demonstrate the requirement of an active AHR to sustain the transactivation pathway leading to CYP1A1 induction. Surprisingly, the 4S BP-binding protein, which was previously characterized as the glycine N-methyltransferase, was completely devoid of such an enzymatic activity after purification by Sephacryl gel permeation chromatography. Moreover, sedimentation and chromatographic experiments, under nondenaturing conditions, do not support the assumption of 4S protein as a subunit of a multimeric protein (GNMT) displaying a molecular mass of 150 kDa.
Collapse
Affiliation(s)
- J Foussat
- Laboratoire de Pharmacologie et Toxicologie, Institut National de la Recherche Agronomique, Toulouse, France
| | | | | | | | | |
Collapse
|
11
|
Krupenko NI, Wagner C. Transport of rat liver glycine N-methyltransferase into rat liver nuclei. J Biol Chem 1997; 272:27140-6. [PMID: 9341155 DOI: 10.1074/jbc.272.43.27140] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rat liver cytosolic glycine N-methyltransferase (GNMT) catalyzes the S-adenosylmethionine-dependent methylation of glycine to sarcosine. It is comprised of four identical 292-amino acid residue subunits. Recently, evidence has been provided to show that GNMT is identical to the cytosolic receptor for benzo[a]pyrene, which induces cytochrome P450 1A1 gene expression. In the present study we show that chemical modification of purified rat liver GNMT with fluorescein isothiocyanate (FITC) resulted in dissociation of the tetrameric enzyme and was accompanied by loss of enzyme activity. Amino acid sequence analysis of the FITC-labeled peptides obtained by hydrolysis of the modified protein with Staphylococcus aureus V8 protease revealed that lysines 45, 89, 92, 96, 122, and 147 were modified. Lys-122 and Lys-147 were derivatized in tetrameric, dimeric, and monomeric forms of the enzyme. Lysines 45, 89, 92, and 96 were derivatized only in monomeric GNMT, suggesting that modification of these residues resulted in GNMT dissociation. The modified monomeric GNMT was quickly transported into isolated rat liver nuclei. This transport was specific for the GNMT monomer, since neither tetramer nor dimer was able to enter the nuclei. Bovine carbonic anhydrase, similar in size to the GNMT monomer, was labeled with FITC to a similar extent but was not transported into the nuclei. Disruption of the nuclei containing fluorescein-labeled GNMT and subsequent extraction of the nuclear lysate with both high and low salt buffers recovered FITC-GNMT only in the chromatin pellet. Our study supports the suggestion of an additional function for GNMT, probably connected with regulation of cytochrome P450 1A1 gene expression.
Collapse
Affiliation(s)
- N I Krupenko
- Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | |
Collapse
|