1
|
Sultana F, Ghosh A. Exploring the evolutionary landscape and structural resonances of ferritin with insights into functional significance in plant. Biochimie 2024:S0300-9084(24)00173-1. [PMID: 39047810 DOI: 10.1016/j.biochi.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/04/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
The mineral iron plays a crucial role in facilitating the optimal functioning of numerous biological processes within the cellular environment. These processes involve the transportation of oxygen, energy production, immune system functioning, cognitive abilities, and muscle function. However, it is crucial to note that excessive levels of iron can result in oxidative damage within cells, primarily through Fenton reactions. Iron availability and toxicity present significant challenges that have been addressed through evolution. Ferritin is an essential protein that stores iron and is divided into different subfamilies, including DNA-binding proteins under starvation (Dps), bacterioferritin, and classical ferritin. Ferritin plays a critical role in maintaining cellular balance and protecting against oxidative damage. This study delves into ferritin's evolutionary dynamics across diverse taxa, emphasizing structural features and regulatory mechanisms. Insights into ferritin's evolution and functional diversity are gained through phylogenetic and structural analysis in bacterial Dps, bacterioferritin, and classical ferritin proteins. Additionally, the involvement of ferritin in plant stress responses and development is explored. Analysis of ferritin gene expression across various developmental stages and stress conditions provides insights into its regulatory roles. This comprehensive exploration enhances our understanding of ferritin's significance in plant biology, offering insights into its evolutionary history, structural diversity, and protective mechanisms against oxidative stress.
Collapse
Affiliation(s)
- Fahmida Sultana
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| |
Collapse
|
2
|
Di Sanzo M, Aversa I, Santamaria G, Gagliardi M, Panebianco M, Biamonte F, Zolea F, Faniello MC, Cuda G, Costanzo F. FTH1P3, a Novel H-Ferritin Pseudogene Transcriptionally Active, Is Ubiquitously Expressed and Regulated during Cell Differentiation. PLoS One 2016; 11:e0151359. [PMID: 26982978 PMCID: PMC4794146 DOI: 10.1371/journal.pone.0151359] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/27/2016] [Indexed: 11/18/2022] Open
Abstract
Ferritin, the major iron storage protein, performs its essential functions in the cytoplasm, nucleus and mitochondria. The variable assembly of 24 subunits of the Heavy (H) and Light (L) type composes the cytoplasmic molecule. In humans, two distinct genes code these subunits, both belonging to complex multigene families. Until now, one H gene has been identified with the coding sequence interrupted by three introns and more than 20 intronless copies widely dispersed on different chromosomes. Two of the intronless genes are actively transcribed in a tissue-specific manner. Herein, we report that FTH1P3, another intronless pseudogene, is transcribed. FTH1P3 transcript was detected in several cell lines and tissues, suggesting that its transcription is ubiquitary, as it happens for the parental ferritin H gene. Moreover, FTH1P3 expression is positively regulated during the cell differentiation process.
Collapse
Affiliation(s)
- Maddalena Di Sanzo
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | - Ilenia Aversa
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | - Gianluca Santamaria
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | | | - Mariafranca Panebianco
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | - Flavia Biamonte
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | - Fabiana Zolea
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | - Maria Concetta Faniello
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | - Giovanni Cuda
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | - Francesco Costanzo
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
- * E-mail:
| |
Collapse
|
3
|
Misaggi R, Di Sanzo M, Cosentino C, Bond HM, Scumaci D, Romeo F, Stellato C, Giurato G, Weisz A, Quaresima B, Barni T, Amato F, Viglietto G, Morrone G, Cuda G, Faniello MC, Costanzo F. Identification of H ferritin-dependent and independent genes in K562 differentiating cells by targeted gene silencing and expression profiling. Gene 2013; 535:327-35. [PMID: 24239552 DOI: 10.1016/j.gene.2013.10.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/11/2013] [Accepted: 10/30/2013] [Indexed: 01/01/2023]
Abstract
Ferritin is best known as the key molecule in intracellular iron storage, and is involved in several metabolic processes such as cell proliferation, differentiation and neoplastic transformation. We have recently demonstrated that the shRNA silencing of the ferritin heavy subunit (FHC) in a melanoma cell line is accompanied by a consistent modification of gene expression pattern leading to a reduced potential in terms of proliferation, invasiveness, and adhesion ability of the silenced cells. In this study we sought to define the repertoire of genes whose expression might be affected by FHC during the hemin-induced differentiation of the erythromyeloid cell line K562. To this aim, gene expression profiling was performed in four different sets of cells: i) wild type K562; ii) sh-RNA FHC-silenced K562; iii) hemin-treated wild-type K562; and iv) hemin-treated FHC-silenced K562. Statistical analysis of the gene expression data, performed by two-factor ANOVA, identified three distinct classes of transcripts: a) Class 1, including 657 mRNAs whose expression is modified exclusively during hemin-induced differentiation of K562 cells, independently from the FHC relative amounts; b) Class 2, containing a set of 70 mRNAs which are consistently modified by hemin and FHC-silencing; and c) Class 3, including 128 transcripts modified by FHC-silencing but not by hemin. Our data indicate that FHC may function as a modulator of gene expression during erythroid differentiation and add new findings to the knowledge of the complex gene network modulated during erythroid differentiation.
Collapse
Affiliation(s)
- Roberta Misaggi
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Maddalena Di Sanzo
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Carlo Cosentino
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Heather M Bond
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Domenica Scumaci
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Francesco Romeo
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Claudia Stellato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, via Allende, 84081 Baronissi, Salerno, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, via Allende, 84081 Baronissi, Salerno, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, via Allende, 84081 Baronissi, Salerno, Italy
| | - Barbara Quaresima
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Tullio Barni
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Francesco Amato
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Giovanni Morrone
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Maria Concetta Faniello
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy.
| | - Francesco Costanzo
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
6
|
Finch JS, Rosenberger SF, Martinez JD, Bowden GT. Okadaic acid induces transcription of junB through a CCAAT box and NF-Y. Gene 2001; 267:135-44. [PMID: 11311563 DOI: 10.1016/s0378-1119(01)00398-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The shellfish toxin, okadaic acid (OA), is a potent tumor promoter that induces expression of the proto-oncogene junB in mouse keratinocyte 308 cells. Here we show, through deletion analysis of the junB promoter, that sequences near the TATA box conferred transcriptional induction by OA. Transient transfections of luciferase constructs bearing the junB promoter with single mutations in various cis elements demonstrated that a promoter containing a mutated CCAAT box could not be induced by OA. When this CCAAT box was inserted into a heterologous promoter construct, OA induction was dependent on an intact CCAAT box. Flanking cis elements located near the CCAAT box, although not required for OA inducibility, did play a role in the basal level of transcription. NF-Y was shown by EMSA to bind to the CCAAT box. OA induction from the junB CCAAT box was blocked by dominant negative NF-YA as well as the CCAAT box-dependent anticancer drug, ET-473. Expression of a lexA/NF-YA chimeric protein demonstrated that OA induction was dependent on the binding of NF-Y family members. These studies demonstrate that OA can mediate transcriptional activation of junB through the classical CCAAT box and that transcription factor NF-Y plays a functional role in the induction.
Collapse
Affiliation(s)
- J S Finch
- Arizona Cancer Center, University of Arizona, 1515 N. Campbell Avenue, Tucson, AZ 85724-5024, USA
| | | | | | | |
Collapse
|
7
|
Rodgers JT, Patel P, Hennes JL, Bolognia SL, Mascotti DP. Use of biotin-labeled nucleic acids for protein purification and agarose-based chemiluminescent electromobility shift assays. Anal Biochem 2000; 277:254-9. [PMID: 10625515 DOI: 10.1006/abio.1999.4394] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have employed biotin-labeled RNA to serve two functions. In one, the biotin tethers the RNA to streptavidin-agarose beads, creating an affinity resin for protein purification. In the other, the biotin functions as a label for use in a modified chemiluminescent electromobility shift assay (EMSA), a technique used to detect the formation of protein-RNA complexes. The EMSA that we describe avoids the use not only of radioactivity but also of neurotoxic acrylamide by using agarose as the gel matrix in which the free nucleic acid is separated from protein-nucleic acid complexes. After separation of free from complexed RNA in agarose, the RNA is electroblotted to positively charged nylon. The biotin-labeled RNA is readily bound by a streptavidin-alkaline phosphatase conjugate, allowing for very sensitive chemiluminescent detection ( approximately 0.1-1.0 fmol limit). Using our system, we were able to purify both known iron-responsive proteins (IRPs) from rat liver and assess their binding affinity to RNA containing the iron-responsive element (IRE) using the same batch of biotinylated RNA. We show data indicating that agarose is especially useful for cases when large complexes are formed, although smaller complexes are even better resolved.
Collapse
Affiliation(s)
- J T Rodgers
- Department of Chemistry, John Carroll University, 20700 North Park Boulevard, University Heights, Ohio 44118, USA
| | | | | | | | | |
Collapse
|
8
|
Faniello MC, Bevilacqua MA, Condorelli G, de Crombrugghe B, Maity SN, Avvedimento VE, Cimino F, Costanzo F. The B subunit of the CAAT-binding factor NFY binds the central segment of the Co-activator p300. J Biol Chem 1999; 274:7623-6. [PMID: 10075648 DOI: 10.1074/jbc.274.12.7623] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report that the heterotrimeric transcription factor NFY or "CAAT-binding factor" binds the -60 region of the human H ferritin promoter, the B site. DNA binding analysis with specific antibodies demonstrates that NFY/B/C subunits tightly bind this site and that NFY/C subunit is masked in vivo by binding with other protein(s). NFY binds the co-activator p300. Specifically, the NFY/B subunit interacts with the central segment of p300 in vivo and in vitro. cAMP substantially increases the formation of the NFY.p300 complex. Taken together these data provide a general model of cAMP induction of non-CRE-containing promoters and suggest that the NFY-B.p300 complex is located at the 5' end of the promoter and the NFY-B.C. TFIIB on the 3' end toward the transcription start site.
Collapse
Affiliation(s)
- M C Faniello
- Dipartimento di Biochimica e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Via S. Pansini 5, I-80131 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|