1
|
Wei Y, Lv B, Xie J, Zhang Y, Lin Y, Wang S, Zhong J, Chen Y, Peng Y, Ma J. Plumbagin promotes human hepatoma SMMC-7721 cell apoptosis via caspase-3/vimentin signal-mediated EMT. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:2343-2355. [PMID: 31409969 PMCID: PMC6643260 DOI: 10.2147/dddt.s204787] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022]
Abstract
Background/aims Plumbagin (PL) has been shown to effectively inhibit tumor growth and migration of hepatocellular carcinoma cells in previous studies, but the specific mechanism for this remains unclear. The purpose of this study was to investigate the effects of PL-induced apoptosis in epithelial–mesenchymal transition (EMT) of human hepatocellular carcinoma (HCC) in vivo and in vitro. Methods SMMC-7721 cells were cultured, an EMT model was induced in vitro by TGF-β1, cell proliferation was detected by the MTT assay, cell invasion was analyzed by the Transwell invasion assay, and the apoptosis rate was measured by flow cytometry. RT-PCR was used to detect vimentin, E-cadherin, N-cadherin and snail mRNA, and Western blotting was used to detect the vimentin, caspase-3, PARP-1, E-cadherin, N-cadherin and snail protein expression levels. HE staining and TUNEL staining, immunohistochemistry and immunofluorescence were used to detect the expression levels of bax and bcl-2 in hepatocarcinoma xenografts and to evaluate their apoptosis in vivo. Results The in vitro results showed that PL inhibited the proliferation of EMT model cells, increased the apoptosis rate of the EMT model, and significantly decreased the vimentin, PARP-1, N-cadherin and snail protein levels, but significantly increased E-cadherin and caspase-3 protein expression. In addition, the in vivo results indicated that PL can affect the expression of bax/bcl-2 apoptotic marker proteins. Conclusion PL may induce apoptosis of human hepatocellular carcinoma cells undergoing epithelial–mesenchymal transition by increasing the caspase-3 protein level and cleaving vimentin.
Collapse
Affiliation(s)
- Yanfei Wei
- Department of Physiology, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, People's Republic of China
| | - Beibei Lv
- Department of Physiology, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, People's Republic of China
| | - Jinling Xie
- Medical Science Experimental Center, Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi 530200, People's Republic of China
| | - Yuan Zhang
- Department of State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 710032, People's Republic of China
| | - Yuning Lin
- Department of Physiology, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, People's Republic of China
| | - Shengshan Wang
- Department of Physiology, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, People's Republic of China
| | - Jing Zhong
- Department of Physiology, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, People's Republic of China
| | - Yongxin Chen
- Department of Physiology, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, People's Republic of China
| | - Yue Peng
- Department of Physiology, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, People's Republic of China
| | - Jing Ma
- Department of Physiology, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, People's Republic of China
| |
Collapse
|
2
|
Jiang S, Liu Y, Wang J, Zhang Y, Rui Y, Zhang Y, Li T. Cardioprotective effects of monocyte locomotion inhibitory factor on myocardial ischemic injury by targeting vimentin. Life Sci 2016; 167:85-91. [PMID: 27773717 DOI: 10.1016/j.lfs.2016.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/13/2016] [Accepted: 10/18/2016] [Indexed: 01/09/2023]
Abstract
Monocyte locomotion inhibitory factor (MLIF), a heat-stable pentapeptide produced by Entamoeba histolytica, has anti-inflammatory function and protective effect on ischemic stroke. In this study, we evaluated the effect of MLIF on myocardial ischemia. Mice were subjected to ischemia/reperfusion by occlusion of the left anterior descending artery (LAD). After sacrifice, the serum concentrations of cardiac troponin I (cTnI), creatine kinase (CK), lactate dehydrogenase (LDH) as well as the heart infarct size were measured. HE and TUNEL staining were used to observe the pathological damage and the apoptotic cells. For in vitro study, the oxygen-glucose deprivation(OGD) model was established in H9c2 cells. MTT assay and flow cytometry assay were performed to evaluate cell viability and apoptosis. The expression of JNK and caspase 3 was assessed by western blot analysis. Pull-down assay was used to detect the specific binding protein of MLIF in myocardial cells. MLIF significantly reduced the infarct size, and the cTnI, CK and LDH levels, amelioratived pathological damage and reduced the apopotosis compared with the myocardial I/R model group. MLIF improved cell survival and inhibited apoptosis and necrosis by inhibiting the p-JNK and cleaved caspase3 expression. Furthermore, the binding protein of MLIF in myocardial cells was vimentin. Inhibition of vimentin expression by withaferin A or vimentin siRNA repressed the protective effects of MLIF in OGD-provoked H9c2 cells. Taken together, our results demonstrate that the cardioprotective effects of MLIF on myocardial ischemia injury are related to reductions in the inflammatory response and apoptosis by targeting vimentin.
Collapse
Affiliation(s)
- Shu Jiang
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, PR China; Department of Pharmacy, Punan Hospital, Pudong New District, Shanghai, PR China
| | - Yulan Liu
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, PR China
| | - Jing Wang
- College of Pharmacology, Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Yue Zhang
- College of Pharmacology, Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Yaocheng Rui
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, PR China
| | - Yuefan Zhang
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, PR China.
| | - Tiejun Li
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, PR China; Department of Pharmacy, Punan Hospital, Pudong New District, Shanghai, PR China.
| |
Collapse
|
3
|
The inhibition of macrophage foam cell formation by tetrahydroxystilbene glucoside is driven by suppressing vimentin cytoskeleton. Biomed Pharmacother 2016; 83:1132-1140. [DOI: 10.1016/j.biopha.2016.08.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/26/2016] [Accepted: 08/11/2016] [Indexed: 01/03/2023] Open
|
4
|
Hermance ME, Santos RI, Kelly BC, Valbuena G, Thangamani S. Immune Cell Targets of Infection at the Tick-Skin Interface during Powassan Virus Transmission. PLoS One 2016; 11:e0155889. [PMID: 27203436 PMCID: PMC4874601 DOI: 10.1371/journal.pone.0155889] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/05/2016] [Indexed: 12/05/2022] Open
Abstract
Powassan virus (POWV) is a tick-borne flavivirus that can result in a severe neuroinvasive disease with 50% of survivors displaying long-term neurological sequelae. Human POWV cases have been documented in Canada, the United States, and Russia. Although the number of reported POWV human cases has increased in the past fifteen years, POWV remains one of the less studied human pathogenic flaviviruses. Ixodes ticks are the vectors for POWV, and the virus is transmitted to a host’s skin very early during the tick feeding process. Central to the successful transmission of a tick-borne pathogen are complex interactions between the host immune response and early tick-mediated immunomodulation, all of which initially occur at the skin interface. In our prior work, we examined the cutaneous immune gene expression during the early stages of POWV-infected Ixodes scapularis feeding. The present study serves to further investigate the skin interface by identifying early cell targets of infection at the POWV-infected tick feeding site. An in vivo infection model consisting of POWV-infected ticks feeding on mice for short durations was used in this study. Skin biopsies from the tick feeding sites were harvested at various early time points, enabling us to examine the skin histopathology and detect POWV viral antigen in immune cells present at the tick feeding site. The histopathology from the present study demonstrates that neutrophil and mononuclear cell infiltrates are recruited earlier to the feeding site of a POWV-infected tick versus an uninfected tick. This is the first report demonstrating that macrophages and fibroblasts contain POWV antigens, which suggests that they are early cellular targets of infection at the tick feeding site. These data provide key insights towards defining the complex interactions between the host immune response and early tick-mediated immunomodulation.
Collapse
Affiliation(s)
- Meghan E. Hermance
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Rodrigo I. Santos
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Brent C. Kelly
- Department of Dermatology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Gustavo Valbuena
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Saravanan Thangamani
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
5
|
Hsu PC, Liao YF, Lin CL, Lin WH, Liu GY, Hung HC. Vimentin is involved in peptidylarginine deiminase 2-induced apoptosis of activated Jurkat cells. Mol Cells 2014; 37:426-34. [PMID: 24850148 PMCID: PMC4044315 DOI: 10.14348/molcells.2014.2359] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 04/20/2014] [Accepted: 04/21/2014] [Indexed: 01/27/2023] Open
Abstract
Peptidylarginine deiminase type 2 (PADI2) deiminates (or citrullinates) arginine residues in protein to citrulline residues in a Ca2+-dependent manner, and is found in lymphocytes and macrophages. Vimentin is an intermediate filament protein and a well-known substrate of PADI2. Citrullinated vimentin is found in ionomycin-induced macrophage apoptosis. Citrullinated vimentin is the target of anti-Sa antibodies, which are specific to rheumatoid arthritis, and play a critical role in the pathogenesis of the disease. To investigate the role of PADI2 in apoptosis, we generated a Jurkat cell line that overexpressed the PADI2 transgene from a tetracycline-inducible promoter, and used a combination of 12-O-tetradecanoylphorbol-13-acetate and ionomycin to activate Jurkat cells. We found that PADI2 overexpression reduced the cell viability of activated Jurkat cells in1a dose- and time-dependent manner. The PADI2-overexpressed and -activated Jurkat cells presented typical manifestations of apoptosis, and exhibited greater levels of citrullinated proteins, including citrullinated vimentin. Vimentin overexpression rescued a portion of the cells from apoptosis. In conclusion, PADI2 overexpression induces apoptosis in activated Jurkat cells. Vimentin is involved in PADI2-induced apoptosis. Moreover, PADI2-overexpressed Jurkat cells secreted greater levels of vimentin after activation, and expressed more vimentin on their cell surfaces when undergoing apoptosis. Through artificially highlighting PADI2 and vimentin, we demonstrated that PADI2 and vimentin participate in the apoptotic mechanisms of activated T lymphocytes. The secretion and surface expression of vimentin are possible ways of autoantigen presentation to the immune system.
Collapse
Affiliation(s)
- Pei-Chen Hsu
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, and Agricultural Biotechnology Center (ABC), National Chung Hsing University, Taiwan,
Republic of China
- Department of Medicine, Da-Chien General Hospital, Taiwan,
Republic of China
| | - Ya-Fan Liao
- Department of Applied Chemistry, Chaoyang University of Technology, Taiwan,
Republic of China
| | - Chin-Li Lin
- Institute of Medicine, Chung Shan Medical University
| | - Wen-Hao Lin
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, and Agricultural Biotechnology Center (ABC), National Chung Hsing University, Taiwan,
Republic of China
| | - Guang-Yaw Liu
- Institute of Microbiology and Immunology, Chung Shan Medical University, and Division of Allergy, Immunology, and Rheumatology, Chung Shan Medical University Hospital, Taiwan,
Republic of China
| | - Hui-Chih Hung
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, and Agricultural Biotechnology Center (ABC), National Chung Hsing University, Taiwan,
Republic of China
| |
Collapse
|
6
|
Tong J, Fitzmaurice P, Furukawa Y, Schmunk GA, Wickham DJ, Ang LC, Sherwin A, McCluskey T, Boileau I, Kish SJ. Is brain gliosis a characteristic of chronic methamphetamine use in the human? Neurobiol Dis 2014; 67:107-18. [PMID: 24704312 DOI: 10.1016/j.nbd.2014.03.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/20/2014] [Accepted: 03/25/2014] [Indexed: 01/22/2023] Open
Abstract
Animal data show that high doses of the stimulant drug methamphetamine can damage brain dopamine neurones; however, it is still uncertain whether methamphetamine, at any dose, is neurotoxic to human brain. Since gliosis is typically associated with brain damage and is observed in animal models of methamphetamine exposure, we measured protein levels (intact protein and fragments, if any) of markers of microgliosis (glucose transporter-5, human leukocyte antigens HLA-DRα [TAL.1B5] and HLA-DR/DQ/DPβ [CR3/43]) and astrogliosis (glial fibrillary acidic protein, vimentin, and heat shock protein-27) in homogenates of autopsied brain of chronic methamphetamine users (n=20) and matched controls (n=23). Intact protein levels of all markers were, as expected, elevated (+28%-1270%, P<0.05) in putamen of patients with the neurodegenerative disorder multiple system atrophy (as a positive control) as were concentrations of fragments of glial fibrillary acidic protein, vimentin and heat shock protein-27 (+170%-4700%, P<0.005). In contrast, intact protein concentrations of the markers were normal in dopamine-rich striatum (caudate, putamen) and in the frontal cortex of the drug users. However, striatal levels of cleaved vimentin and heat shock protein-27 were increased (by 98%-211%, P<0.05), with positive correlations (r=0.41-0.60) observed between concentrations of truncated heat shock protein-27 and extent of dopamine loss (P=0.006) and levels of lipid peroxidation products 4-hydroxynonenal (P=0.046) and malondialdehyde (P=0.11). Our failure to detect increased intact protein levels of commonly used markers of microgliosis and astrogliosis could be explained by exposure to methamphetamine insufficient to cause a toxic process associated with overt gliosis; however, about half of the subjects had died of drug intoxication suggesting that "high" drug doses might have been used. Alternatively, drug tolerance to toxic effects might have occurred in the subjects, who were all chronic methamphetamine users. Nevertheless, the finding of above-normal levels of striatal vimentin and heat shock protein-27 fragments (which constituted 10-28% of the intact protein), for which changes in the latter correlated with those of several markers possibly suggestive of damage, does suggest that some astrocytic "disturbance" had occurred, which might in principle be related to methamphetamine neurotoxicity or to a neuroplastic remodeling process. Taken together, our neurochemical findings do not provide strong evidence for either marked microgliosis or astrogliosis in at least a subgroup of human recreational methamphetamine users who used the drug chronically and shortly before death. However, a logistically more difficult quantitative histopathological study is needed to confirm whether glial changes occur or do not occur in brain of human methamphetamine (and amphetamine) users.
Collapse
Affiliation(s)
- Junchao Tong
- Human Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Addiction Imaging Research Group, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | - Paul Fitzmaurice
- ESR Institute of Environmental Science & Research, Auckland, New Zealand
| | - Yoshiaki Furukawa
- Department of Neurology, Juntendo Tokyo Koto Geriatric Medical Center, and Faculty of Medicine, University & Postgraduate University of Juntendo, Tokyo, Japan
| | | | | | - Lee-Cyn Ang
- Division of Neuropathology, London Health Science Centre, University of Western Ontario, London, Ontario, Canada
| | - Allan Sherwin
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Tina McCluskey
- Human Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Isabelle Boileau
- Addiction Imaging Research Group, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Stephen J Kish
- Human Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Majumder A, Kirabo A, Karrupiah K, Tsuda S, Caldwell-Busby J, Cardounel AJ, Keseru GM, Sayeski PP. Cell death induced by the Jak2 inhibitor, G6, correlates with cleavage of vimentin filaments. Biochemistry 2011; 50:7774-86. [PMID: 21823612 DOI: 10.1021/bi200847n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hyperkinetic Jak2 tyrosine kinase signaling has been implicated in several human diseases including leukemia, lymphoma, myeloma, and the myeloproliferative neoplasms. Using structure-based virtual screening, we previously identified a novel Jak2 inhibitor named G6. We showed that G6 specifically inhibits Jak2 kinase activity and suppresses Jak2-mediated cellular proliferation. To elucidate the molecular and biochemical mechanisms by which G6 inhibits Jak2-mediated cellular proliferation, we treated Jak2-V617F expressing human erythroleukemia (HEL) cells for 12 h with either vehicle control or 25 μM of the drug and compared protein expression profiles using two-dimensional gel electrophoresis. One differentially expressed protein identified by electrospray mass spectroscopy was the intermediate filament protein, vimentin. It was present in DMSO treated cells but absent in G6 treated cells. HEL cells treated with G6 showed both time- and dose-dependent cleavage of vimentin as well as a marked reorganization of vimentin intermediate filaments within intact cells. In a mouse model of Jak2-V617F mediated human erythroleukemia, G6 also decreased the levels of vimentin protein, in vivo. The G6-induced cleavage of vimentin was found to be Jak2-dependent and calpain-mediated. Furthermore, we found that intracellular calcium mobilization is essential and sufficient for the cleavage of vimentin. Finally, we show that the cleavage of vimentin intermediate filaments, per se, is sufficient to reduce HEL cell viability. Collectively, these results suggest that G6-induced inhibition of Jak2-mediated pathogenic cell growth is concomitant with the disruption of intracellular vimentin filaments. As such, this work describes a novel pathway for the targeting of Jak2-mediated pathological cell growth.
Collapse
Affiliation(s)
- Anurima Majumder
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida 32610, United States
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Patel BB, Li XM, Dixon MP, Blagoi EL, Nicolas E, Seeholzer SH, Cheng D, He YA, Coudry RA, Howard SD, Riddle DM, Cooper HS, Boman BM, Conrad P, Crowell JA, Bellacosa A, Knudson A, Yeung AT, Kopelovich L. APC +/- alters colonic fibroblast proteome in FAP. Oncotarget 2011; 2:197-208. [PMID: 21411865 PMCID: PMC3195363 DOI: 10.18632/oncotarget.241] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/15/2011] [Indexed: 12/02/2022] Open
Abstract
Here we compared the proteomes of primary fibroblast cultures derived from morphologically normal colonic mucosa of familial adenomatous polyposis (FAP) patients with those obtained from unaffected controls. The expression signature of about 19% of total fibroblast proteins separates FAP mutation carriers from unaffected controls (P < 0.01). More than 4,000 protein spots were quantified by 2D PAGE analysis, identifying 368 non-redundant proteins and 400 of their isoforms. Specifically, all three classes of cytoskeletal filaments and their regulatory proteins were altered as were oxidative stress response proteins. Given that FAP fibroblasts showed heightened sensitivity to transformation by KiMSV and SV40 including elevated levels of the p53 protein, events controlled in large measure by the Ras suppressor protein-1 (RSU-1) and oncogenic DJ-1, here we show decreased RSU1 and augmented DJ-1 expression in both fibroblasts and crypt-derived epithelial cells from morphologically normal colonic mucosa of FAP gene-carriers. The results indicate that heterozygosity for a mutant APC tumor suppressor gene alters the proteomes of both colon-derived normal fibroblasts in a gene-specific manner, consistent with a "one-hit" effect.
Collapse
Affiliation(s)
| | - Xin-Ming Li
- Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Maketa P. Dixon
- Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Elena L. Blagoi
- Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Emmanuelle Nicolas
- Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Steven H. Seeholzer
- Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - David Cheng
- Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yin A. He
- Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Renata A. Coudry
- Cancer Prevention and Control, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Sharon D. Howard
- Division of Genetic and Preventive Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Dawn M. Riddle
- Cell Culture facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Harry S. Cooper
- Cancer Prevention and Control, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Bruce M. Boman
- Division of Genetic and Preventive Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Peggy Conrad
- University of California at San Francisco, San Francisco, California
| | - James A. Crowell
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| | | | - Alfred Knudson
- Cancer Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Anthony T. Yeung
- Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Levy Kopelovich
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
9
|
Casas A, Di Venosa G, Hasan T, Al Batlle. Mechanisms of resistance to photodynamic therapy. Curr Med Chem 2011; 18:2486-515. [PMID: 21568910 PMCID: PMC3780570 DOI: 10.2174/092986711795843272] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/11/2011] [Indexed: 01/25/2023]
Abstract
Photodynamic therapy (PDT) involves the administration of a photosensitizer (PS) followed by illumination with visible light, leading to generation of reactive oxygen species. The mechanisms of resistance to PDT ascribed to the PS may be shared with the general mechanisms of drug resistance, and are related to altered drug uptake and efflux rates or altered intracellular trafficking. As a second step, an increased inactivation of oxygen reactive species is also associated to PDT resistance via antioxidant detoxifying enzymes and activation of heat shock proteins. Induction of stress response genes also occurs after PDT, resulting in modulation of proliferation, cell detachment and inducing survival pathways among other multiple extracellular signalling events. In addition, an increased repair of induced damage to proteins, membranes and occasionally to DNA may happen. PDT-induced tissue hypoxia as a result of vascular damage and photochemical oxygen consumption may also contribute to the appearance of resistant cells. The structure of the PS is believed to be a key point in the development of resistance, being probably related to its particular subcellular localization. Although most of the features have already been described for chemoresistance, in many cases, no cross-resistance between PDT and chemotherapy has been reported. These findings are in line with the enhancement of PDT efficacy by combination with chemotherapy. The study of cross resistance in cells with developed resistance against a particular PS challenged against other PS is also highly complex and comprises different mechanisms. In this review we will classify the different features observed in PDT resistance, leading to a comparison with the mechanisms most commonly found in chemo resistant cells.
Collapse
Affiliation(s)
- A Casas
- Centro de Invesigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clinicas José de San Martin, University of Buenos Aires Córdoba 2351 ler subsuelo, Argentina.
| | | | | | | |
Collapse
|
10
|
Zeindl-Eberhart E, Liebmann S, Jungblut PR, Mattow J, Schmid M, Kerler R, Rabes HM. Influence of RET/PTC1 and RET/PTC3 oncoproteins in radiation-induced papillary thyroid carcinomas on amounts of cytoskeletal protein species. Amino Acids 2010; 41:415-25. [PMID: 20839015 DOI: 10.1007/s00726-010-0733-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 08/26/2010] [Indexed: 10/19/2022]
Abstract
Radiation-induced human papillary thyroid carcinomas (PTCs) show a high prevalence of fusions of the RET proto-oncogene to heterologous genes H4 (RET/PTC1) and ELE1 (RET/PTC3), respectively. In contrast to the normal membrane-bound RET protein, aberrant RET fusion proteins are constitutively active oncogenic cytosolic proteins that can lead to malignant transformation of thyroid epithelia. To detect specific tumor-associated protein changes that reflect the effect of RET/PTC fusion proteins, we analyzed normal thyroid tissues, thyroid tumors of the RET/PTC1 and RET/PTC3 type and their respective lymph node metastases by a combination of high-resolution two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-mass spectrometry. PTCs without RET rearrangements served as controls. Several cytoskeletal protein species showed quantitative changes in tumors and lymph node metastases harboring RET/PTC1 or RET/PTC3. We observed prominent C-terminal actin fragments assumedly generated by protease cleavages induced due to enhanced amounts of the active actin-binding protein cofilin-1. In addition, three truncated vimentin species, one of which was proven to be headless, were shown to be highly abundant in tumors and metastases of both RET/PTC types. The observed protein changes are closely connected with the constitutive activation of RET-rearranged oncoproteins and reflect the importance to elucidate disease-related typical signatures on the protein species level.
Collapse
Affiliation(s)
- Evelyn Zeindl-Eberhart
- Institute of Pathology, Ludwig-Maximilians-University of Munich, Thalkirchner Strasse 36, 80337, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
11
|
Gou LT, Tong AP, Yan F, Yuan Z, He F, Wang W, Zhou Y, Chen LJ, Tang MH, Yang JL. Altered protein-expressing profile in hPNAS4-induced apoptosis in A549 human lung adenocarcinoma cells. J Cell Biochem 2010; 108:1211-9. [PMID: 19795389 DOI: 10.1002/jcb.22353] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human PNAS4 (hPNAS4) is a recently identified pro-apoptosis gene, which is able to induce apoptosis in A549 human lung adenocarcinoma cells following its overexpression. In this work, we investigated the changes of protein profile in hPNAS4-induced apoptosis in A549 cells through proteomic strategy consisting of two-dimensional electrophoresis (2-DE) coupled with MALDI-Q-TOF mass spectrometry. A total of 20 different proteins with more than 3.0-fold change in expression, including 5 up-regulated and 15 down-regulated proteins were successfully identified by database search. The mRNA transcription levels of the different proteins were further examined by RT-PCT. Functional analyses showed these different proteins are involved in diverse biological processes including metabolism, proteolysis, signal transduction, apoptosis, and redox regulation. Two essential apoptosis-associated protein, annexin A1 and prothymosin alpha, were confirmed by Western blot and showed consistent changes with proteomic detection. Our data provide molecular evidence and possible associated pathway in hPNAS4-induced apoptosis through proteomic strategy, which should be contributed to further investigation on biological function of hPNAS4.
Collapse
Affiliation(s)
- Lan-Tu Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, Sichuan Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Robinson AA, Dunn MJ, McCormack A, dos Remedios C, Rose ML. Protective effect of phosphorylated Hsp27 in coronary arteries through actin stabilization. J Mol Cell Cardiol 2010; 49:370-9. [PMID: 20600103 DOI: 10.1016/j.yjmcc.2010.06.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 06/09/2010] [Accepted: 06/10/2010] [Indexed: 01/01/2023]
Abstract
There is evidence for an inverse association between cellular expression of Hsp27 and vascular disease with carotid plaques, endarterectomy specimens, and cardiac biopsies investigated to date. Here we compare non-diseased coronary arteries from human heart transplant donors and patients with dilated cardiomyopathy (DCM) with no evidence of coronary artery disease, to coronary arteries from patients with ischemic heart disease (IHD) in order to determine abundance of phosphorylated Hsp27 (phospho-Hsp27) in plaque-free diseased vessels and elucidate how this protective effect is brought about through protein regulation. Western blotting identified phospho-Hsp27, phosphorylated on Ser82, Ser78, and Ser15, to be specifically decreased in IHD, but not DCM, compared to non-diseased vessels. Immunohistochemistry confirmed these results and revealed phospho-Hsp27 was located within both smooth muscle and endothelial cells. Disease-free coronary arteries and from patients with IHD were then subjected to 2-Dimensional Difference Gel Electrophoresis (2D-DIGE) analysis to detect proteins with altered abundance, which were subsequently identified by mass spectrometry. Hsp27 showed decreased abundance in ischemic vessels as expected. The expression of cytoskeletal proteins, namely vimentin was significantly reduced, while transgelin and tropomyosin showed significantly increased abundance in vessels with IHD. Immunohistochemistry studies suggested an increase in G-actin abundance to be present within IHD vessels. The results are consistent with the hypothesis that phospho-Hsp27 protects against vascular disease possibly by stabilizing the actin cytoskeleton within endothelial and/or smooth muscle cells.
Collapse
Affiliation(s)
- Aisling A Robinson
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland.
| | | | | | | | | |
Collapse
|
13
|
Lahat G, Zhu QS, Huang KL, Wang S, Bolshakov S, Liu J, Torres K, Langley RR, Lazar AJ, Hung MC, Lev D. Vimentin is a novel anti-cancer therapeutic target; insights from in vitro and in vivo mice xenograft studies. PLoS One 2010; 5:e10105. [PMID: 20419128 PMCID: PMC2855704 DOI: 10.1371/journal.pone.0010105] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Accepted: 03/03/2010] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Vimentin is a ubiquitous mesenchymal intermediate filament supporting mechano-structural integrity of quiescent cells while participating in adhesion, migration, survival, and cell signaling processes via dynamic assembly/disassembly in activated cells. Soft tissue sarcomas and some epithelial cancers exhibiting "epithelial to mesenchymal transition" phenotypes express vimentin. Withaferin-A, a naturally derived bioactive compound, may molecularly target vimentin, so we sought to evaluate its effects on tumor growth in vitro and in vivo thereby elucidating the role of vimentin in drug-induced responses. METHODS AND FINDINGS Withaferin-A elicited marked apoptosis and vimentin cleavage in vimentin-expressing tumor cells but significantly less in normal mesenchymal cells. This proapoptotic response was abrogated after vimentin knockdown or by blockade of caspase-induced vimentin degradation via caspase inhibitors or overexpression of mutated caspase-resistant vimentin. Pronounced anti-angiogenic effects of Withaferin-A were demonstrated, with only minimal effects seen in non-proliferating endothelial cells. Moreover, Withaferin-A significantly blocked soft tissue sarcoma growth, local recurrence, and metastasis in a panel of soft tissue sarcoma xenograft experiments. Apoptosis, decreased angiogenesis, and vimentin degradation were all seen in Withaferin-A treated specimens. CONCLUSIONS In light of these findings, evaluation of Withaferin-A, its analogs, or other anti-vimentin therapeutic approaches in soft tissue sarcoma and "epithelial to mesenchymal transition" clinical contexts is warranted.
Collapse
Affiliation(s)
- Guy Lahat
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Sarcoma Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Quan-Sheng Zhu
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Sarcoma Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Kai-Lieh Huang
- Sarcoma Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Suizhao Wang
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Sarcoma Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Svetlana Bolshakov
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Sarcoma Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Jeffery Liu
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Sarcoma Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Keila Torres
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Sarcoma Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Robert R. Langley
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Alexander J. Lazar
- Sarcoma Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Mien Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Dina Lev
- Sarcoma Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
14
|
Finckbone V, Oomman SK, Strahlendorf HK, Strahlendorf JC. Regional differences in the temporal expression of non-apoptotic caspase-3-positive bergmann glial cells in the developing rat cerebellum. Front Neuroanat 2009; 3:3. [PMID: 19503747 PMCID: PMC2691149 DOI: 10.3389/neuro.05.003.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 05/04/2009] [Indexed: 01/22/2023] Open
Abstract
Although caspases have been intimately linked to apoptotic events, some of the pro-apoptotic caspases also may regulate differentiation. We previously demonstrated that active caspase-3 is expressed and has an apparent non-apoptotic function during the development of cerebellar Bergmann glia. The current study seeks to further correlate active/cleaved caspase-3 expression with the developmental phenotype of Bergmann glia by examining regional differences in the temporal pattern of expression of cleaved caspase-3 immunoreactivity in lobules of the cerebellar vermis. In general, we found that the expression pattern of cleaved caspase-3 corresponds to the reported developmental temporal profile of the lobes and that its levels peak at 15 days and declines thereafter. Compared to intermediate or late maturing lobules, early maturing lobules had higher levels of active caspase-3 at earlier postnatal times. This period of postnatal development is precisely the time during which Bergmann glia initiate differentiation.
Collapse
Affiliation(s)
- Velvetlee Finckbone
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center Lubbock, TX, USA
| | | | | | | |
Collapse
|
15
|
Suarez-Huerta N, Lecocq R, Mosselmans R, Galand P, Dumont JE, Robaye B. Myosin heavy chain degradation during apoptosis in endothelial cells. Cell Prolif 2008; 33:101-14. [PMID: 10845254 PMCID: PMC6496268 DOI: 10.1046/j.1365-2184.2000.00169.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytoskeleton undergoes dramatic changes during apoptosis and many cytoskeletal proteins are known to be degraded during this process. The number of proteases found to be involved in apoptosis is growing but the role of the proteolysis they cause remains poorly understood. This report describes for the first time that myosin heavy chain is cleaved in aortic endothelial cell apoptosis induced either by tumour necrosis factor-alpha or okadaic acid. The cleavage was specific since a well-defined major 97 kDa fragment of myosin heavy chain was produced. The intermediate filament component vimentin was also cleaved into well-defined fragments (31, 28 and 23 kDa). Kinetic studies showed that proteolysis occurred concomitantly with the morphological changes associated with apoptosis, i.e. cellular condensation and fragmentation in apoptotic bodies. These data suggest that the degradation of myosin and vimentin could be involved in the execution of the morphological alterations observed during apoptotic cell death.
Collapse
Affiliation(s)
- N Suarez-Huerta
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Nucléaire, Faculté de Médecine, Free University of Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
16
|
Lambrecht S, Verbruggen G, Verdonk PCM, Elewaut D, Deforce D. Differential proteome analysis of normal and osteoarthritic chondrocytes reveals distortion of vimentin network in osteoarthritis. Osteoarthritis Cartilage 2008; 16:163-73. [PMID: 17643325 DOI: 10.1016/j.joca.2007.06.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 06/05/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We conducted a proteome analysis of human articular chondrocytes, in order to identify proteins differentially expressed in chondrocytes during the progression of osteoarthritis (OA) and to characterize the phosphorylation status of these proteins. METHODS The proteins of 20 samples of human chondrocytes obtained from the cartilage of human knees (six from healthy cartilage (NoNo), seven from visually intact zones (NoOA) and seven from visually damaged zones (OAOA) of OA cartilage from the same knee joint) were sequentially extracted and subjected to two-dimensional gel electrophoresis (2-DE). Protein expression patterns were subjected to statistical analysis and protein spots of interest were identified by electrospray ionization tandem mass spectrometry. RESULTS We identified several protein spots, showing a differential expression between the sample groups. Cleaved vimentin was upregulated in OAOA samples, this was confirmed by 1-DE and Western blot. The possible impact of vimentin cleavage on the chondrocyte's cytoskeleton was illustrated by confocal microscopy analysis, which revealed a distorted vimentin organization in OA chondrocytes. In contrast, F-actin staining did not reveal differences. CONCLUSION All together, this study revealed substantial alterations in the vimentin cytoskeleton in OA-affected human articular chondrocytes.
Collapse
Affiliation(s)
- S Lambrecht
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | | | | | | | | |
Collapse
|
17
|
Zhang MH, Lee JS, Kim HJ, Jin DI, Kim JI, Lee KJ, Seo JS. HSP90 protects apoptotic cleavage of vimentin in geldanamycin-induced apoptosis. Mol Cell Biochem 2006; 281:111-21. [PMID: 16328963 DOI: 10.1007/s11010-006-0638-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 07/07/2005] [Indexed: 01/28/2023]
Abstract
Heat shock protein (HSP) 90 is of interest as an anticancer drug target because of its importance in maintaining the conformation, stability and function of the client proteins involved in signal transduction pathways leading to proliferation, cell cycle progression, and apoptosis. Geldanamycin, a specific antagonist of HSP90, binds directly to HSP90 and promotes proteolytic degradation of client proteins of HSP90. The aim of the present study was to identify novel client proteins of HSP90 and to elucidate HSP90 function through inhibition of HSP90 binding to its client proteins, by using of geldanamycin. We investigated changes in protein profile when apoptosis was induced by exposure to geldanamycin. Differentially expressed proteins were identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS), in human neuroblastoma SK-N-SH cells. The vimentin level was found to decrease dramatically by the treatment of geldanamycin. We observed subcellular co-localization of vimentin and HSP90. Physical association of vimentin with HSP90 was detected by an immunoprecipitation assay. The caspase inhibitors, Z-VAD-FMK and Ac-DEVD-CHO, completely abolished geldanamycin-induced cleavage of vimentin. Changes of HSP90 level by antisense treatment or transfection of HSP90-overexpressing vector affected geldanamycin-induced cleavage of vimentin. These results suggest that HSP90 protects vimentin by physical interaction in the geldanamycin-induced apoptotic pathway.
Collapse
Affiliation(s)
- Mei-Hua Zhang
- Department of Biochemistry and molecular Biology, ILCHUN Molecular Medicine Institute MRC, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
Marceau N, Gilbert S, Loranger A. Uncovering the Roles of Intermediate Filaments in Apoptosis. Methods Cell Biol 2004; 78:95-129. [PMID: 15646617 DOI: 10.1016/s0091-679x(04)78005-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Normand Marceau
- Centre de recherche en cancérologie et Département de médecine, Université Laval, G1R 2J6 QC, Canada
| | | | | |
Collapse
|
19
|
Fujita J, Bandoh S, Yang Y, Wu F, Ohtsuki Y, Yoshinouchi T, Ishida T. High molecular weight vimentin complex is formed after proteolytic digestion of vimentin by caspase-3: detection by sera of patients with interstitial pneumonia. Microbiol Immunol 2003; 47:447-51. [PMID: 12906105 DOI: 10.1111/j.1348-0421.2003.tb03369.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In a previous study, we demonstrated anti-vimentin antibodies in sera of patients with interstitial pneumonia. We hypothesized that antibodies in sera might detect vimentin fragments formed during the process of apoptosis. To prove this, recombinant human vimentin was digested by recombinant human caspase-3 or caspase-8. Then, Western blotting using several commercially available antibodies against human vimentin or patients' sera which had anti-vimentin autoantibodies, was performed. As a result, after recombinant human vimentin was digested by caspase-3 or caspase-8, several vimentin fragments were formed and detected by 2 kinds of monoclonal anti-vimentin antibodies (clone 3B4 and clone V9) as well as by polyclonal sheep anti-human vimentin antibody. It was demonstrated that high molecular weight vimentin was formed after the digestion of vimentin by caspase-3, which was only detected by patients' sera. The high molecular weight vimentin was not formed after digestion of vimentin by caspase-8. Our present results show that high molecular weight vimentin was formed after the digestion of vimentin by caspase-3. In addition, it is suggested that this high molecular weight vimentin acted as an autoantigen to form anti-vimentin autoantibody in vivo.
Collapse
Affiliation(s)
- Jiro Fujita
- First Department of Internal Medicine, Kagawa Medical University, Kagawa 761-0793, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
Rami A. Ischemic neuronal death in the rat hippocampus: the calpain-calpastatin-caspase hypothesis. Neurobiol Dis 2003; 13:75-88. [PMID: 12828932 DOI: 10.1016/s0969-9961(03)00018-4] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Inappropriate imbalances between proteases and protease inhibitors are known to occur under cerebral ischemia and neurodegenerative processes, and could be contributors to various diseases that are characterized by excessive (ischemia, AIDS) or inadequate (cancer, autoimmunity) cell death. For instance, calpain is activated in various necrotic and apoptotic conditions, whereas caspase-3 is only activated in neuronal apoptosis. Caspases and calpains are cysteine proteases that require proteolytic cleavage for activation. The substrates cleaved by caspases include cytoskeletal and associated proteins, kinases, members of the Bcl-2 family of apoptosis-related proteins, presenilins, and DNA-modulating enzymes. Calpain substrates include cytoskeletal and associated proteins, kinases and phosphatases, membrane receptors and transporters, and steroid receptors. This article provides a review of the properties of caspases and calpains, their roles in cell death pathways following cerebral ischemia, and the substrates upon which they act. Because calpain inhibitors and caspase inhibitors appear to protect brain tissue by distinct mechanisms in cerebral ischemia, the possible therapeutic interactions between these drugs in a well-defined rodent model of global ischemia are briefly discussed and documented.
Collapse
Affiliation(s)
- A Rami
- Institute of Anatomy III-Dr. Senckenbergische Anatomie, Faculty of Medicine, Clinic of the Johann-Wolfgang-Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany.
| |
Collapse
|
21
|
Ribera J, Ayala V, Esquerda JE. c-Jun-like immunoreactivity in apoptosis is the result of a crossreaction with neoantigenic sites exposed by caspase-3-mediated proteolysis. J Histochem Cytochem 2002; 50:961-72. [PMID: 12070275 DOI: 10.1177/002215540205000710] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Previous reports in various cells and species have shown that apoptotic cells are specifically and strongly labeled by certain c-Jun/N-terminal antibodies, such as c-Jun/sc45. This kind of immunoreactivity is confined to the cytoplasm. It is not due to c-Jun but appears to be related to c-Jun-like neoepitopes generated during apoptosis. This study was planned to gain further information about c-Jun-like immunostaining during apoptosis and to evaluate these antibodies as possible tools for characterizing cell death. Most of the experiments were performed in chick embryo spinal cord. When the apoptotic c-Jun-like immunoreactivity and caspase-3 immunostaining patterns were compared, we found that both antibodies immunostained the same dying cells in a similar pattern. In contrast to TUNEL staining, which reveals a positive reaction in both apoptotic and necrotic dying cells, active caspase-3 and c-Jun/sc45 antibodies are more selective because they stained only apoptotic cells. When cytosolic extracts from normal tissues were digested in vitro with caspase-3, c-Jun/sc45 immunoreactivity was strongly induced in several proteins, as demonstrated by Western blotting. Similar results were found when normal tissue sections were treated with caspase-3. Our results show that c-Jun/sc45 antibodies react with neoepitopes generated from cell proteins cleaved by activated caspases during apoptosis. We conclude that c-Jun/sc45 antibodies may be useful for detecting apoptosis. They can even be used in archival paraffin-embedded tissue samples.
Collapse
Affiliation(s)
- Joan Ribera
- Unitat de Neurobiologia Cellular, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Lleida, Catalunya, Spain
| | | | | |
Collapse
|
22
|
Belichenko I, Morishima N, Separovic D. Caspase-resistant vimentin suppresses apoptosis after photodynamic treatment with a silicon phthalocyanine in Jurkat cells. Arch Biochem Biophys 2001; 390:57-63. [PMID: 11368515 DOI: 10.1006/abbi.2001.2365] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Oxidative stress, such as photodynamic therapy, is an apoptosis inducer. Apoptosis, as well as photosensitization, have been associated with disruption of the cytoskeletal network. The purpose of the present study was to assess the role of vimentin, a major cytoskeletal protein, in apoptosis after photodynamic treatment (PDT) with the silicon phthalocyanine Pc 4 in human Jurkat T cells. Here we show for the first time that photosensitization with Pc 4 initiates vimentin cleavage and that this event precedes poly(ADP-ribose) polymerase (PARP) degradation. Similar findings were obtained in the presence of C2-ceramide, an inducer of oxidative stress and apoptosis. In the presence of benzyloxycarbonyl-Val-Ala-Asp(O-methyl)-fluoromethylketone, a pan-caspase inhibitor, Pc 4-PDT-induced vimentin and PARP cleavage were abolished. In Jurkat cells transfected with a caspase-resistant vimentin apoptosis was partly suppressed and delayed post-Pc 4-PDT. We suggest that the full-length vimentin confers resistance to nuclear apoptosis after PDT with Pc 4.
Collapse
Affiliation(s)
- I Belichenko
- Department of Radiation Oncology, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106-4942, USA
| | | | | |
Collapse
|
23
|
Byun Y, Chen F, Chang R, Trivedi M, Green KJ, Cryns VL. Caspase cleavage of vimentin disrupts intermediate filaments and promotes apoptosis. Cell Death Differ 2001; 8:443-50. [PMID: 11423904 DOI: 10.1038/sj.cdd.4400840] [Citation(s) in RCA: 267] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2000] [Revised: 11/30/2000] [Accepted: 12/19/2000] [Indexed: 02/07/2023] Open
Abstract
Caspases are key mediators of apoptosis. Using a novel expression cloning strategy we recently developed to identify cDNAs encoding caspase substrates, we isolated the intermediate filament protein vimentin as a caspase substrate. Vimentin is preferentially cleaved by multiple caspases at distinct sites in vitro, including Asp85 by caspases-3 and -7 and Asp259 by caspase-6, to yield multiple proteolytic fragments. Vimentin is rapidly proteolyzed by multiple caspases into similar sized fragments during apoptosis induced by many stimuli. Caspase cleavage of vimentin disrupts its cytoplasmic network of intermediate filaments and coincides temporally with nuclear fragmentation. Moreover, caspase proteolysis of vimentin at Asp85 generates a pro-apoptotic amino-terminal fragment whose ability to induce apoptosis is dependent on caspases. Taken together, our findings suggest that caspase proteolysis of vimentin promotes apoptosis by dismantling intermediate filaments and by amplifying the cell death signal via a pro-apoptotic cleavage product.
Collapse
Affiliation(s)
- Y Byun
- Center for Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
24
|
Yan XX, Najbauer J, Woo CC, Dashtipour K, Ribak CE, Leon M. Expression of active caspase-3 in mitotic and postmitotic cells of the rat forebrain. J Comp Neurol 2001; 433:4-22. [PMID: 11283945 DOI: 10.1002/cne.1121] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Active caspase-3 immunoreactivity was detected in the rat forebrain proliferative regions at birth and remained high in these areas for about 2 weeks, during which period labeled cells were present centroperipherally across the olfactory bulb. By the end of the third postnatal week, only a small number of immunolabeled cells remained in these forebrain structures. Active caspase-3 immunolabeling was localized mostly to cell nuclei and co-localized partially with TuJ1 and NeuN immunoreactivity, but not with glial fibrially acidic protein, OX-42, gamma-aminobutyric acid, or terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL)-positive labeling. Active caspase-3 and 5-bromo-2'-deoxyuridine (BrdU) double-labeled nuclei were seen in the proliferative regions after 2 hours and in the periglomerular region of the bulb after 7 days following BrdU injections. Examination of the cells with electron microscopy confirmed that the active caspase-3-containing nuclei in the proliferative regions often had infoldings and appeared to be undergoing division. Some of the cells with active caspase-3-labeled nuclei in the bulb had synapses on their somata or dendrites. Labeled dendritic spines and a few axon terminals were also observed in the olfactory bulb. Taken together, it appears that a wave of active caspase-3-positive cells are dividing in the proliferative zones and then migrating to the bulb as they differentiate into neurons. Therefore, active caspase-3 may play a role in cellular processes such as neuronal differentiation, migration, and plasticity, in addition to its role in cell death.
Collapse
Affiliation(s)
- X X Yan
- Department of Neurobiology and Behavior, University of California at Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | |
Collapse
|
25
|
Wormser U, Sintov A, Brodsky B, Nyska A. Topical iodine preparation as therapy against sulfur mustard-induced skin lesions. Toxicol Appl Pharmacol 2000; 169:33-9. [PMID: 11076694 DOI: 10.1006/taap.2000.9056] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sulfur mustard (SM) is a powerful vesicant employed as an agent of chemical warfare. This study demonstrates the therapeutic effect of a novel topical iodine preparation as a postexposure treatment against SM-induced lesions in the fur-covered guinea-pig skin model. Iodine treatment 15 min after SM exposure resulted in statistically significant reductions of 48, 50, and 55% in dermal acute inflammation, hemorrhage, and necrosis, respectively, whereas, the epidermal healing markers, hyperkerathosis and acanthosis, were significantly elevated by 72 and 67%, respectively, 2 days after treatment. At the interval of 30 min between SM exposure and iodine treatment, there was a significant degree of healing or recovery, albeit to a lesser extent than that observed in the shorter interval. Although the epidermal healing markers were not elevated, the parameters indicative of active tissue damage, such as subepidermal microblisters, epidermal ulceration, dermal acute inflammation, hemorrhage, and necrosis, were significantly reduced by 35, 67, 43, 39, and 45%, respectively. At the 45-min interval between exposure and treatment, there was also a certain degree of healing or recovery expressed as significant reductions in dermal subacute inflammation, subepidermal microblister formation, and epidermal ulceration, whereas, acanthosis was statistically elevated, indicating an increased healing potential. At the 60-min interval, iodine was less efficacious; nevertheless, a significant reduction in the incidence of subepidermal microblisters and an expansion of the acanthotic area were observed. Gross ulceration was significantly decreased at intervals of 15 and 30 min between exposure and treatment. The local anesthetic, lidocaine, did not alter the therapeutic effect of iodine. SM was not affected chemically by iodine as measured by gas chromatography-mass spectrometry (GC-MS) analysis. These findings suggest that the iodine preparation functions as an antidote against skin lesions induced by SM.
Collapse
Affiliation(s)
- U Wormser
- Berman Building, Institute of Life Sciences, Faculty of Sciences, The Hebrew University, Edmond Safra Campus, Givat Ram, 91904, Jersusalem, Israel.
| | | | | | | |
Collapse
|
26
|
Talanian RV, Brady KD, Cryns VL. Caspases as targets for anti-inflammatory and anti-apoptotic drug discovery. J Med Chem 2000; 43:3351-71. [PMID: 10978183 DOI: 10.1021/jm000060f] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- R V Talanian
- BASF Bioresearch Corporation, 100 Research Drive, Worcester, Massachusetts 01605, USA.
| | | | | |
Collapse
|
27
|
Ogawa S, Fujita M, Ishii Y, Tsurukami H, Hirabayashi M, Ikeda K, Orimo A, Hosoi T, Ueda M, Nakamura T, Ouchi Y, Muramatsu M, Inoue S. Impaired estrogen sensitivity in bone by inhibiting both estrogen receptor alpha and beta pathways. J Biol Chem 2000; 275:21372-9. [PMID: 10806217 DOI: 10.1074/jbc.m909675199] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although it is well established that estrogen deficiency causes osteoporosis among the postmenopausal women, the involvement of estrogen receptor (ER) in its pathogenesis still remains uncertain. In the present study, we have generated rats harboring a dominant negative ERalpha, which inhibits the actions of not only ERalpha but also recently identified ERbeta. Contrary to our expectation, the bone mineral density (BMD) of the resulting transgenic female rats was maintained at the same level with that of the wild-type littermates when sham-operated. In addition, ovariectomy-induced bone loss was observed almost equally in both groups. Strikingly, however, the BMD of the transgenic female rats, after ovariectomized, remained decreased even if 17beta-estradiol (E(2)) was administrated, whereas, in contrast, the decrease of littermate BMD was completely prevented by E(2). Moreover, bone histomorphometrical analysis of ovariectomized transgenic rats revealed that the higher rates of bone turnover still remained after treatment with E(2). These results demonstrate that the prevention from the ovariectomy-induced bone loss by estrogen is mediated by ER pathways and that the maintenance of BMD before ovariectomy might be compensated by other mechanisms distinct from ERalpha and ERbeta pathways.
Collapse
Affiliation(s)
- S Ogawa
- Department of Biochemistry, Saitama Medical School, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Both necrotic and apoptotic neuronal death are observed in various neurological and neurodegenerative disorders. Calpain is activated in various necrotic and apoptotic conditions, while caspase 3 is only activated in neuronal apoptosis. Despite the difference in cleavage-site specificity, an increasing number of cellular proteins are found to be dually susceptible to these cysteine proteases. These include alpha- and beta-fodrin, calmodulin-dependent protein kinases, ADP-ribosyltransferase (ADPRT/PARP) and tau. Intriguingly, calpastatin is susceptible to caspase-mediated fragmentation. Neurotoxic challenges such as hypoxia-hypoglycemia, excitotoxin treatment or metabolic inhibition of cultured neurons result in activation of both proteases. Calpain inhibitors can protect against necrotic neuronal death and, to a lesser extent, apoptotic death. Caspase inhibitors strongly suppress apoptotic neuronal death. Thus, both protease families might contribute to structural derangement and functional loss in neurons under degenerative conditions.
Collapse
Affiliation(s)
- K K Wang
- Dept of Neuroscience Therapeutics, Parke-Davis Pharmaceutical Research, Warner-Lambert Company, Ann Arbor, MI 48105, USA.
| |
Collapse
|
29
|
Abstract
The immune system relies on cell death to maintain lymphoid homeostasis and avoid disease. Recent evidence has indicated that the caspase family of cysteine proteases is a central effector in apoptotic cell death and is absolutely responsible for many of the morphological features of apoptosis. Cell death, however, can occur through caspase-independent and caspase-dependent pathways. In the case of cells that are irreversibly neglected or damaged, death occurs even in the absence of caspase activity. In contrast, healthy cells require caspase activation to undergo cell death induced by surface receptors. This review summarizes the current understanding of these two pathways of cell death in the immune system.
Collapse
Affiliation(s)
- J C Rathmell
- Gwen Knapp Center for Lupus and Immunology Research, Department of Medicine, Chicago, Illinois, USA
| | | |
Collapse
|
30
|
Abstract
Autoimmune diseases are characterized by multiple autoantibodies and/or autoreactive T cells that recognize a large number of antigens. Many of these antigens undergo extensive post-translational modifications during apoptosis and act as substrates for the proapoptotic cystein proteases. Here, Mauro Piacentini and Vittorio Colizzi discuss the effects on autoimmunity produced by post-translational modifications of proteins catalysed by the proapoptotic enzyme tissue transglutaminase.
Collapse
Affiliation(s)
- M Piacentini
- Dept of Biology, University of Rome Tor Vergata, Italy.
| | | |
Collapse
|