1
|
Zhao Y, Sun C, Zu Z. Assignment of molecular origins of NOE signal at -3.5 ppm in the brain. Magn Reson Med 2023; 90:673-685. [PMID: 36929814 PMCID: PMC10644915 DOI: 10.1002/mrm.29643] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/15/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE Nuclear Overhauser enhancemen mediated saturation transfer effect, termed NOE (-3.5 ppm), is a major source of CEST MRI contrasts at 3.5 ppm in the brain. Previous phantom experiments have demonstrated that both proteins and lipids, two major components in tissues, have substantial contributions to NOE (-3.5 ppm) signals. Their relative contributions in tissues are informative for the interpretation of NOE (-3.5 ppm) contrasts that could provide potential imaging biomarkers for relevant diseases, which remain incompletely understood. METHODS Experiments on homogenates and supernatants of brain tissues collected from healthy rats, that could isolate proteins from lipids, were performed to evaluate the relative contribution of lipids to NOE (-3.5 ppm) signals. On the other hand, experiments on ghost membranes with varied pH, and reconstituted phospholipids with different chemical compositions were conducted to study the dependence of NOE (-3.5 ppm) on physiological conditions. Besides, CEST imaging on rat brains bearing 9 L tumors and healthy rat brains was performed to analyze the causes of the NOE (-3.5 ppm) contrast variations between tumors and normal tissues, and between gray matter and white matter. RESULTS Our experiments reveal that lipids have dominant contributions to the NOE (-3.5 ppm) signals. Further analysis suggests that decreased NOE (-3.5 ppm) signals in tumors and higher NOE (-3.5 ppm) signals in white matter than in gray matter are mainly explained by changes in membrane lipids, rather than proteins. CONCLUSION NOE (-3.5 ppm) could be exploited as a highly sensitive MRI contrast for imaging membrane lipids in the brain.
Collapse
Affiliation(s)
- Yu Zhao
- Vanderbilt University Institute of Imaging Science, Nashville, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Casey Sun
- Vanderbilt University Institute of Imaging Science, Nashville, US
- Department of Chemistry, University of Florida, Gainesville, US
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Nashville, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
| |
Collapse
|
2
|
Zhao Y, Sun C, Zu Z. Assignment of molecular origins of NOE signal at -3.5 ppm in the brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.526979. [PMID: 36778370 PMCID: PMC9915742 DOI: 10.1101/2023.02.03.526979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose Nuclear Overhauser Enhancement mediated saturation transfer effect, termed NOE(-3.5 ppm), is a major source of chemical exchange saturation transfer (CEST) MRI contrasts at 3.5 ppm in the brain. Previous phantom experiments have demonstrated that both proteins and lipids, two major components in tissues, have substantial contributions to NOE(-3.5 ppm) signals. Their relative contributions in tissues are informative for the interpretation of NOE(-3.5 ppm) contrasts that could provide potential imaging biomarkers for relevant diseases, which remain incompletely understood. Methods Experiments on homogenates and supernatants of brain tissues collected from healthy rats, that could isolate proteins from lipids, were performed to evaluate the relative contribution of lipids to NOE(-3.5 ppm) signals. On the other hand, experiments on ghost membranes with varied pH, and reconstituted phospholipids with different chemical compositions were conducted to study the dependence of NOE(-3.5 ppm) on physiological conditions. Besides, CEST imaging on rat brains bearing 9L tumors and healthy rat brains was performed to analyze the causes of the NOE(-3.5 ppm) contrast variations between tumors and normal tissues, and between gray matter and white matter. Results Our experiments reveal that lipids have dominant contributions to the NOE (-3.5 ppm) signals. Further analysis suggests that decreased NOE(-3.5 ppm) signals in tumors and higher NOE(-3.5 ppm) signals in white matter than in gray matter are mainly explained by changes in membrane lipids, rather than proteins. Conclusion NOE(-3.5 ppm) could be exploited as a highly sensitive MRI contrast for imaging membrane lipids in the brain.
Collapse
|
3
|
Design, Synthesis and Biological Evaluation of Biscarbamates as Potential Selective Butyrylcholinesterase Inhibitors for the Treatment of Alzheimer's Disease. Pharmaceuticals (Basel) 2022; 15:ph15101220. [PMID: 36297332 PMCID: PMC9609992 DOI: 10.3390/ph15101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
As butyrylcholinesterase (BChE) plays a role in the progression of symptoms and pathophysiology of Alzheimer's disease (AD), selective inhibition of BChE over acetylcholinesterase (AChE) can represent a promising pathway in treating AD. The carbamate group was chosen as a pharmacophore because the carbamates currently or previously in use for the treatment of AD displayed significant positive effects on cognitive symptoms. Eighteen biscarbamates with different substituents at the carbamoyl and hydroxyaminoethyl chain were synthesized, and their inhibitory potential toward both cholinesterases and inhibition selectivity were determined. The ability of carbamates to cross the blood-brain barrier (BBB) by passive transport, their cytotoxic profile and their ability to chelate biometals were also evaluated. All biscarbamates displayed a time-dependent inhibition with inhibition rate constants within 10-3-10-6 M-1 min-1 range for both cholinesterases, with generally higher preference to BChE. For two biscarbamates, it was determined that they should be able to pass the BBB by passive transport, while for five biscarbamates, this ability was slightly limited. Fourteen biscarbamates did not exhibit a cytotoxic effect toward liver, kidney and neuronal cells. In conclusion, considering their high BChE selectivity, non-toxicity, ability to chelate biometals and pass the BBB, compounds 2 and 16 were pointed out as the most promising compounds for the treatment of middle and late stages of AD.
Collapse
|
4
|
Heravi MM, Abedian‐Dehaghani N, Zadsirjan V, Rangraz Y. Catalytic Function of Cu (I) and Cu (II) in Total Synthesis of Alkaloids. ChemistrySelect 2021. [DOI: 10.1002/slct.202101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Majid M. Heravi
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Neda Abedian‐Dehaghani
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Vahideh Zadsirjan
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Yalda Rangraz
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| |
Collapse
|
5
|
Roy A, Maity A, Giri R, Bisai A. Efficient Alkynylation of 2‐Oxindoles with Alkynyl Dibenzothiophenium Triflates: Total Synthesis of (±)‐Deoxyeseroline. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Avishek Roy
- Department of ChemistryIndian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 Madhya Pradesh India
| | - Arindam Maity
- Department of ChemistryIndian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 Madhya Pradesh India
| | - Rahul Giri
- Department of ChemistryIndian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 Madhya Pradesh India
| | - Alakesh Bisai
- Department of ChemistryIndian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 Madhya Pradesh India
- Department of Chemical SciencesIndian Institute of Science Education and Research Kolkata Mohanpur, Haringhata Kalyani, Nadia 741 246 West Bengal India
| |
Collapse
|
6
|
D'Avila da Silva F, Nogara PA, Ochoa-Rodríguez E, Nuñez-Figueredo Y, Wong-Guerra M, Rosemberg DB, Rocha JBTD. Molecular docking and in vitro evaluation of a new hybrid molecule (JM-20) on cholinesterase activity from different sources. Biochimie 2019; 168:297-306. [PMID: 31770565 DOI: 10.1016/j.biochi.2019.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Abstract
The main function of AChE is the hydrolysis of the neurotransmitter acetylcholine (ACh) at the neuromuscular and in cholinergic brain synapses. In some pathologies, loss of cholinergic neurons may be associated with a deficiency of ACh in specific brain areas. Consequently, the study of new safe drugs that inhibit AChE is important, because they can increase ACh levels in the synaptic cleft without adverse effects. Here, we evaluated the effects of JM-20 (a benzodiazepine-dihydropyridine hybrid molecule) on cholinesterase (ChE) activities from distinct sources (AChE from Electrophorus electricus (EeAChE), human erythrocyte membranes (HsAChE (ghost)), total erythrocyte (HsAChE (erythrocyte)) and BChE from plasma (HsBChE) and purified enzyme from the horse (EcBChE)). Kinetic parameters were determined in the presence of 0.05-1.6 mM of substrate concentration. The interactions ChEs with JM-20 were performed using molecular docking simulations. JM-20 inhibited all tested AChE but not BChE. The IC50 values were 123 nM ± 0.2 (EeAChE), 158 nM ± 0.1 (ghost HsAChE), and 172 nM ± 0.2 (erythrocytic HsAChE). JM-20 caused a mixed type of inhibition (it altered Km and Vmax of AChE). The molecular docking indicated the binding poses and the most plausible active isomer of JM-20. Besides giving important data for future drug design, our results help us understand the mode of action of JM-20 as a specific inhibitor of AChE enzymes.
Collapse
Affiliation(s)
- Fernanda D'Avila da Silva
- Programa de Pós-graduação Em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Pablo Andrei Nogara
- Programa de Pós-graduação Em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Estael Ochoa-Rodríguez
- Centro de Investigación y Desarrollo de Medicamentos, Ave 26, Nº 1605 Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Yanier Nuñez-Figueredo
- Centro de Investigación y Desarrollo de Medicamentos, Ave 26, Nº 1605 Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Maylin Wong-Guerra
- Centro de Investigación y Desarrollo de Medicamentos, Ave 26, Nº 1605 Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Denis Broock Rosemberg
- Programa de Pós-graduação Em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - João Batista Teixeira da Rocha
- Programa de Pós-graduação Em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
7
|
Computational insight into the anticholinesterase activities and electronic properties of physostigmine analogs. Future Med Chem 2019; 11:1907-1928. [DOI: 10.4155/fmc-2018-0421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Aim: Alzheimer's disease (AD) is known to be themajor cause of dementia among the elderly. The structural properties and binding interactions of the AD drug physostigmine (-)-phy, and its analogues (-)-hex and (-)-phe and (+)-phe, were examined, as well as their impact on the conformational changes of two different AD target enzymes AChE and BChE. Materials & methods: The conformational changes were studied using molecular dynamics and structural properties using Quantum mechanics. Results & conclusions: The binding free energy (ΔGbind) and the change in the free energy surface (FES) computed from the funnel metadynamics (FMD) simulation, both support the idea that inhibitors (-)-phe and (-)-hex have better binding activities toward enzyme AChE, and that (-)-phe is stronger in binding than the present AD drug (-)-phy.
Collapse
|
8
|
Shen X, Zhou Y, Xi Y, Zhao J, Zhang H. Total Synthesis of Dimeric HPI Alkaloids. NATURAL PRODUCTS AND BIOPROSPECTING 2016; 6:117-39. [PMID: 26969313 PMCID: PMC4805652 DOI: 10.1007/s13659-016-0092-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/19/2016] [Indexed: 05/17/2023]
Abstract
In this paper, we report a full account of the synthesis of dimeric hexahydropyrroloindole alkaloids and its analogues. The key feature of our new strategy is the novel catalytic copper (10 %) mediated intramolecular arylations of o-haloanilides followed by intermolecular oxidative dimerization of the resulting oxindoles in one pot. This sequential reaction leads to the key intermediates for the synthesis of (+)-chimonanthine, (+)-folicanthine, (-)-calycanthine and (-)-ditryptophenaline. In the presence of catalytic amount of cuprous iodide (10 %), an intramolecular arylation of o-haloanilides followed by an intermolecular oxidative dimerization of the resulting oxindoles leads to a common intermediate for the synthesis of (+)-chimonanthine, (+)-folicanthine and (-)-calycanthine. Based on this cascade sequence, we also developed a flexible strategy towards the asymmetric syntheses of dimeric HPI alkaloids (-)-ditryptophenaline and its analogues.
Collapse
Affiliation(s)
- Xianfu Shen
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Yongyun Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Yongkai Xi
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Jingfeng Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
9
|
De S, Das MK, Bhunia S, Bisai A. Unified Approach to the Spiro(pyrrolidinyl-oxindole) and Hexahydropyrrolo[2,3-b]indole Alkaloids: Total Syntheses of Pseudophrynamines 270 and 272A. Org Lett 2015; 17:5922-5. [DOI: 10.1021/acs.orglett.5b03082] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Subhadip De
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass
Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India
| | - Mrinal Kanti Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass
Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India
| | - Subhajit Bhunia
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass
Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass
Road, Bhauri, Bhopal - 462 066, Madhya Pradesh, India
| |
Collapse
|
10
|
Chen J, Pan H, Chen C, Wu W, Iskandar K, He J, Piermartiri T, Jacobowitz DM, Yu QS, McDonough JH, Greig NH, Marini AM. (-)-Phenserine attenuates soman-induced neuropathology. PLoS One 2014; 9:e99818. [PMID: 24955574 PMCID: PMC4067273 DOI: 10.1371/journal.pone.0099818] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/15/2014] [Indexed: 11/18/2022] Open
Abstract
Organophosphorus (OP) nerve agents are deadly chemical weapons that pose an alarming threat to military and civilian populations. The irreversible inhibition of the critical cholinergic degradative enzyme acetylcholinesterase (AChE) by OP nerve agents leads to cholinergic crisis. Resulting excessive synaptic acetylcholine levels leads to status epilepticus that, in turn, results in brain damage. Current countermeasures are only modestly effective in protecting against OP-induced brain damage, supporting interest for evaluation of new ones. (-)-Phenserine is a reversible AChE inhibitor possessing neuroprotective and amyloid precursor protein lowering actions that reached Phase III clinical trials for Alzheimer's Disease where it exhibited a wide safety margin. This compound preferentially enters the CNS and has potential to impede soman binding to the active site of AChE to, thereby, serve in a protective capacity. Herein, we demonstrate that (-)-phenserine protects neurons against soman-induced neuronal cell death in rats when administered either as a pretreatment or post-treatment paradigm, improves motoric movement in soman-exposed animals and reduces mortality when given as a pretreatment. Gene expression analysis, undertaken to elucidate mechanism, showed that (-)-phenserine pretreatment increased select neuroprotective genes and reversed a Homer1 expression elevation induced by soman exposure. These studies suggest that (-)-phenserine warrants further evaluation as an OP nerve agent protective strategy.
Collapse
Affiliation(s)
- Jun Chen
- Neurology Department, Uniformed Services University of Health Sciences, Bethesda, Maryland, United States of America
| | - Hongna Pan
- Neurology Department, Uniformed Services University of Health Sciences, Bethesda, Maryland, United States of America
| | - Cynthia Chen
- Neurology Department, Uniformed Services University of Health Sciences, Bethesda, Maryland, United States of America
| | - Wei Wu
- Neurology Department, Uniformed Services University of Health Sciences, Bethesda, Maryland, United States of America
| | - Kevin Iskandar
- Neurology Department, Uniformed Services University of Health Sciences, Bethesda, Maryland, United States of America
| | - Jeffrey He
- Neurology Department, Uniformed Services University of Health Sciences, Bethesda, Maryland, United States of America
| | - Tetsade Piermartiri
- Neurology Department, Uniformed Services University of Health Sciences, Bethesda, Maryland, United States of America
| | - David M. Jacobowitz
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Qian-Sheng Yu
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - John H. McDonough
- Pharmacology Branch, Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland, United States of America
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Ann M. Marini
- Neurology Department, Uniformed Services University of Health Sciences, Bethesda, Maryland, United States of America
| |
Collapse
|
11
|
Wang HJ, Zhang D, Wang FS, Wu Y, Song H. Synthesis and anticholinesterase activity of (−)-physostigmine analogues with modifications at C3a and C5. Chem Res Chin Univ 2013. [DOI: 10.1007/s40242-013-3066-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Kaya HB, Özcan B, Şişecioğlu M, Ozdemir H. Purification of acetylcholinesterase by 9-amino-1,2,3,4-tetrahydroacridine from human erythrocytes. Appl Biochem Biotechnol 2013; 170:198-209. [PMID: 23494216 DOI: 10.1007/s12010-013-0177-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 03/04/2013] [Indexed: 11/30/2022]
Abstract
The acetylcholinesterase enzyme was purified from human erythrocyte membranes using a simple and effective method in a single step. Tacrine (9-amino-1,2,3,4-tetrahydroacridine) is a well-known drug for the treatment of Alzheimer's disease, which inhibits cholinesterase. We have developed a tacrine ligand affinity resin that is easy to synthesize, inexpensive and selective for acetylcholinesterase. The affinity resin was synthesized by coupling tacrine as the ligand and L-tyrosine as the spacer arm to CNBr-activated Sepharose 4B. Acetylcholinesterase was purified with a yield of 23.5 %, a specific activity of 9.22 EU/mg proteins and 658-fold purification using the affinity resin in a single step. During purification, the enzyme activity was measured using acetylthiocholine iodide as a substrate and 5,5'-dithiobis-(2-nitrobenzoicacid) as the chromogenic agent. The molecular weight of the enzyme was determined as about 70 kDa monomer upon disulphide reduction by sodium dodecyl sulphate polyacrylamide gel electrophoresis. K(m), V(max), optimum pH and optimum temperature for acetylcholinesterase were found by means of graphics for acetylthiocholine iodide as the substrate. The optimum pH and optimum temperature of the acetylcholinesterase were determined to be 7.4 and 25-35 °C. The Michaelis-Menten constant (K(m)) for the hydrolysis of acetylthiocholine iodide was found to be 0.25 mM, and the V(max) was 0.090 μmol/mL/min. Maximum binding was achieved at 2 °C with pH 7.4 and an ionic strength of approximately 0.1 M. The capacity for the optimum condition was 0.07 mg protein/g gel for acetylcholinesterase.
Collapse
Affiliation(s)
- Habibe Budak Kaya
- Department of Chemistry, Faculty of Sciences, Ataturk University, 25240 Erzurum, Turkey
| | | | | | | |
Collapse
|
13
|
Yang ZD, Song ZW, Ren J, Yang MJ, Li S. Improved thin-layer chromatography bioautographic assay for the detection of actylcholinesterase inhibitors in plants. PHYTOCHEMICAL ANALYSIS : PCA 2011; 22:509-515. [PMID: 21433160 DOI: 10.1002/pca.1310] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 12/01/2010] [Accepted: 12/04/2010] [Indexed: 05/30/2023]
Abstract
INTRODUCTION Thin-layer chromatography (TLC) bioautographic method is a simple and rapid method to screen acetylcholinesterase inhibitors from plant extracts. However, the high consumption of enzyme (6 U/mL) in current methods makes the procedure expensive, which is an obstacle to scientific research centers lacking funding. OBJECTIVE To develop a new low-cost TLC bioautographic method. METHODOLOGY A series of compounds, as substrates, were synthesised and their ability to be hydrolysed by acetylcholinesterase was evaluated by the HPLC method. RESULTS 4-Methoxyphenyl acetate (14) was proved to be an appropriate substrate for TLC bioautographic assay. Therefore a new and cheap TLC bioautographic assay was set up. The mechanism of this new method is that the enzyme converts 4-methoxylphenyl acetate into 4-methoxyphenol, which reacts with a solution of potassium ferricyanide ([K₃(FeCN)₆]) and iron chloride hexahydrate (FeCl₃·6H₂O) to make an aquamarine blue coloured background on the TLC plates. Regions of the TLC plate which contain acetylcholinesterase inhibitors show up as light yellow spots against the background. The consumption of enzyme (1 U/mL) in the new method is low and the detection limit of two known acetylcholinesterase inhibitors, huperzine A (0.0001 μg) and physostigmine (0.001 μg), for this assay are close to published values. CONCLUSION A low-cost TLC bioautographic method was developed, which will benefit research groups pursuing natural acetylcholinesterase inhibitors.
Collapse
Affiliation(s)
- Zhong-Duo Yang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, People's Republic of China
| | | | | | | | | |
Collapse
|
14
|
Wu Y, Wang F, Song H, Qin Y. An Efficient Synthesis of a (−)-Physostigmine's Library for Identifying Potential Anti-Alzheimer's Agents. Helv Chim Acta 2011. [DOI: 10.1002/hlca.201100020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Winblad B, Giacobini E, Frölich L, Friedhoff LT, Bruinsma G, Becker RE, Greig NH. Phenserine efficacy in Alzheimer's disease. J Alzheimers Dis 2011; 22:1201-8. [PMID: 20930279 DOI: 10.3233/jad-2010-101311] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To gather preliminary evidence in Alzheimer's disease (AD) for the efficacy of phenserine, a non-competitive acetylcholinesterase inhibitor that has independent modulatory effects on amyloid-β generation, a 12-week comparison of patients receiving phenserine (10 and 15 mg BID) or placebo was conducted under double-blind conditions. Patients who completed 12 weeks of the double-blind before others were continued in the double-blind to determine longer-term treatment effects. At 12 weeks, mean ADAS-cog (AD assessment scale-cognitive) changes from baseline were -2.5 and -1.9 for high-dose phenserine (n=83) and placebo (n=81) groups, respectively, a non-statistically significant improvement for the high-dose phenserine group relative to placebo. CIBIC+ (clinician's interview based impression of change + caregiver's input) values for the high-dose and placebo groups were similar at 12 weeks. For patients who received more than 12 weeks of therapy, the ADAS-cog changes were -3.18 and -0.66 for the high-dose phenserine (n=52) and placebo (n=63) groups, respectively, a difference achieving statistical significance (p=0.0286). After 12 weeks, CIBIC+ values were 3.59 and 3.95 for the high-dose (n=54) and placebo (n=66) groups respectively (p=0.0568). These results from this short-term study are consistent with phenserine potentially benefiting mild to moderate Alzheimer's disease symptomatically but do not address possible amyloid metabolic mediated effects on disease processes in AD.
Collapse
Affiliation(s)
- Bengt Winblad
- Alzheimer's Disease Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
16
|
Zhou Y, Zhao Y, Dai X, Liu J, Li L, Zhang H. Efficient synthesis of esermethole and its analogues. Org Biomol Chem 2011; 9:4091-7. [DOI: 10.1039/c1ob05275f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Multiple Approaches to Analyse the Data for Rat Brain Acetylcholinesterase Inhibition by Cyclophosphamide. Neurochem Res 2010; 35:1501-9. [DOI: 10.1007/s11064-010-0199-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2010] [Indexed: 10/19/2022]
|
18
|
Kamal MA, Klein P, Luo W, Li Y, Holloway HW, Tweedie D, Greig NH. Kinetics of human serum butyrylcholinesterase inhibition by a novel experimental Alzheimer therapeutic, dihydrobenzodioxepine cymserine. Neurochem Res 2008; 33:745-53. [PMID: 17985237 PMCID: PMC5201206 DOI: 10.1007/s11064-007-9490-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 08/24/2007] [Indexed: 10/22/2022]
Abstract
Cholinergic loss is the single most replicated neurotransmitter deficiency in Alzheimer's disease (AD) and has led to the use of acetylcholinesterase inhibitors (AChE-Is) and unselective cholinesterase inhibitors (ChE-Is) as the mainstay of treatment. AChE-Is and ChE-Is, however, induce dose-limiting adverse effects. Recent studies indicate that selective butyrylcholinesterase inhibitors (BuChE-Is) elevate acetylcholine (ACh) in brain, augment long-term potentiation, and improve cognitive performance in rodents without the classic adverse actions of AChE-Is and ChE-Is. BuChE-Is thereby represent a new strategy to ameliorate AD, particularly since AChE activity is depleted in AD brain, in line with ACh levels, whereas BuChE activity is elevated. Our studies have focused on the design and development of cymserine analogues to induce selective time-dependent brain BuChE inhibition, and on the application of innovative and quantitative enzyme kinetic analyses to aid selection of drug candidates. The quantitative interaction of the novel inhibitor, dihydrobenzodioxepine cymserine (DHBDC), with human BuChE was characterized. DHBDC demonstrated potent concentration-dependent binding with BuChE. The IC(50) and specific new kinetic constants, such as K(T50), P(PC), K(T1/2) and R(I), were determined at dual substrate concentrations of 0.10 and 0.60 mM butyrylthiocholine and reaction times, and are likely attainable in humans. Other classical kinetic parameters such as K(ia), K(ma), V(ma) and V(mi) were also determined. In synopsis, DHBDC proved to be a highly potent competitive inhibitor of human BuChE in comparison to its structural analogue, cymserine, and represents an interesting drug candidate for AD.
Collapse
|
19
|
Abstract
Phenserine, a derivative of physostigmine, was first described as an inhibitor of acetylcholinesterase (AChE) and was shown to improve cognition in various experimental paradigms in rodents and dogs. It was clinically tested for Alzheimer's disease, with moderate success in initial Phase II studies. Phenserine deserves attention for an additional quality of action: in addition to inhibiting AChE, it modulates the amount of beta-amyloid precursor protein (APP) in neuronal cell culture by reducing APP translation. This effect probably involves interaction of phenserine with a regulatory element in the 5'-untranslated region of the APP gene that controls APP expression. Phenserine apparently reduces translational efficiency of APP mRNA into protein, a process that may involve an interaction with iron and/or an iron-responsive element. As a consequence, phenserine reduces beta-amyloid peptide (Abeta) formation in vitro and in vivo. Phenserine is also unique because of differing actions of its enantiomers: (-)-phenserine is the active enantiomer for inhibition of AChE, whereas (+)-phenserine ('posiphen') has weak activity as an AChE inhibitor and can be dosed much higher. Both enantiomers are equipotent in downregulating APP expression. (+)-Posiphen may be a promising drug, either alone or in combination with (-)-phenserine, to attenuate the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Jochen Klein
- University of Frankfurt College of Pharmacy, Biocenter N260, Frankfurt, Germany.
| |
Collapse
|
20
|
Rigby JH, Sidique S. Total Synthesis of (±)-Phenserinevia[4+1] Cyclization of a Bis(alkylthio)carbene and an Indole Isocyanate. Org Lett 2007; 9:1219-21. [PMID: 17338532 DOI: 10.1021/ol062915+] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[structure: see text]. A total synthesis of acetylcholine blocking agent, phenserine, has been achieved by employing a [4+1] cyclization between an appropriately substituted indole isocyanate and a bis(alkylthio)carbene.
Collapse
Affiliation(s)
- James H Rigby
- Department of Chemistry, Wayne State University, Detroit, MI 48202-3489, USA.
| | | |
Collapse
|
21
|
Krinulović KS, Vasić VM. Interaction of some Pd(II) complexes with Na+ / K+-ATPase: inhibition, kinetics, prevention and recovery. J Enzyme Inhib Med Chem 2007; 21:459-65. [PMID: 17059181 DOI: 10.1080/14756360600628510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The aim of this work was to investigate the influence of [PdCl4]2-, [PdCl(dien)]+ and [PdCl(Me4dien)]+ complexes on Na+ / K+-ATPase activity. The dose-dependent inhibition curves were obtained in all cases. IC50 values determined by Hill analysis were 2.25 x 10(-5) M, 1.21 x 10(-4) M and 2.36 x 10(-4) M, respectively. Na+ / K+-ATPase exhibited typical Michelis-Menten kinetics in the presence of Pd(II) complexes. Kinetic parameters (Vmax, Km) derived using Eadie-Hofstee transformation indicated a noncompetitive type of Na+ / K+-ATPase inhibition. The inhibitor constants (Ki) were determined from Dixon plots. The order of complex affinity for binding with Na+ / K+-ATPase, deducted from Ki values, was [PdCl4]2- > [PdCl(dien)]+ > [PdCl(Me4dien)]+. The results indicated that the potency of Pd(II) complexes to inhibit Na+/ K +-ATPase activity depended strongly on ligands of the related compound. Furthermore, the ability of SH-donor ligands, L-cysteine and glutathione, to prevent and recover the Pd(II) complexes-induced inhibition of Na+ / K+-ATPase was examined. The addition of 1 mM L-cysteine or glutathione to the reaction mixture before exposure to Pd(II) complexes prevented the inhibition by increasing the IC50 values by one order of magnitude. Moreover, the inhibited enzymatic activity was recovered by addition of SH-donor ligands in a concentration-dependent manner.
Collapse
Affiliation(s)
- Katarina S Krinulović
- Vinca Institute of Nuclear Sciences, Department of Physical Chemistry, P.O. Box 522, Belgrade 11001, Serbia & Montenegro
| | | |
Collapse
|
22
|
Martinez A, Castro A. Novel cholinesterase inhibitors as future effective drugs for the treatment of Alzheimer's disease. Expert Opin Investig Drugs 2006; 15:1-12. [PMID: 16370929 DOI: 10.1517/13543784.15.1.1] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Current pharmacotherapy for Alzheimer's disease involves compounds that are aimed at increasing the levels of acetylcholine in the brain by facilitating cholinergic neurotransmission through inhibition of cholinesterase. These drugs, known as acetylcholinesterase inhibitors, have been shown to improve cognition and global functions but have little impact on improving the eventual progression of the disease; however, there is evidence that other cholinesterases such as butyrylcholinesterase can play an important role in cholinergic function in the brain, and the long-suspected non-cholinergic actions of acetylcholinesterase, mainly the interference with the beta-amyloid protein cascade, have recently driven a profound revolution in cholinesterase drug research. Several disease-modifying agents are under development that target these enzymes and have hope of becoming the next generation of effective drugs in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Ana Martinez
- NeuroPharma, Avda de la Industria 52, 28760 Madrid, Spain.
| | | |
Collapse
|
23
|
Kamal MA, Al-Jafari AA, Yu QS, Greig NH. Kinetic analysis of the inhibition of human butyrylcholinesterase with cymserine. Biochim Biophys Acta Gen Subj 2005; 1760:200-6. [PMID: 16309845 DOI: 10.1016/j.bbagen.2005.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 09/07/2005] [Accepted: 10/11/2005] [Indexed: 10/25/2022]
Abstract
Accompanying the gradual rise in the average age of the population of most industrialized countries is a regrettable progressive rise in the number of individuals afflicted with age-related neurodegenerative disorders, epitomized by Alzheimer's disease (AD) but, additionally, including Parkinson's disease (PD) and stroke. The primary therapeutic strategy, to date, involves the use of cholinesterases inhibitors (ChEIs) to amplify residual cholinergic activity. The enzyme, acetylcholinesterase (AChE), along with other elements of the cholinergic system is depleted in the AD brain. In contrast, however, its sister enzyme, butyrylcholinesterase (BuChE), that likewise cleaves acetylcholine (ACh), is elevated and both AChE and BuChE co-localize in high amounts with the classical pathological hallmarks of AD. The mismatch between increased brain BuChE and depleted levels of both ACh and AChE, particularly late in the disease, has supported the design and development of new ChEIs with a preference for BuChE; exemplified by the novel agent, cymserine, whose binding kinetics are characterized for the first time. Specifically, as assessed by the Ellman method, cymserine demonstrated potent concentration-dependent binding with human BuChE. The IC50 was determined as 63 to 100 nM at the substrate concentration range of 25 to 800 microM BuSCh. In addition, the following new binding constants were investigated for human BuChE inhibition by cymserine: T(FPnubeta), K(nubeta), K(Bs), K(MIBA), M(IC50), D(Sc), R(f), (O)K(m), OIC100, K(sl), theta(max) and R(i). These new kinetic constants may open new avenues for the kinetic study of the inhibition of a broad array of other enzymes by a wide variety of inhibitors. In synopsis, cymserine proved to be a potent inhibitor of human BuChE in comparison to its structural analogue, phenserine.
Collapse
Affiliation(s)
- Mohammad A Kamal
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia.
| | | | | | | |
Collapse
|
24
|
Arsov Z, Zorko M, Schara M. Inhibition of erythrocyte acetylcholinesterase by n-butanol at high concentrations. Arch Biochem Biophys 2005; 437:78-84. [PMID: 15820219 DOI: 10.1016/j.abb.2005.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 03/01/2005] [Indexed: 11/21/2022]
Abstract
Erythrocyte acetylcholinesterase (AChE) is bound to the membrane by a complex glycosylphosphatidylinositol anchor, so the effect of alcohol on AChE activity may reflect direct and/or membrane-mediated effects. The indication of a direct interaction between n-butanol and AChE molecules is the activation/inhibition of AChE by occupation of the enzyme's active and/or regulatory sites by alcohol. The activation of AChE can occur only at low concentrations of alcohols, while at high concentrations AChE is inhibited. In this work the mechanism of inhibition of erythrocyte AChE by n-butanol at high concentrations was studied. The values of activity, calculated assuming parabolic competitive inhibition, which implies that one or two molecules of inhibitor bind to the enzyme, fit well to the experimental values. From the values of the inhibition constants it was concluded that at high n-butanol concentrations two alcohol molecules usually interact with AChE.
Collapse
Affiliation(s)
- Zoran Arsov
- Laboratory of Biophysics, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.
| | | | | |
Collapse
|
25
|
Tezer N. Ab initio molecular structure study of alkyl substitute analogues of Alzheimer drug phenserine: structure–activity relationships for acetyl- and butyrylcholinesterase inhibitory action. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.theochem.2004.08.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Huang A, Kodanko JJ, Overman LE. Asymmetric Synthesis of Pyrrolidinoindolines. Application for the Practical Total Synthesis of (−)-Phenserine. J Am Chem Soc 2004; 126:14043-53. [PMID: 15506768 DOI: 10.1021/ja046690e] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A versatile route to enantiopure 3,3-disubstituted oxindoles and 3a-substituted pyrrolidinoindolines is described in which diastereoselective dialkylation of enantiopure ditriflate 10 with oxindole enolates is the central step. These reactions are rare examples of alkylations of prostereogenic enolates with chiral sp(3) electrophiles that proceed with high facial selectivity (10-20:1). The scope of this method is explored, and a model to rationalize the sense of stereoselection is advanced. This dialkylation chemistry was used to synthesize (-)-phenserine on a multigram scale in six steps and 43% overall yield from 5-methoxy-1,3-dimethyloxindole (27) and to complete a short formal total synthesis of (-)-physostigmine (2).
Collapse
Affiliation(s)
- Audris Huang
- Department of Chemistry, 516 Rowland Hall, University of California, Irvine, California 92697-2025, USA
| | | | | |
Collapse
|
27
|
Greig NH, De Micheli E, Holloway HW, Yu QS, Utsuki T, Perry TA, Brossi A, Ingram DK, Deutsch J, Lahiri DK, Soncrant TT. The experimental Alzheimer drug phenserine: preclinical pharmacokinetics and pharmacodynamics. ACTA NEUROLOGICA SCANDINAVICA. SUPPLEMENTUM 2001; 176:74-84. [PMID: 11261809 DOI: 10.1034/j.1600-0404.2000.00311.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phenserine, a phenylcarbamate of physostigmine, is a new potent and highly selective acetylcholinesterase (AChE) inhibitor, with a > 50-fold activity versus butyrylcholinesterase (BChE), in clinical trials for the treatment of Alzheimer's disease (AD). Compared to physostigmine and tacrine, it is less toxic and robustly enhances cognition in animal models. To determine the time-dependent effects of phenserine on cholinergic function, AChE activity, brain and plasma drug levels and brain extracellular acetylcholine (ACh) concentrations were measured in rats before and after phenserine administration. Additionally, its maximum tolerated dose, compared to physostigmine and tacrine, was determined. Following i.v. dosing, brain drug levels were 10-fold higher than those achieved in plasma, peaked within 5 min and rapidly declined with half-lives of 8.5 and 12.6 min, respectively. In contrast, a high (> 70%) and long-lasting inhibition of AChE was achieved (half-life > 8.25 h). A comparison between the time-dependent plasma AChE inhibition achieved after similar oral and i.v. doses provided an estimate of oral bioavailability of 100%. Striatal, in vivo microdialysis in conscious, freely-moving phenserine-treated rats demonstrated > 3-fold rise in brain ACh levels. Phenserine thus is rapidly absorbed and cleared from the body, but produces a long-lasting stimulation of brain cholinergic function at well tolerated doses and hence has superior properties as a drug candidate for AD. It selectively inhibits AChE, minimizing potential BChE side effects. Its long duration of action, coupled with its short pharmacokinetic half-life, reduces dosing frequency, decreases body drug exposure and minimizes the dependence of drug action on the individual variations of drug metabolism commonly found in the elderly.
Collapse
Affiliation(s)
- N H Greig
- Laboratory of Neurosciences, Intramural Research Program, National Institute of Aging, Gerontology Research Center, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kamal MA, Greig NH, Alhomida AS, Al-Jafari AA. Kinetics of human acetylcholinesterase inhibition by the novel experimental Alzheimer therapeutic agent, tolserine. Biochem Pharmacol 2000; 60:561-70. [PMID: 10874131 DOI: 10.1016/s0006-2952(00)00330-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Characterization of the kinetic parameters of tolserine, a novel acetylcholinesterase (AChE) inhibitor of potential in the therapy of Alzheimer's disease, to inhibit purified human erythrocyte AChE was undertaken for the first time. An IC(50) value was estimated by three methods. Its mean value was found to be 8.13 nM, whereas the IC(100) was observed to be 25.5 nM as calculated by single graphical method. The Michaelis-Menten constant (K(m)) for the hydrolysis of the substrate acetylthiocholine iodide was found to be 0.08 mM. Dixon as well as Lineweaver-Burk plots and their secondary replots indicated that the nature of the inhibition was of the partial non-competitive type. The value of K(i) was estimated as 4.69 nM by the primary and secondary replots of the Dixon as well as secondary replots of the Lineweaver-Burk plot. Four new kinetic constants were also investigated by polynomial regression analysis of the relationship between the apparent K(i) (K(Iapp)) and substrate concentration, which may open new avenues for the kinetic study of the inhibition of several enzymes by a wide variety of inhibitors in vitro. Tolserine proved to be a highly potent inhibitor of human AChE compared to its structural analogues physostigmine and phenserine.
Collapse
Affiliation(s)
- M A Kamal
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | | | | |
Collapse
|