1
|
Rajakannan V, Lee HS, Chong SH, Ryu HB, Bae JY, Whang EY, Huh JW, Cho SW, Kang LW, Choe H, Robinson RC. Structural basis of cooperativity in human UDP-glucose dehydrogenase. PLoS One 2011; 6:e25226. [PMID: 21984906 PMCID: PMC3184952 DOI: 10.1371/journal.pone.0025226] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 08/29/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND UDP-glucose dehydrogenase (UGDH) is the sole enzyme that catalyzes the conversion of UDP-glucose to UDP-glucuronic acid. The product is used in xenobiotic glucuronidation in hepatocytes and in the production of proteoglycans that are involved in promoting normal cellular growth and migration. Overproduction of proteoglycans has been implicated in the progression of certain epithelial cancers, while inhibition of UGDH diminished tumor angiogenesis in vivo. A better understanding of the conformational changes occurring during the UGDH reaction cycle will pave the way for inhibitor design and potential cancer therapeutics. METHODOLOGY Previously, the substrate-bound of UGDH was determined to be a symmetrical hexamer and this regular symmetry is disrupted on binding the inhibitor, UDP-α-D-xylose. Here, we have solved an alternate crystal structure of human UGDH (hUGDH) in complex with UDP-glucose at 2.8 Å resolution. Surprisingly, the quaternary structure of this substrate-bound protein complex consists of the open homohexamer that was previously observed for inhibitor-bound hUGDH, indicating that this conformation is relevant for deciphering elements of the normal reaction cycle. CONCLUSION In all subunits of the present open structure, Thr131 has translocated into the active site occupying the volume vacated by the absent active water and partially disordered NAD+ molecule. This conformation suggests a mechanism by which the enzyme may exchange NADH for NAD+ and repolarize the catalytic water bound to Asp280 while protecting the reaction intermediates. The structure also indicates how the subunits may communicate with each other through two reaction state sensors in this highly cooperative enzyme.
Collapse
Affiliation(s)
- Venkatachalam Rajakannan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Hui-Sun Lee
- Department of Physiology, University of Ulsan College of Medicine, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Seon-Ha Chong
- Department of Physiology, University of Ulsan College of Medicine, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Han-Bong Ryu
- Department of Physiology, University of Ulsan College of Medicine, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji-Young Bae
- Department of Physiology, University of Ulsan College of Medicine, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun-Young Whang
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae-Wan Huh
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Lin-Woo Kang
- Department of Advanced Technology Fusion, Kunkuk University, Seoul, Korea
| | - Han Choe
- Department of Physiology, University of Ulsan College of Medicine, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
- * E-mail:
| | - Robert C. Robinson
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
2
|
Tsui S, Fernando R, Chen B, Smith TJ. Divergent Sp1 protein levels may underlie differential expression of UDP-glucose dehydrogenase by fibroblasts: role in susceptibility to orbital Graves disease. J Biol Chem 2011; 286:24487-99. [PMID: 21576248 DOI: 10.1074/jbc.m111.241166] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-glucose dehydrogenase (UGDH) catalyzes the formation of UDP-glucuronate. Glucuronate represents an integral component of the glycosaminoglycan, hyaluronan, which accumulates in orbital Graves disease. Here we report that orbital fibroblasts express higher levels of UGDH than do those from skin. This is a consequence of greater UGDH gene promoter activity and more abundant steady-state UGDH mRNA. Six Sp1 sites located in the proximal 550 bp of the UGDH gene promoter appear to determine basal promoter activity, as does a previously unrecognized 49-bp sequence spanning -1436 nucleotides (nt) and -1388 nt that negatively affects activity. Nuclear Sp1 protein is more abundant in orbital fibroblasts, and its binding to specific sites on DNA is greater than that in dermal fibroblasts. Mutating each of these Sp1 sites in a UGDH gene promoter fragment, extending from -1387 to +71 nt and fused to a luciferase reporter, results in divergent activities when transfected in orbital and dermal fibroblasts. Reducing Sp1 attenuated UGDH gene promoter activity, lowered steady-state UGDH mRNA levels, and reduced UGDH enzyme activity. Targeting Sp1 and UGDH with specific siRNAs also lowered hyaluronan synthase-1 (HAS-1) and HAS-2 levels and reduced hyaluronan accumulation in orbital fibroblasts. These findings suggest that orbital fibroblasts express high levels of UGDH in an anatomic-specific manner, apparently the result of greater constitutive Sp1. These high UGDH levels may underlie susceptibility of the orbit to localized overproduction of hyaluronan in Graves disease.
Collapse
Affiliation(s)
- Shanli Tsui
- Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | | | | | | |
Collapse
|
3
|
Banerjee N, Bhattacharyya D. UDP-glucose dehydrogenase from Capra hircus liver: Purification, partial characterization and evaluation as a coupling enzyme in UDP-galactose 4-epimerase assay. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2010.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Cloning and Characterization of UDP-glucose Dehydrogenase from Sphingomonas chungbukensis DJ77. B KOREAN CHEM SOC 2009. [DOI: 10.5012/bkcs.2009.30.7.1547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Komori N, Takemori N, Kim HK, Singh A, Hwang SH, Foreman RD, Chung K, Chung JM, Matsumoto H. Proteomics study of neuropathic and nonneuropathic dorsal root ganglia: altered protein regulation following segmental spinal nerve ligation injury. Physiol Genomics 2007; 29:215-30. [PMID: 17213366 DOI: 10.1152/physiolgenomics.00255.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Peripheral nerve injury is often followed by the development of severe neuropathic pain. Nerve degeneration accompanied by inflammatory mediators is thought to play a role in generation of neuropathic pain. Neuronal cell death follows axonal degeneration, devastating a vast number of molecules in injured neurons and the neighboring cells. Because we have little understanding of the cellular and molecular mechanisms underlying neuronal cell death triggered by nerve injury, we conducted a proteomics study of rat 4th and 5th lumbar (L4 and L5) dorsal root ganglion (DRG) after L5 spinal nerve ligation. DRG proteins were displayed on two-dimensional gels and analyzed through quantitative densitometry, statistical validation of the quantitative data, and peptide mass fingerprinting for protein identification. Among approximately 1,300 protein spots detected on each gel, we discovered 67 proteins that were tightly regulated by nerve ligation. We find that the injury to primary sensory neurons turned on multiple cellular mechanisms critical for the structural and functional integrity of neurons and for the defense against oxidative damage. Our data indicate that the regulation of metabolic enzymes was carefully orchestrated to meet the altered energy requirement of the DRG cells. Our data also demonstrate that ligation of the L5 spinal nerve led to the upregulation in the L4 DRG of the proteins that are highly expressed in embryonic sensory neurons. To understand the molecular mechanisms underlying neuropathic pain, we need to comprehend such dynamic aspect of protein modulations that follow nerve injury.
Collapse
Affiliation(s)
- Naoka Komori
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Blanch M, Legaz ME, Vicente C. Purification and properties of an unusual UDP-glucose dehydrogenase, NADPH-dependent, from Xanthomonas albilineans. Microbiol Res 2006; 163:362-71. [PMID: 17010583 DOI: 10.1016/j.micres.2006.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2006] [Revised: 07/12/2006] [Accepted: 07/18/2006] [Indexed: 11/28/2022]
Abstract
Xanthomonas albilineans produces a UDP-glucose dehydrogenase growing on sucrose. The enzyme oxidizes UDP-glucose to UDP-glucuronic acid by using molecular oxygen and NADPH. Kinetics of enzymatic oxydation of NADPH is linearly dependent on the amount of oxygen supplied. The enzyme has been purified at homogeneity. The value of pI of the purified enzyme is 8.98 and its molecular mass has been estimated as about 14 kDa. The enzyme shows a michaelian kinetics for UDP-glucose concentrations. The value of K(m) for UDP-glucose is 0.87 mM and 0.26 mM for NADPH, although the enzyme has three different sites to interact with NADPH. The enzyme is inhibited by UDP-glucose concentrations higher than 1.3 mM. N-Terminal sequence has been determined as IQPYNH.
Collapse
Affiliation(s)
- María Blanch
- Laboratory of Plant Physiology, Faculty of Biology, Complutense University, Madrid, Spain
| | | | | |
Collapse
|
7
|
Wegrowski Y, Maquart FX. Chondroitin Sulfate Proteoglycans in Tumor Progression. CHONDROITIN SULFATE: STRUCTURE, ROLE AND PHARMACOLOGICAL ACTIVITY 2006; 53:297-321. [PMID: 17239772 DOI: 10.1016/s1054-3589(05)53014-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yanusz Wegrowski
- CNRS UMR 6198, Faculty of Medicine, IFR-53, 51095 Reims Cedex, France
| | | |
Collapse
|
8
|
Beauchef G, Kypriotou M, Chadjichristos C, Widom RL, Porée B, Renard E, Moslemi S, Wegrowski Y, Maquart FX, Pujol JP, Galéra P. c-Krox down-regulates the expression of UDP–glucose dehydrogenase in chondrocytes. Biochem Biophys Res Commun 2005; 333:1123-31. [PMID: 15982635 DOI: 10.1016/j.bbrc.2005.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 06/02/2005] [Indexed: 11/26/2022]
Abstract
Chondrocyte glycosaminoglycan (GAG) synthesis is regulated by the availability of UDP-glucuronate, the substrate of glucuronosyl transferases which form the GAG chains in proteoglycans and hyaluronan. UDP-glucose dehydrogenase (UDPGD) is therefore a key enzyme in the synthesis of UDP-glucuronate from glucose. However, the mechanisms regulating its expression in chondrocytes are not fully understood. We investigated the effect of c-Krox, a zinc-finger transcription factor previously shown to modulate several matrix genes, on the synthesis of GAG and transcriptional activity of several UDPGD gene promoter constructs, using transient transfection and decoy experiments in rabbit articular chondrocytes (RACs). We show that overexpression of c-Krox inhibits radiosulfate incorporation into neosynthesized GAG and that the effect was mediated by a cis-sequence located between +18 and +39bp of the UDPGD gene. Since that sequence can also bind Sp1/Sp3 factors, it is likely that c-Krox acts in concert with these proteins to modulate the UDPGD gene expression in articular chondrocytes.
Collapse
Affiliation(s)
- Gallic Beauchef
- Laboratory of Connective Tissue Biochemistry, Faculty of Medicine, Caen, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Huh JW, Yoon HY, Lee HJ, Choi WB, Yang SJ, Cho SW. Importance of Gly-13 for the coenzyme binding of human UDP-glucose dehydrogenase. J Biol Chem 2004; 279:37491-8. [PMID: 15247292 DOI: 10.1074/jbc.m404234200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-glucose dehydrogenase (UGDH) is the unique pathway enzyme furnishing in vertebrates UDP-glucuronate for numerous transferases. In this report, we have identified an NAD(+)-binding site within human UGDH by photoaffinity labeling with a specific probe, [(32)P]nicotinamide 2-azidoadenosine dinucleotide (2N(3) NAD(+)), and cassette mutagenesis. For this work, we have chemically synthesized a 1509-base pair gene encoding human UGDH and expressed it in Escherichia coli as a soluble protein. Photolabel-containing peptides were generated by photolysis followed by tryptic digestion and isolated using the phosphopeptide isolation kit. Photolabeling of these peptides was effectively prevented by the presence of NAD(+) during photolysis, demonstrating a selectivity of the photoprobe for the NAD(+)-binding site. Amino acid sequencing and compositional analysis identified the NAD(+)-binding site of UGDH as the region containing the sequence ICCIGAXYVGGPT, corresponding to Ile-7 through Thr-19 of the amino acid sequence of human UGDH. The unidentified residue, X, can be designated as a photolabeled Gly-13 because the sequences including the glycine residue in question have a complete identity with those of other UGDH species known. The importance of Gly-13 residue in the binding of NAD(+) was further examined with a G13E mutant by cassette mutagenesis. The mutagenesis at Gly-13 had no effects on the expression or stability of the mutant. Enzyme activity of the G13E point mutant was not measurable under normal assay conditions, suggesting an important role for the Gly-13 residue. No incorporation of [(32)P]2N(3)NAD(+) was observed for the G13E mutant. These results indicate that Gly-13 plays an important role for efficient binding of NAD(+) to human UGDH.
Collapse
Affiliation(s)
- Jae-Wan Huh
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | | | | | | | | | | |
Collapse
|
10
|
Hickery MS, Bayliss MT, Dudhia J, Lewthwaite JC, Edwards JCW, Pitsillides AA. Age-related changes in the response of human articular cartilage to IL-1alpha and transforming growth factor-beta (TGF-beta): chondrocytes exhibit a diminished sensitivity to TGF-beta. J Biol Chem 2003; 278:53063-71. [PMID: 13679381 DOI: 10.1074/jbc.m209632200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cartilage glycosaminoglycan (GAG) synthesis and composition, upon which its structural integrity depends, varies with age, is modified by anabolic and catabolic stimuli, and is regulated by UDP-glucuronate availability. However, how such stimuli, prototypically represented by transforming growth factor-beta1 (TGF-beta1) and IL-1alpha, modify GAG synthesis during aging of normal human articular cartilage is not known. Using explants, we show that chondroitin sulfate (CS):total GAG ratios decrease, whereas C6S:C4S ratios increase with cartilage maturation, and that chondrocytes in the cartilage mid-zone, but not the superficial or deep zones, exhibit uridine 5'-diphosphoglucose dehydrogenase (UDPGD) activity, which is also increased in mature cartilage. We also show that IL-1alpha treatment reduces both total GAG and CS synthesis, decreases C6S:C4S ratios (less C6S), but fails to modify chondrocyte UDPGD activity at all ages. On the other hand, TGF-beta1 increases total GAG synthesis in immature, but not mature, cartilage (stimulates CS but not non-CS), age-independently decreases C6S:C4S (more C4S), and increases chondrocyte UDPGD activity in a manner inversely correlated with age. Our findings show that TGF-beta1, but not IL-1alpha, modifies matrix synthesis such that its composition more closely resembles "less mature" articular cartilage. These effects of TGF-beta1, which appear to be restricted to periods of skeletal immaturity, are closely associated although not necessarily mechanistically linked with increases in chondrocyte UDPGD activity. The antianabolic effects of IL-1alpha are, on the other hand, likely to be independent of any direct modification in UDPGD activity and manifest equally in human cartilage of all ages.
Collapse
Affiliation(s)
- Mark S Hickery
- Department of Cell and Molecular Biology, Section for Connective Tissue Research, BMC C12, 221 84, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
11
|
Roman E, Roberts I, Lidholt K, Kusche-Gullberg M. Overexpression of UDP-glucose dehydrogenase in Escherichia coli results in decreased biosynthesis of K5 polysaccharide. Biochem J 2003; 374:767-72. [PMID: 12775214 PMCID: PMC1223629 DOI: 10.1042/bj20030365] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2003] [Revised: 05/20/2003] [Accepted: 05/30/2003] [Indexed: 11/17/2022]
Abstract
The Escherichia coli K5 capsular polysaccharide (glycosaminoglycan) chains are composed of the repeated disaccharide structure: -GlcAbeta1,4-GlcNAcalpha1,4-(where GlcA is glucuronic acid and GlcNAc is N-acetyl-D-glucosamine). The GlcA, present in most glycosaminoglycans, is donated from UDP-GlcA, which, in turn, is generated from UDP-glucose by the enzyme UDP-glucose dehydrogenase (UDPGDH). The formation of UDP-GlcA is critical for the biosynthesis of glycosaminoglycans. To investigate the role of UDPGDH in glycosaminoglycan biosynthesis, we used K5 polysaccharide biosynthesis as a model. E. coli was transformed with the complete gene cluster for K5 polysaccharide production. Additional transformation with an extra copy of UDPGDH resulted in an approx. 15-fold increase in the in vitro UDPGDH enzyme activity compared with the strain lacking extra UDPGDH. UDP-GlcA levels were increased 3-fold in overexpressing strains. However, metabolic labelling with [14C]glucose showed, unexpectedly, that overexpression of UDPGDH lead to decreased formation of K5 polysaccharide. No significant difference in the K5 polysaccharide chain length was observed between control and overexpressing strains, indicating that the decrease in K5-polysaccharide production most probably was due to synthesis of fewer chains. Our results suggest that K5-polysaccharide biosynthesis is strictly regulated such that increasing the amount of available UDP-GlcA results in diminished K5-polysaccharide production.
Collapse
Affiliation(s)
- Elisabet Roman
- Department of Medical Biochemistry and Microbiology, University of Uppsala, BMC Box 582, SE-751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
12
|
Bontemps Y, Vuillermoz B, Antonicelli F, Perreau C, Danan JL, Maquart FX, Wegrowski Y. Specific protein-1 is a universal regulator of UDP-glucose dehydrogenase expression: its positive involvement in transforming growth factor-beta signaling and inhibition in hypoxia. J Biol Chem 2003; 278:21566-75. [PMID: 12682078 DOI: 10.1074/jbc.m209366200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-glucose dehydrogenase (UGDH) is a key enzyme of the unique pathway for the synthesis of UDP-glucuronate, the substrate for the numerous glucuronosyl transferases, which act on the synthesis of glycosaminoglycans and glucuronidation reaction of xeno- and endobiotics. Using the bacterial artificial chromosome approach, we have cloned and characterized the human UGDH promoter. The core promoter of -644 nucleotides conferred reporter gene activity in transient transfection assay of a variety of cell types, including MRC5 fibroblasts and the HepG2 hepatoma cell line. The minimal promoter of -100 nucleotides contains a functional inverted TATA box. No consensus CAAT sequence was found up to -2133 nucleotides. The expression of UGDH was up- and down-regulated by transforming growth factor (TGF)-beta and hypoxia, respectively. TGF-beta enhanced the activity of all the deletion constructs, except the minimal promoter. Hypoxia slightly increased the activity of the short promoter-containing constructs but decreased that of the -374 nucleotides and core promoter constructs. The core promoter contained numerous GC-rich sequences for the binding of Sp1 transcription factor. Bisanthracycline, an anti-Sp1 compound, decreased UGDH mRNA expression and inhibited the core promoter constructs activity. Gel mobility shift and supershift assays after TGF-beta stimulation demonstrated an increased DNA binding of the nuclear extract proteins to the two Sp1 sequences located in the -374-bp promoter. By contrast, nuclear extract proteins from hypoxia-treated cells demonstrated a decreased binding of the consensus Sp1 sequence. These results indicate that numerous Sp1 cis-acting sequences of the UGDH core promoter are responsible for up- and down-regulation of the gene after TGF-beta stimulation and in hypoxic conditions, respectively.
Collapse
Affiliation(s)
- Yannick Bontemps
- Laboratory of Biochemistry, CNRS Formation de Recherche en Evolution 2534, Faculty of Medicine, 51 rue Cognacq-Jay, 51095 Reims cedex, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Bontemps Y, Maquart FX, Wegrowski Y. Human UDP-glucose dehydrogenase gene: complete cloning and transcription start mapping. Biochem Biophys Res Commun 2000; 275:981-5. [PMID: 10973831 DOI: 10.1006/bbrc.2000.3389] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
UDP-glucose dehydrogenase (GDH) is an unique pathway enzyme, which furnishes in vertebrates the UDP-glucuronic acid for numerous transferases, including those of glycosaminoglycan synthesis and xenobiotics elimination. Using long and accurate PCR approach and searching the 5' cDNA-end sequences in public databases, we have cloned the human GDH gene. The gene contains 12 exons and spans over 26 kb. The first and eighth introns were not reported for mouse ortholog. Primer extension analysis identified the transcription start site 165 bases upstream from the translation initiation site. Most of the exons were interrupted on codon phase 0, confirming the conserved ancestral structure of the gene reported on the cDNA level.
Collapse
Affiliation(s)
- Y Bontemps
- Faculté de Médecine, Laboratoire de Biochimie, Reims cedex, 51095, France
| | | | | |
Collapse
|