1
|
Zhai F, Li J, Ye M, Jin X. The functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination. Gene X 2022; 832:146562. [PMID: 35580799 DOI: 10.1016/j.gene.2022.146562] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 02/09/2023] Open
Abstract
Ubiquitination of substrates usually have two fates: one is degraded by 26S proteasome, and the other is non-degradative ubiquitination modification which is associated with cell cycle regulation, chromosome inactivation, protein transportation, tumorigenesis, achondroplasia, and neurological diseases. Cullin3 (CUL3), a scaffold protein, binding with the Bric-a-Brac-Tramtrack-Broad-complex (BTB) domain of substrates recognition adaptor and RING-finger protein 1 (RBX1) form ubiquitin ligases (E3). Based on the current researches, this review has summarized the functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination.
Collapse
Affiliation(s)
- Fengguang Zhai
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jingyun Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| |
Collapse
|
2
|
Feitosa WB, Hwang K, Morris PL. Temporal and SUMO-specific SUMOylation contribute to the dynamics of Polo-like kinase 1 (PLK1) and spindle integrity during mouse oocyte meiosis. Dev Biol 2018; 434:278-291. [PMID: 29269218 PMCID: PMC5805567 DOI: 10.1016/j.ydbio.2017.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/28/2017] [Accepted: 12/15/2017] [Indexed: 01/09/2023]
Abstract
During mammalian meiosis, Polo-like kinase 1 (PLK1) is essential during cell cycle progression. In oocyte maturation, PLK1 expression is well characterized but timing of posttranslational modifications regulating its activity and subcellular localization are less clear. Small ubiquitin-related modifier (SUMO) posttranslational modifier proteins have been detected in mammalian gametes but their precise function during gametogenesis is largely unknown. In the present paper we report for mouse oocytes that both PLK1 and phosphorylated PLK1 undergo SUMOylation in meiosis II (MII) oocytes using immunocytochemistry, immunoprecipitation and in vitro SUMOylation assays. At MII, PLK1 is phosphorylated at threonine-210 and serine-137. MII oocyte PLK1 and phosphorylated PLK1 undergo SUMOylation by SUMO-1, -2 and -3 as shown by individual in vitro assays. Using these assays, forms of phosphorylated PLK1 normalized to PLK1 increased significantly and correlated with SUMOylated PLK1 levels. During meiotic progression and maturation, SUMO-1-SUMOylation of PLK1 is involved in spindle formation whereas SUMO-2/3-SUMOylation may regulate PLK1 activity at kinetochore-spindle attachment sites. Microtubule integrity is required for PLK1 localization with SUMO-1 but not with SUMO-2/3. Inhibition of SUMOylation disrupts proper meiotic bipolar spindle organization and spindle-kinetochore attachment. The data show that both temporal and SUMO-specific-SUMOylation play important roles in orchestrating functional dynamics of PLK1 during mouse oocyte meiosis, including subcellular compartmentalization.
Collapse
Affiliation(s)
- Weber Beringui Feitosa
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
| | - KeumSil Hwang
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
| | - Patricia L Morris
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA; The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
3
|
Werner S, Pimenta-Marques A, Bettencourt-Dias M. Maintaining centrosomes and cilia. J Cell Sci 2017; 130:3789-3800. [DOI: 10.1242/jcs.203505] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT
Centrosomes and cilia are present in organisms from all branches of the eukaryotic tree of life. These structures are composed of microtubules and various other proteins, and are required for a plethora of cell processes such as structuring the cytoskeleton, sensing the environment, and motility. Deregulation of centrosome and cilium components leads to a wide range of diseases, some of which are incompatible with life. Centrosomes and cilia are thought to be very stable and can persist over long periods of time. However, these structures can disappear in certain developmental stages and diseases. Moreover, some centrosome and cilia components are quite dynamic. While a large body of knowledge has been produced regarding the biogenesis of these structures, little is known about how they are maintained. In this Review, we propose the existence of specific centrosome and cilia maintenance programs, which are regulated during development and homeostasis, and when deregulated can lead to disease.
Collapse
Affiliation(s)
- Sascha Werner
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Ana Pimenta-Marques
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Mónica Bettencourt-Dias
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| |
Collapse
|
4
|
Fu J, Glover DM. Structured illumination of the interface between centriole and peri-centriolar material. Open Biol 2013; 2:120104. [PMID: 22977736 PMCID: PMC3438536 DOI: 10.1098/rsob.120104] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/02/2012] [Indexed: 12/22/2022] Open
Abstract
The increase in centrosome size in mitosis was described over a century ago, and yet it is poorly understood how centrioles, which lie at the core of centrosomes, organize the pericentriolar material (PCM) in this process. Now, structured illumination microscopy reveals in Drosophila that, before clouds of PCM appear, its proteins are closely associated with interphase centrioles in two tube-like layers: an inner layer occupied by centriolar microtubules, Sas-4, Spd-2 and Polo kinase; and an outer layer comprising Pericentrin-like protein (Dplp), Asterless (Asl) and Plk4 kinase. Centrosomin (Cnn) and γ-tubulin associate with this outer tube in G2 cells and, upon mitotic entry, Polo activity is required to recruit them together with Spd-2 into PCM clouds. Cnn is required for Spd-2 to expand into the PCM during this maturation process but can itself contribute to PCM independently of Spd-2. By contrast, the centrioles of spermatocytes elongate from a pre-existing proximal unit during the G2 preceding meiosis. Sas-4 is restricted to the microtubule-associated, inner cylinder and Dplp and Cnn to the outer cylinder of this proximal part. γ-Tubulin and Asl associate with the outer cylinder and Spd-2 with the inner cylinder throughout the entire G2 centriole. Although they occupy different spatial compartments on the G2 centriole, Cnn, Spd-2 and γ-tubulin become diminished at the centriole upon entry into meiosis to become part of PCM clouds.
Collapse
Affiliation(s)
- Jingyan Fu
- Cancer Research UK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK.
| | | |
Collapse
|
5
|
Wang G, Chen Q, Zhang X, Zhang B, Zhuo X, Liu J, Jiang Q, Zhang C. PCM1 recruits Plk1 to the pericentriolar matrix to promote primary cilia disassembly before mitotic entry. J Cell Sci 2013; 126:1355-65. [PMID: 23345402 DOI: 10.1242/jcs.114918] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Primary cilia, which emanate from the cell surface, exhibit assembly and disassembly dynamics along the progression of the cell cycle. However, the mechanism that links ciliary dynamics and cell cycle regulation remains elusive. In the present study, we report that Polo-like kinase 1 (Plk1), one of the key cell cycle regulators, which regulate centrosome maturation, bipolar spindle assembly and cytokinesis, acts as a pivotal player that connects ciliary dynamics and cell cycle regulation. We found that the kinase activity of centrosome enriched Plk1 is required for primary cilia disassembly before mitotic entry, wherein Plk1 interacts with and activates histone deacetylase 6 (HDAC6) to promote ciliary deacetylation and resorption. Furthermore, we showed that pericentriolar material 1 (PCM1) acts upstream of Plk1 and recruits the kinase to pericentriolar matrix (PCM) in a dynein-dynactin complex-dependent manner. This process coincides with the primary cilia disassembly dynamics at the onset of mitosis, as depletion of PCM1 by shRNA dramatically disrupted the pericentriolar accumulation of Plk1. Notably, the interaction between PCM1 and Plk1 is phosphorylation dependent, and CDK1 functions as the priming kinase to facilitate the interaction. Our data suggest a mechanism whereby the recruitment of Plk1 to pericentriolar matrix by PCM1 plays a pivotal role in the regulation of primary cilia disassembly before mitotic entry. Thus, the regulation of ciliary dynamics and cell proliferation share some common regulators.
Collapse
Affiliation(s)
- Gang Wang
- MOE Key Laboratory of Cell Proliferation and Differentiation and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Bahassi EM. Polo-like kinases and DNA damage checkpoint: beyond the traditional mitotic functions. Exp Biol Med (Maywood) 2011; 236:648-57. [PMID: 21558091 DOI: 10.1258/ebm.2011.011011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Polo-like kinases (Plks) are a family of serine-threonine kinases that play a pivotal role in cell cycle progression and in cellular response to DNA damage. The Plks are highly conserved from yeast to mammals. There are five Plk family members (Plk1-5) in humans, of which Plk1, is the best characterized. The Plk1 isoform is being aggressively pursued as a target for cancer therapy, following observations that this protein is overexpressed in human tumors and is actively involved in malignant transformation. The roles of Plks in mitotic entry, spindle pole functions and cytokinesis are well established and have been the subject of several recent reviews. In this review, we discuss functions of Plks other than their classical roles in mitotic progression. When cells incur DNA damage, they activate checkpoint mechanisms that result in cell cycle arrest and allow time for repair. If the damage is extensive and cannot be repaired, cells will undergo cell death by apoptosis. If the damage is repaired, cells can resume cycling, as part of the process known as checkpoint recovery. If the damage is not repaired or incompletely repaired, cells can override the checkpoint and resume cycling with damaged DNA, a process called checkpoint adaptation. The Plks play a role in all three outcomes and their involvement in these processes will be the subject of this review.
Collapse
Affiliation(s)
- El Mustapha Bahassi
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0562, USA.
| |
Collapse
|
7
|
Abstract
BACKGROUND Polo-like kinase 1 (Plk1) has multiple functions throughout mitosis. Plk1 levels are high in a number of cancers and haematological malignancies while being low in most differentiated tissues. OBJECTIVES To assess the immunoreactivity of Plk1 in cutaneous T-cell lymphoma (CTCL) as a potential therapeutic target, to differentiate Plk1 levels among lesion types and to compare the detection level of Plk1 in fresh frozen (f) vs. paraffin-embedded (p) tissue. METHODS Immunohistochemical staining of CTCL skin lesions with anti-Plk1 antibody was performed in a total of 65 biopsies from 49 patients with CTCL. Both f and p tissue was available for comparison in 46 biopsies. RESULTS Tumour-stage CTCL lesions displayed significantly more Plk1 (mean f 7·7%, p 8·8%) than patch (mean f 0·7%, p 2·0%) and plaque-stage lesions (mean f 1·1%, p 2·0%) (P < 0·05). Plk1 ranged from 0% to 18% in f and 0% to 24% in p samples. p tissue revealed a higher mean Plk1 detection rate of 4·4% compared with 2·9% in f tissue with no statistical significance. CONCLUSIONS Our results indicate that in CTCL, Plk1 is increased mainly in advanced lesions. Several Plk1 inhibitors have already shown promising results in preclinical and clinical phase I and II trials for different types of cancers with low adverse effects. Immunohistochemical detection of high Plk1 levels in patients with CTCL could help select individuals who might benefit from treatment with small molecule Plk1 inhibitors.
Collapse
Affiliation(s)
- N Stutz
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | | | | |
Collapse
|
8
|
Bogner C, Peschel C, Decker T. Targeting the proteasome in mantle cell lymphoma: A promising therapeutic approach. Leuk Lymphoma 2009; 47:195-205. [PMID: 16321849 DOI: 10.1080/10428190500144490] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mantle cell lymphoma (MCL) is a distinctive non-Hodgkin's lymphoma sub-type, characterized by over-expression of cyclin D1 as a consequence of chromosomal translocation t(11;14)(q13;q32). MCL remains an incurable disease, combining the unfavorable clinical features of aggressive and indolent lymphomas. The blastic variant of MCL, which is often associated with additional cytogenetic alterations, has an even worse prognosis and new treatment options are clearly needed. The 26S proteasome is a large multi-catalytic multi-protein complex, present in all eukaryotic cells. It is responsible for the degradation of a variety of short-lived proteins and exhibits a key position in cellular processes including apoptosis and cell cycle progression. Targeting the ubiquitin - proteasome pathway has only recently been identified as a promising new therapeutic option for cancer patients. Interestingly, an increased activity of the proteasome pathway has been described in MCL cells and the inhibition of the proteasome seems to be a promising therapeutic approach for this incurable disease.
Collapse
Affiliation(s)
- Christian Bogner
- IIIrd Department of Medicine, Technical University of Munich, Munich, Germany
| | | | | |
Collapse
|
9
|
Archambault V, Glover DM. Polo-like kinases: conservation and divergence in their functions and regulation. Nat Rev Mol Cell Biol 2009; 10:265-75. [PMID: 19305416 DOI: 10.1038/nrm2653] [Citation(s) in RCA: 492] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Polo-like kinases (Plks) are potent regulators of M phase that are conserved from yeasts to humans. Their roles in mitotic entry, spindle pole functions and cytokinesis are broadly conserved despite physical and molecular differences in these processes in disparate organisms. Plks are characterized by their Polo-box domain, which mediates protein interactions. They are additionally controlled by phosphorylation, proteolysis and transcription, depending on the biological context. Plks are now recognized to link cell division to developmental processes and to function in differentiated cells. A comparison of Plk function and regulation between organisms offers insight into the rich variations of cell division.
Collapse
Affiliation(s)
- Vincent Archambault
- Cancer Research UK, Cell Cycle Genetics Research Group, University of Cambridge, Department of Genetics, Downing Street, Cambridge, CB2 3EH, UK.
| | | |
Collapse
|
10
|
Sequestration of Polo kinase to microtubules by phosphopriming-independent binding to Map205 is relieved by phosphorylation at a CDK site in mitosis. Genes Dev 2008; 22:2707-20. [PMID: 18832073 DOI: 10.1101/gad.486808] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The conserved Polo kinase controls multiple events in mitosis and cytokinesis. Although Polo-like kinases are regulated by phosphorylation and proteolysis, control of subcellular localization plays a major role in coordinating their mitotic functions. This is achieved largely by the Polo-Box Domain, which binds prephosphorylated targets. However, it remains unclear whether and how Polo might interact with partner proteins when priming mitotic kinases are inactive. Here we show that Polo associates with microtubules in interphase and cytokinesis, through a strong interaction with the microtubule-associated protein Map205. Surprisingly, this interaction does not require priming phosphorylation of Map205, and the Polo-Box Domain of Polo is required but not sufficient for this interaction. Moreover, phosphorylation of Map205 at a CDK site relieves this interaction. Map205 can stabilize Polo and inhibit its cellular activity in vivo. In syncytial embryos, the centrosome defects observed in polo hypomorphs are enhanced by overexpression of Map205 and suppressed by its deletion. We propose that Map205-dependent targeting of Polo to microtubules provides a stable reservoir of Polo that can be rapidly mobilized by the activity of Cdk1 at mitotic entry.
Collapse
|
11
|
Winkles JA, Alberts GF. Differential regulation of polo-like kinase 1, 2, 3, and 4 gene expression in mammalian cells and tissues. Oncogene 2005; 24:260-6. [PMID: 15640841 DOI: 10.1038/sj.onc.1208219] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The four mammalian polo-like kinase (Plk) family members are critical regulators of cell cycle progression, mitosis, cytokinesis, and the DNA damage response. Research conducted to date has primarily investigated the expression patterns, structural features, substrates, and subcellular distribution of these important serine-threonine kinases. Here, we review the published data describing the regulation of Plk1, 2, 3, or 4 gene expression either during mammalian cell cycle progression or in tissue samples. These studies have demonstrated that the Plk family genes are differentially expressed following growth factor stimulation of quiescent fibroblasts. Furthermore, although Plk1 and Plk2 mRNA and protein levels are coordinately regulated during cell cycle progression, this is not the case for Plk3. In addition, the Plk1, 2 and 4 proteins have relatively short intracellular half-lives, but Plk3 is very stable. The Plk family genes are also differentially regulated in stressed cells; for example, when DNA-damaging agents are added to cycling cells, Plk1 expression decreases, but Plk2 and Plk3 expression increases. Finally, Plk1, 2, 3, and 4 are expressed to varying degrees in different human tissue types and it has been reported that Plk1 expression is increased and Plk3 expression is decreased in tumor specimens. These results indicate that the differential regulation of Plk family member gene expression is one cellular strategy for controlling Plk activity in mammalian cells.
Collapse
Affiliation(s)
- Jeffrey A Winkles
- Department of Surgery, University of Maryland Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | |
Collapse
|
12
|
Yuan JH, Feng Y, Fisher RH, Maloid S, Longo DL, Ferris DK. Polo-Like Kinase 1 Inactivation Following Mitotic DNA Damaging Treatments Is Independent of Ataxia Telangiectasia Mutated Kinase. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.417.2.7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Polo-like kinase 1 (Plk1) is an important regulator of several events during mitosis. Recent reports show that Plk1 is involved in both G2 and mitotic DNA damage checkpoints. Ataxia telangiectasia mutated kinase (ATM) is an important enzyme involved in G2 phase cell cycle arrest following interphase DNA damage, and inhibition of Plk1 by DNA damage during G2 occurs in an ATM-/ATM-Rad3–related kinase (ATR)–dependent fashion. However, it is unclear how Plk1 is regulated in response to M phase DNA damage. We found that treatment of mitotic cells with DNA damaging agents inhibits Plk1 activity primarily through dephosphorylation of Plk1, which occurred in both p53 wild-type and mutant cells. Inhibition of Plk1 is not prevented by caffeine pretreatment that inhibits ATM activity and also occurs in ATM mutant cell lines. Furthermore, ATM mutant cell lines, unlike wild-type cells, fail to arrest after mitotic DNA damaging treatments. The phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002, reduces Plk1 dephosphorylation following mitotic DNA damaging treatments, suggesting that the PI3K pathway may be involved in regulating Plk1 activity. Earlier studies showed that inhibition of Plk1 by G2 DNA damage occurs in an ATM-dependent fashion. Our results extend the previous studies by showing that ATM is not required for dephosphorylation and inhibition of Plk1 activity following mitotic DNA damage, and also suggest that Plk1 is not a principal regulator or mediator of the mitotic DNA damage response.
Collapse
Affiliation(s)
- Jin-Hui Yuan
- 1Basic Research Program, Science Applications International Corporation-Frederick, Inc.,
- 3Laboratory of Cancer Prevention, Center of Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland; and
| | - Yang Feng
- 2Experimental and Computational Biology and
| | - Rebecca H. Fisher
- 3Laboratory of Cancer Prevention, Center of Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland; and
| | - Sharon Maloid
- 1Basic Research Program, Science Applications International Corporation-Frederick, Inc.,
- 3Laboratory of Cancer Prevention, Center of Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland; and
| | - Dan L. Longo
- 4Gerontology Research Center, National Institute on Aging, Baltimore, Maryland
| | - Douglas K. Ferris
- 1Basic Research Program, Science Applications International Corporation-Frederick, Inc.,
- 3Laboratory of Cancer Prevention, Center of Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland; and
| |
Collapse
|
13
|
Choudhury AD, Xu H, Baer R. Ubiquitination and proteasomal degradation of the BRCA1 tumor suppressor is regulated during cell cycle progression. J Biol Chem 2004; 279:33909-18. [PMID: 15166217 DOI: 10.1074/jbc.m403646200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The BRCA1 tumor suppressor and the BARD1 protein form a stable heterodimeric complex that can catalyze the formation of polyubiquitin chains. Expression of BRCA1 fluctuates in a cell cycle-dependent manner, such that low steady-state levels of BRCA1 gene products are found in resting cells and early G1 cycling cells and high levels in S and G2 phase cells. Although transcriptional activation of the BRCA1 gene can account for induction of BRCA1 expression at the G1/S transition, the mechanisms by which BRCA1 is down-regulated during cell cycle progression have not been addressed. Here we show that the steady-state levels of BRCA1 protein remain elevated throughout mitosis but begin to decline at the M/G1 transition. This decline in BRCA1 levels coincides with the appearance of proteasome-sensitive ubiquitin conjugates of BRCA1 at the onset of G1. Formation of these conjugates occurs throughout G1 and S, but not in cells arrested in prometaphase by nocodazole. The proteasome-sensitive ubiquitin conjugates of BRCA1 appear to be distinct from BRCA1 autoubiquitination products and are probably catalyzed by the action of other cellular E3 ligases. Interestingly, co-expression of BARD1 inhibits the formation of these conjugates, suggesting that BARD1 serves to stabilize BRCA1 expression in part by reducing proteasome-sensitive ubiquitination of BRCA1 polypeptides. In summary, these data indicate that the cell cycle-dependent pattern of BRCA1 expression is determined in part by ubiquitin-dependent proteasomal degradation.
Collapse
Affiliation(s)
- Atish D Choudhury
- Institute for Cancer Genetics, Department of Pathology, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
14
|
Bostik P, Dodd GL, Villinger F, Mayne AE, Ansari AA. Dysregulation of the polo-like kinase pathway in CD4+ T cells is characteristic of pathogenic simian immunodeficiency virus infection. J Virol 2004; 78:1464-72. [PMID: 14722302 PMCID: PMC321363 DOI: 10.1128/jvi.78.3.1464-1472.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2003] [Accepted: 10/21/2003] [Indexed: 12/20/2022] Open
Abstract
CD4(+) T-cell dysfunction highlighted by defects within the intracellular signaling cascade and cell cycle has long been characterized as a direct and/or indirect consequence of human immunodeficiency virus (HIV) infection in humans and simian immunodeficiency virus (SIV) infection in rhesus macaques (RM). Dysregulation of the M phase of the cell cycle is a well-documented effect of HIV or SIV infection both in vivo and in vitro. In this study the effect of SIV infection on the modulation of two important regulators of the M phase-polo-like kinases Plk3 and Plk1-was investigated. We have previously shown that Plk3 is markedly downregulated in CD4(+) T cells from SIV-infected disease-susceptible RM but not SIV-infected disease-resistant sooty mangabeys (SM), denoting an association of downregulation with disease progression. Here we show that, in addition to the downregulation, Plk3 exhibits aberrant activation patterns in the CD4(+) T cells from SIV-infected RM following T-cell receptor stimulation. Interestingly, in vitro SIV infection of CD4(+) T cells leads to the upregulation, rather than downregulation, of Plk3, suggesting that different mechanisms operate in vitro and in vivo. In addition, CD4(+) T cells from RM with high viral loads exhibited consistent and significant upregulation of Plk1, concurrent with an aberrant activation-induced Plk1 response, suggesting complex mechanisms of SIV-induced M-phase abnormalities in vivo. Altogether this study presents a novel mechanism underlying M-phase defects observed in CD4(+) T cells from HIV or SIV-infected disease-susceptible humans and RM which may contribute to aberrant T-cell responses and disease pathogenesis.
Collapse
Affiliation(s)
- Pavel Bostik
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | |
Collapse
|
15
|
Lindon C, Pines J. Ordered proteolysis in anaphase inactivates Plk1 to contribute to proper mitotic exit in human cells. J Cell Biol 2004; 164:233-41. [PMID: 14734534 PMCID: PMC2172335 DOI: 10.1083/jcb.200309035] [Citation(s) in RCA: 270] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Accepted: 12/10/2003] [Indexed: 02/03/2023] Open
Abstract
We have found that key mitotic regulators show distinct patterns of degradation during exit from mitosis in human cells. Using a live-cell assay for proteolysis, we show that two of these regulators, polo-like kinase 1 (Plk1) and Aurora A, are degraded at different times after the anaphase-promoting complex/cyclosome (APC/C) switches from binding Cdc20 to Cdh1. Therefore, events in addition to the switch from Cdc20 to Cdh1 control the proteolysis of APC/C(Cdh1) substrates in vivo. We have identified a putative destruction box in Plk1 that is required for degradation of Plk1 in anaphase, and have examined the effect of nondegradable Plk1 on mitotic exit. Our results show that Plk1 proteolysis contributes to the inactivation of Plk1 in anaphase, and that this is required for the proper control of mitotic exit and cytokinesis. Our experiments reveal a role for APC/C-mediated proteolysis in exit from mitosis in human cells.
Collapse
Affiliation(s)
- Catherine Lindon
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Rd., Cambridge CB2 1QR, England, UK.
| | | |
Collapse
|
16
|
Anger M, Kues WA, Klima J, Mielenz M, Kubelka M, Motlik J, Esner M, Dvorak P, Carnwath JW, Niemann H. Cell cycle dependent expression of Plk1 in synchronized porcine fetal fibroblasts. Mol Reprod Dev 2003; 65:245-53. [PMID: 12784245 DOI: 10.1002/mrd.10289] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Enzymes of the Polo-like kinase (Plk) family are active in the pathways controlling mitosis in several species. We have cloned cDNA fragments of the porcine homologues of Plk1, Plk2, and Plk3 employing fetal fibroblasts as source. All three partial cDNAs showed high sequence homology with their mouse and human counterparts and contained the Polo box, a domain characteristic for all Polo kinases. The expression levels of Plk1 mRNA at various points of the cell cycle in synchronized porcine fetal fibroblasts were analyzed by both RT-PCR and the ribonuclease protection assay. Plk1 mRNA was barely detectable in G0 and G1, increased during S phase and peaked after the G2/M transition. A monoclonal antibody was generated against an in vitro expressed porcine Plk1-protein fragment and used to detect changes in Plk1 expression at the protein level. Plk1 protein was first detected by immunoblotting at the beginning of S phase and was highest after the G2/M transition. In summary, the Plk1 expression pattern in the pig is similar to that reported for other species. The absence of Plk1 mRNA and protein appears to be a good marker for G0/G1 and thus for the selection of donor cells for nuclear transfer based somatic cloning.
Collapse
Affiliation(s)
- Martin Anger
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Walter SA, Cutler RE, Martinez R, Gishizky M, Hill RJ. Stk10, a new member of the polo-like kinase kinase family highly expressed in hematopoietic tissue. J Biol Chem 2003; 278:18221-8. [PMID: 12639966 DOI: 10.1074/jbc.m212556200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ste20 family of serine/threonine kinases plays an important role in numerous cellular functions such as growth, apoptosis, and morphogenesis. We have identified a previously cloned but uncharacterized family member termed Stk10, which is a human homolog of murine Lok, a serine/threonine kinase highly expressed in lymphocytes. Northern analysis demonstrated that the Stk10 transcript is present in many tissues, although highest expression levels are seen in hematopoietic cells. Due to close sequence homology to human Slk and Xenopus laevis xPlkk1, two polo-like kinase kinases, we investigated whether Stk10 might also play a role as a Plk1 activator. Plk1 has been shown to be overexpressed in multiple tumor types, thus attracting high interest to its potential upstream regulators. We show here that Stk10 can associate with Plk1 in cells and furthermore can phosphorylate Plk1 in vitro. Engineered NIH-3T3 cell lines that overexpress a dominant negative version of Stk10 display an altered cell cycle phenotype characterized by increased DNA content, raising the possibility that expression of a dominant negative Stk10 may impinge upon Plk1 function in vivo; it has previously been shown that unregulated expression of Plk1 can result in a variety of nuclear defects. We suggest, therefore, that Stk10 is a novel polo-like kinase kinase that cooperates with hSlk to regulate Plk1 function in human cells.
Collapse
Affiliation(s)
- Sarah A Walter
- Department of Research, SUGEN Inc., South San Francisco, California 94080, USA.
| | | | | | | | | |
Collapse
|
18
|
Kelm O, Wind M, Lehmann WD, Nigg EA. Cell cycle-regulated phosphorylation of the Xenopus polo-like kinase Plx1. J Biol Chem 2002; 277:25247-56. [PMID: 11994303 DOI: 10.1074/jbc.m202855200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Polo-like kinases (Plks) control multiple important events during M phase progression, but little is known about their activation during the cell cycle. The activities of both mammalian Plk1 and Xenopus Plx1 peak during M phase, and this activation has been attributed to phosphorylation. However, no phosphorylation sites have previously been identified in any member of the Plk family. Here we have combined tryptic phosphopeptide mapping with mass spectrometry to identify four major phosphorylation sites in Xenopus Plx1. All four sites appear to be phosphorylated in a cell cycle-dependent manner. Phosphorylations at two sites (Ser-260 and Ser-326) most likely represent autophosphorylation events, whereas two other sites (Thr-201 and Ser-340) are targeted by upstream kinases. Several recombinant kinases were tested for their ability to phosphorylate Plx1 in vitro. Whereas xPlkk1 phosphorylated primarily Thr-10, Thr-201 was readily phosphorylated by protein kinase A, and Cdk1/cyclin B was identified as a likely kinase acting on Ser-340. Phosphorylation of Ser-340 was shown to be responsible for the retarded electrophoretic mobility of Plx1 during M phase, and phosphorylation of Thr-201 was identified as a major activating event.
Collapse
Affiliation(s)
- Olaf Kelm
- Department of Cell Biology, Max Planck Institute for Biochemistry, Martinsried D-82152, Germany
| | | | | | | |
Collapse
|
19
|
Listovsky T, Zor A, Laronne A, Brandeis M. Cdk1 is essential for mammalian cyclosome/APC regulation. Exp Cell Res 2000; 255:184-91. [PMID: 10694434 DOI: 10.1006/excr.1999.4788] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cyclosome/APC (anaphase-promoting complex), the major component of cell-cycle-specific ubiquitin-mediated proteolysis of mitotic cyclins and of other cell cycle proteins, is essential for sister chromatid separation and for exit from mitosis. Cyclosome activity and substrate specificity are modulated by phosphorylation and by transient interactions with Fizzy/cdc20 (Fzy) and Fizzy-related/Hct1/Cdh1 (Fzr). This regulation has been studied so far in Drosophila embryos, in yeast, and in cell-free extracts in vitro. Studying cyclosome regulation in mammalian cells in vivo we found that both Fzr overexpression and Cdk1 inhibition can override the prometaphase checkpoint. We further show that Fzr activation of the cyclosome is negatively regulated by Cdk1. Finally, we show that the mammalian cdc14 phosphatase, like its budding yeast homologue, plays a role in cyclosome pathway regulation. These results suggest that Cdk1 is essential for coupling various activities of the cyclosome and in particular for preventing Fzr from short-circuiting the spindle pole checkpoint. Cdk1-cyclin B is thus an inhibitor, activator, and substrate of the cyclosome.
Collapse
Affiliation(s)
- T Listovsky
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | | | | | | |
Collapse
|