1
|
Wilson PG, Thompson JC, Shridas P, McNamara PJ, de Beer MC, de Beer FC, Webb NR, Tannock LR. Serum Amyloid A Is an Exchangeable Apolipoprotein. Arterioscler Thromb Vasc Biol 2018; 38:1890-1900. [PMID: 29976766 PMCID: PMC6202200 DOI: 10.1161/atvbaha.118.310979] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Objective- SAA (serum amyloid A) is a family of acute-phase reactants that have proinflammatory and proatherogenic activities. SAA is more lipophilic than apoA-I (apolipoprotein A-I), and during an acute-phase response, <10% of plasma SAA is found lipid-free. In most reports, SAA is found exclusively associated with high-density lipoprotein; however, we and others have reported SAA on apoB (apolipoprotein B)-containing lipoproteins in both mice and humans. The goal of this study was to determine whether SAA is an exchangeable apolipoprotein. Approach and Results- Delipidated human SAA was incubated with SAA-free human lipoproteins; then, samples were reisolated by fast protein liquid chromatography, and SAA analyzed by ELISA and immunoblot. Both in vitro and in vivo, we show that SAA associates with any lipoprotein and does not remain in a lipid-free form. Although SAA is preferentially found on high-density lipoprotein, it can exchange between lipoproteins. In the presence of CETP (cholesterol ester transfer protein), there is greater exchange of SAA between lipoproteins. Subjects with diabetes mellitus, but not those with metabolic syndrome, showed altered SAA lipoprotein distribution postprandially. Proteoglycan-mediated lipoprotein retention is thought to be an underlying mechanism for atherosclerosis development. SAA has a proteoglycan-binding domain. Lipoproteins containing SAA had increased proteoglycan binding compared with SAA-free lipoproteins. Conclusions- Thus, SAA is an exchangeable apolipoprotein and increases apoB-containing lipoproteins' proteoglycan binding. We and others have previously reported the presence of SAA on low-density lipoprotein in individuals with obesity, diabetes mellitus, and metabolic syndrome. We propose that the presence of SAA on apoB-containing lipoproteins may contribute to cardiovascular disease development in these populations.
Collapse
Affiliation(s)
- Patricia G Wilson
- Department of Veterans Affairs, Lexington, KY
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky
- Barnstable Brown Diabetes Center, College of Medicine, University of Kentucky
| | - Joel C Thompson
- Department of Veterans Affairs, Lexington, KY
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky
- Barnstable Brown Diabetes Center, College of Medicine, University of Kentucky
| | - Preetha Shridas
- Department of Internal Medicine, College of Medicine, University of Kentucky
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky
- Barnstable Brown Diabetes Center, College of Medicine, University of Kentucky
| | - Patrick J McNamara
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky
| | - Maria C de Beer
- Department of Physiology, College of Medicine, University of Kentucky
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky
- Barnstable Brown Diabetes Center, College of Medicine, University of Kentucky
| | - Frederick C de Beer
- Department of Internal Medicine, College of Medicine, University of Kentucky
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky
- Barnstable Brown Diabetes Center, College of Medicine, University of Kentucky
| | - Nancy R Webb
- Department of Veterans Affairs, Lexington, KY
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky
- Barnstable Brown Diabetes Center, College of Medicine, University of Kentucky
| | - Lisa R Tannock
- Department of Veterans Affairs, Lexington, KY
- Department of Internal Medicine, College of Medicine, University of Kentucky
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky
- Barnstable Brown Diabetes Center, College of Medicine, University of Kentucky
| |
Collapse
|
2
|
Wien TN, Omtvedt LA, Landsverk T, Husby G. Characterization of Proteoglycans and Glycosaminoglycans in Splenic AA Amyloid Induced in Mink. Scand J Immunol 2008. [DOI: 10.1111/j.1365-3083.2000.00823.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Le Brazidec H. Lipoproteins and protection of the arterial wall against infection: the "response to the threat of infection" hypothesis. Atherosclerosis 2007; 195:e21-31. [PMID: 17331516 DOI: 10.1016/j.atherosclerosis.2007.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 01/18/2007] [Accepted: 01/18/2007] [Indexed: 10/23/2022]
Abstract
The exact reason why lipoproteins are found in the arterial intima is not understood. On the basis of recent findings presented in the literature, we are proposing a hypothesis that the accumulation of lipoprotein in the arterial intima is originally a physiological process, part of our defences against infection designed to protect susceptible segments of the arterial wall from microbial invasion. In addition to the intrinsic antimicrobial activities of the deposited lipids, the formation of fibrin-based matrices within the intima is promoted, fibrinolysis is inhibited, the lipid content exerts a vasoconstrictive influence and smooth muscle cells are mobilised into the intima, all these phenomenons being instrumental in fighting off an infectious menace. Oxidized lipids (including oxysterols and lysophosphatidylcholine) resulting from the oxidation of lipoproteins close to sites of infection and inflammation are disseminated through the circulatory system and act as alarm signals at arterial walls, promoting the penetration and retention of lipoproteins in the intimal tissue of the most susceptible segments of the arterial network. Oxidized lipids in the intima constitute part of first-line antimicrobial defences and their presence acts as a signal to immune effector cells (notably macrophages and lymphocytes) which trigger the acquired immune response when foreign antigens are encountered.
Collapse
Affiliation(s)
- H Le Brazidec
- Centre Medical Charles De Gaulle, Department of Cardiology, 78 rue de Brement, 93130 Noisy le Sec, France.
| |
Collapse
|
4
|
Abstract
Serum amyloid A (SAA) is a family of proteins encoded by four related genes. Of the four, isoforms 1.1 and 2.1 are acute phase proteins synthesized by the liver. They become major components of the HDL plasma fraction during acute tissue injury and the HDL/SAA complex is readily taken up by macrophages. Herein we investigated the path SAA follows when presented to macrophages as HDL/SAA or in liposomes. Using antibodies specific to SAA and confocal microscopy, or EM autoradiography where only SAA is radio-labeled, we show that HDL/SAA is taken up rapidly by macrophages and within 30 min SAA, or fragments thereof, proceeds through the cytoplasm to the peri-nuclear region and then the nucleus. Within 45-60 min SAA, or fragments thereof, is found back in the cytoplasm and at the plasma membrane where it is subsequently extruded. The observation that SAA, or fragments thereof, traverse the nucleus is a novel finding and may implicate SAA in macrophage gene regulation. It also raises questions by what mechanism SAA enters and leaves the nucleus. We further investigated if both SAA isoforms traffic through the macrophage in a similar manner. Isoform differences were observed. Both isoforms bind well to the plasma membrane of macrophages at 4 degrees C, but at 37 degrees C only SAA2.1 is taken up by the cell in significant quantity, and is observed in the nucleus, suggesting that the two isoforms are handled differently and that they may have discrete physiological roles.
Collapse
Affiliation(s)
- Sarah M Kinkley
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
5
|
Sugumaran G, Elliott-Bryant R, Phung N, Vitseva O, Kuberan B, Lech M. Characterization of Splenic Glycosaminoglycans Accumulated In Vivo in Experimentally Induced Amyloid-Susceptible and Amyloid-Resistant Mice. Scand J Immunol 2004; 60:574-83. [PMID: 15584968 DOI: 10.1111/j.0300-9475.2004.01516.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The pathogenesis of the amyloid deposition diseases is poorly understood. The CE/J mouse, which is naturally protected from amyloid A (AA) protein amyloidosis, has provided a tool to study mechanisms that may be implicated in amyloid deposition diseases by means of comparison of findings with those in an AA-susceptible mouse strain. We have compared proteoglycan/glycosaminoglycan accumulation in vivo in amyloid-protected CE/J mouse strain and in AA-susceptible CBA/J mouse strain in homeostasis and when injected with amyloid-inducing agents. Results indicate that there is an overall increase in [(35)S]proteoglycan/glycosaminoglycan accumulation in the spleens of both strains of mice, but with a specific increase in heparan sulfate in only CBA/J mouse spleens that are rich in amyloid. Further, we report the absence of heparan sulfate in the splenic perifollicular areas of amyloid-free CE/J mouse, whereas in the amyloid-laden CBA/J mouse there is co-localization of heparan sulfate with the AA deposits. We have also examined the glycosaminoglycan disaccharide products in both these strains of mice for their sulfation positions and found no differences in the disaccharide composition of chondroitin/dermatan sulfate and heparan sulfate isolated from the control CBA/J and control CE/J mice. There were no differences in chondroitin/dermatan sulfate in both strains after experimental induction. However, analysis of the heparan sulfate disaccharides by means of capillary high-performance liquid chromatography linked to microelectrospray ionization time-of-flight mass spectrometry indicated that the disaccharide composition of the splenic heparan sulfate obtained from the treated CBA/J mice that had developed amyloid was markedly different from that obtained from the control CBA/J mice and the treated amyloid-resistant CE/J mice. These findings suggest that unique heparan sulfates play a fundamental role in the pathogenesis of amyloid.
Collapse
|
6
|
Wien TN, Omtvedt LA, Landsverk T, Husby G. Characterization of proteoglycans and glycosaminoglycans in splenic AA amyloid induced in mink. Scand J Immunol 2000; 52:576-83. [PMID: 11119263 DOI: 10.1046/j.1365-3083.2000.00823.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Amyloidosis of the protein AA type is readily induced in mink using repeated injections of bacterial lipopolysaccharide (LPS). We have characterized splenic proteoglycans/glycosaminoglycans (PGs/GAGs) in mink during amyloidogenesis. Moderate to rich amounts of amyloid exhibiting green birefringence was demonstrated by polarization microscopy of the splenic section stained with Congo red in seven out of eight minks after 10 weeks of LPS-treatment, and a significant increase in the total amount of PGs and GAGs in AA amyloid spleens was observed (two to eight times that in unstimulated animals). Intact PGs as well as free GAGs were extracted, and heparan sulfate (HS) was the most abundant GAG in the amyloid as well as in the control spleens. The GAGs showing the most pronounced increase in the amyloid spleens was of the chondroitin sulfate/dermatan sulfate (CS/DS) type and these were extracted in the form of free GAG chains. We conclude that there is a selective enrichment of PGs/GAGs in extracted splenic amyloid in the mink, which confirms to previous observations in human amyloid as well as in other animal species, supporting their pathogenic significance in the formation of AA amyloid.
Collapse
Affiliation(s)
- T N Wien
- Centre for Rheumatic Diseases/Institute of Immunology, The National Hospital, N-0027 Oslo, Norway.
| | | | | | | |
Collapse
|