1
|
Kim MY, Choi S, Lee SE, Kim JS, Son SH, Lim YS, Kim BJ, Ryu BY, Uversky VN, Lee YJ, Kim CG. Development of a MEL Cell-Derived Allograft Mouse Model for Cancer Research. Cancers (Basel) 2019; 11:cancers11111707. [PMID: 31683958 PMCID: PMC6895914 DOI: 10.3390/cancers11111707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 11/22/2022] Open
Abstract
Murine erythroleukemia (MEL) cells are often employed as a model to dissect mechanisms of erythropoiesis and erythroleukemia in vitro. Here, an allograft model using MEL cells resulting in splenomegaly was established to develop a diagnostic model for isolation/quantification of metastatic cells, anti-cancer drug screening, and evaluation of the tumorigenic or metastatic potentials of molecules in vivo. In this animal model, circulating MEL cells from the blood stream were successfully isolated and quantified with an additional in vitro cultivation step. In terms of the molecular-pathological analysis, we were able to successfully evaluate the functional discrimination between methyl-CpG-binding domain 2 (Mbd2) and p66α in erythroid differentiation, and tumorigenic potential in spleen and blood stream of allograft model mice. In addition, we found that the number of circulating MEL cells in anti-cancer drug-treated mice was dose-dependently decreased. Our data demonstrate that the newly established allograft model is useful to dissect erythroleukemia pathologies and non-invasively provides valuable means for isolation of metastatic cells, screening of anti-cancer drugs, and evaluation of the tumorigenic potentials.
Collapse
Affiliation(s)
- Min Young Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
| | - Sungwoo Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
| | - Seol Eui Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
| | - Ji Sook Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
- Department of Clinical Pathology, Hanyang University Seoul Hospital, Seoul 04763, Korea.
| | - Seung Han Son
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
| | - Young Soo Lim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
| | - Bang-Jin Kim
- Department of Animal Science & Technology, Chung-Ang University, Ansung, Gyeonggi-do 17546, Korea.
| | - Buom-Yong Ryu
- Department of Animal Science & Technology, Chung-Ang University, Ansung, Gyeonggi-do 17546, Korea.
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russia.
| | - Young Jin Lee
- Institute of Pharmaceutical Science and Technology, Department of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.
| | - Chul Geun Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea.
| |
Collapse
|
2
|
Kim MY, Kim JS, Son SH, Lim CS, Eum HY, Ha DH, Park MA, Baek EJ, Ryu BY, Kang HC, Uversky VN, Kim CG. Mbd2-CP2c loop drives adult-type globin gene expression and definitive erythropoiesis. Nucleic Acids Res 2019; 46:4933-4949. [PMID: 29547954 PMCID: PMC6007553 DOI: 10.1093/nar/gky193] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/12/2018] [Indexed: 01/18/2023] Open
Abstract
During hematopoiesis, red blood cells originate from the hematopoietic stem cell reservoir. Although the regulation of erythropoiesis and globin expression has been intensively investigated, the underlining mechanisms are not fully understood, including the interplay between transcription factors and epigenetic factors. Here, we uncover that the Mbd2-free NuRD chromatin remodeling complex potentiates erythroid differentiation of proerythroblasts via managing functions of the CP2c complexes. We found that both Mbd2 and Mbd3 expression is downregulated during differentiation of MEL cells in vitro and in normal erythropoiesis in mouse bone marrow, and Mbd2 downregulation is crucial for erythropoiesis. In uninduced MEL cells, the Mbd2-NuRD complex is recruited to the promoter via Gata1/Fog1, and, via direct binding through p66α, it acts as a transcriptional inhibitor of the CP2c complexes, preventing their DNA binding and promoting degradation of the CP2c family proteins to suppress globin gene expression. Conversely, during erythropoiesis in vitro and in vivo, the Mbd2-free NuRD does not dissociate from the chromatin and acts as a transcriptional coactivator aiding the recruitment of the CP2c complexes to chromatin, and thereby leading to the induction of the active hemoglobin synthesis and erythroid differentiation. Our study highlights the regulation of erythroid differentiation by the Mbd2-CP2c loop.
Collapse
Affiliation(s)
- Min Young Kim
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Ji Sook Kim
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Seung Han Son
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Chang Su Lim
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Hea Young Eum
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Dae Hyun Ha
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Mi Ae Park
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Eun Jung Baek
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Buom-Yong Ryu
- Department of Animal Science & Technology, Chung-Ang University, Ansung, Gyeonggi-do 17546, Korea
| | - Ho Chul Kang
- Department of Physiology and Genomic Instability Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.,Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Chul Geun Kim
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
3
|
Xu X, Liu Z, Zhou L, Xie H, Cheng J, Ling Q, Wang J, Guo H, Wei X, Zheng S. Characterization of genome-wide TFCP2 targets in hepatocellular carcinoma: implication of targets FN1 and TJP1 in metastasis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:6. [PMID: 25609232 PMCID: PMC4311423 DOI: 10.1186/s13046-015-0121-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/04/2015] [Indexed: 12/31/2022]
Abstract
Background Transcription factor CP2 (TFCP2) is overexpressed in hepatocellular carcinoma(HCC) and correlated with the progression of the disease. Here we report the use of an integrated systems biology approach to identify genome-wide scale map of TFCP2 targets as well as the molecular function and pathways regulated by TFCP2 in HCC. Methods We combined Chromatin immunoprecipitation (ChIP) on chip along with gene expression microarrays to study global transcriptional regulation of TFCP2 in HCC. The biological functions, molecular pathways, and networks associated with TFCP2 were identified using computational approaches. Validation of selected target gene expression and direct binding of TFCP2 to promoters were performed by ChIP -PCR and promoter reporter. Results TFCP2 fostered a highly aggressive and metastatic phenotype in different HCC cells. Transcriptome analysis showed that alteration of TFCP2 in HCC cells led to change of genes in biological functions involved in cancer, cellular growth and proliferation, angiogenesis, cell movement and attachment. Pathways related to cell movement and cancer progression were also enriched. A quest for TFCP2-regulated factors contributing to metastasis, by integration of transcriptome and ChIP on chip assay, identified fibronectin 1 (FN1) and tight junction protein 1 (TJP1) as targets of TFCP2, and as key mediators of HCC metastasis. Promoter reporter identified the TFCP2-responsive region, and located the motifs of TFCP2-binding sites in the FN1 promoter, which then was confirmed by ChIP-PCR. We further showed that FN1 inhibition blocks the TFCP2-induced increase in HCC cell aggression, and that overexpression of TFCP2 can rescue the effects of FN1 inhibition. Knock down of TJP1 could also rescue, at least in part, the aggressive effect of TFCP2 knockdown in HCC cells. Conclusions The identification of global targets, molecular pathways and networks associated with TFCP2, together with the discovery of the effect of TFCP2 on FN1 and TJP1 that are involved in metastasis, adds to our understanding of the mechanisms that determine a highly aggressive and metastatic phenotype in hepatocarcinogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s13046-015-0121-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 79 QingChun Road, HangZhou, China.
| | - Zhikun Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 79 QingChun Road, HangZhou, China.
| | - Lin Zhou
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, HangZhou, China.
| | - Haiyang Xie
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, HangZhou, China.
| | - Jun Cheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 79 QingChun Road, HangZhou, China.
| | - Qi Ling
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 79 QingChun Road, HangZhou, China.
| | - Jianguo Wang
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, HangZhou, China.
| | - Haijun Guo
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 79 QingChun Road, HangZhou, China.
| | - Xuyong Wei
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, HangZhou, China.
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 79 QingChun Road, HangZhou, China.
| |
Collapse
|
4
|
Kim MY, Chae JH, Oh CH, Kim CG. A DNA immunoprecipitation assay used in quantitative detection of in vitro DNA-protein complex binding. Anal Biochem 2013; 441:147-51. [PMID: 23871997 DOI: 10.1016/j.ab.2013.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/30/2013] [Accepted: 07/07/2013] [Indexed: 11/25/2022]
Abstract
To begin gene transcription, several transcription factors must bind to specific DNA sequences to form a complex via DNA-protein interactions. We established an in vitro method for specific and sensitive analyses of DNA-protein interactions based on a DNA immunoprecipitation (DIP) method. We verified the accuracy and efficiency of the DIP assay in quantitatively measuring DNA-protein binding using transcription factor CP2c as a model. With our DIP assay, we could detect specific interactions within a DNA-CP2c complex, with reproducible and quantitative binding values. In addition, we were able to effectively measure the changes in DNA-CP2c binding by the addition of a small molecule, FQI1 (factor quinolinone inhibitor 1), previously identified as a specific inhibitor of this binding. To identify a new regulator of DNA-CP2c binding, we analyzed several CP2c binding peptides and found that only one class of peptide severely inhibits DNA-CP2c binding. These data show that our DIP assay is very useful in quantitatively detecting the binding dynamics of DNA-protein complex. Because DNA-protein interaction is very dynamic in different cellular environments, our assay can be applied to the detection of active transcription factors, including promoter occupancy in normal and disease conditions. Moreover, it may be used to develop a targeted regulator of specific DNA-protein interaction.
Collapse
Affiliation(s)
- Min Young Kim
- Department of Life Science and Research Institute of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | | | | | | |
Collapse
|
5
|
Lizama-Manibusan B, McLaughlin B. Redox modification of proteins as essential mediators of CNS autophagy and mitophagy. FEBS Lett 2013; 587:2291-8. [PMID: 23773928 DOI: 10.1016/j.febslet.2013.06.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 11/24/2022]
Abstract
Production of cellular reactive oxygen species (ROS) is typically associated with protein and DNA damage, toxicity, and death. However, ROS are also essential regulators of signaling and work in concert with redox-sensitive proteins to regulate cell homeostasis during stress. In this review, we focus on the redox regulation of mitophagy, a process that contributes to energetic tone as well as mitochondrial form and function. Mitophagy has been increasingly implicated in diseases including Parkinson's, Amyotrophic Lateral Sclerosis, and cancer. Although these disease states employ different genetic mutations, they share the common factors of redox dysregulation and autophagic signaling. This review highlights key redox sensitive signaling molecules which can enhance neuronal survival by promoting temporally and spatially controlled autophagic signaling and mitophagy.
Collapse
|
6
|
Kang HC, Chae JH, Jeon J, Kim W, Ha DH, Shin JH, Kim CG, Kim CG. PIAS1 regulates CP2c localization and active promoter complex formation in erythroid cell-specific alpha-globin expression. Nucleic Acids Res 2010; 38:5456-71. [PMID: 20421208 PMCID: PMC2938217 DOI: 10.1093/nar/gkq286] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Data presented here extends our previous observations on α-globin transcriptional regulation by the CP2 and PIAS1 proteins. Using RNAi knockdown, we have now shown that CP2b, CP2c and PIAS1 are each necessary for synergistic activation of endogenous α-globin gene expression in differentiating MEL cells. In this system, truncated PIAS1 mutants lacking the ring finger domain recruited CP2c to the nucleus, as did wild-type PIAS1, demonstrating that this is a sumoylation-independent process. In vitro, recombinant CP2c, CP2b and PIAS1 bound DNA as a stable CBP (CP2c/CP2b/PIAS1) complex. Following PIAS1 knockdown in MEL cells, however, the association of endogenous CP2c and CP2b with the α-globin promoter simultaneously decreased. By mapping the CP2b- and CP2c-binding domains on PIAS1, and the PIAS1-binding domains on CP2b and CP2c, we found that two regions of PIAS1 that interact with CP2c/CP2b are required for its co-activator function. We propose that CP2c, CP2b, and PIAS1 form a hexametric complex with two units each of CP2c, CP2b, and PIAS1, in which PIAS1 serves as a clamp between two CP2 proteins, while CP2c binds directly to the target DNA and CP2b mediates strong transactivation.
Collapse
Affiliation(s)
- Ho Chul Kang
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, 133-791, Korea
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Traylor-Knowles N, Hansen U, Dubuc TQ, Martindale MQ, Kaufman L, Finnerty JR. The evolutionary diversification of LSF and Grainyhead transcription factors preceded the radiation of basal animal lineages. BMC Evol Biol 2010; 10:101. [PMID: 20398424 PMCID: PMC2873413 DOI: 10.1186/1471-2148-10-101] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Accepted: 04/18/2010] [Indexed: 11/10/2022] Open
Abstract
Background The transcription factors of the LSF/Grainyhead (GRH) family are characterized by the possession of a distinctive DNA-binding domain that bears no clear relationship to other known DNA-binding domains, with the possible exception of the p53 core domain. In triploblastic animals, the LSF and GRH subfamilies have diverged extensively with respect to their biological roles, general expression patterns, and mechanism of DNA binding. For example, Grainyhead (GRH) homologs are expressed primarily in the epidermis, and they appear to play an ancient role in maintaining the epidermal barrier. By contrast, LSF homologs are more widely expressed, and they regulate general cellular functions such as cell cycle progression and survival in addition to cell-lineage specific gene expression. Results To illuminate the early evolution of this family and reconstruct the functional divergence of LSF and GRH, we compared homologs from 18 phylogenetically diverse taxa, including four basal animals (Nematostella vectensis, Vallicula multiformis, Trichoplax adhaerens, and Amphimedon queenslandica), a choanoflagellate (Monosiga brevicollis) and several fungi. Phylogenetic and bioinformatic analyses of these sequences indicate that (1) the LSF/GRH gene family originated prior to the animal-fungal divergence, and (2) the functional diversification of the LSF and GRH subfamilies occurred prior to the divergence between sponges and eumetazoans. Aspects of the domain architecture of LSF/GRH proteins are well conserved between fungi, choanoflagellates, and metazoans, though within the Metazoa, the LSF and GRH families are clearly distinct. We failed to identify a convincing LSF/GRH homolog in the sequenced genomes of the algae Volvox carteri and Chlamydomonas reinhardtii or the amoebozoan Dictyostelium purpureum. Interestingly, the ancestral GRH locus has become split into two separate loci in the sea anemone Nematostella, with one locus encoding a DNA binding domain and the other locus encoding the dimerization domain. Conclusions In metazoans, LSF and GRH proteins play a number of roles that are essential to achieving and maintaining multicellularity. It is now clear that this protein family already existed in the unicellular ancestor of animals, choanoflagellates, and fungi. However, the diversification of distinct LSF and GRH subfamilies appears to be a metazoan invention. Given the conserved role of GRH in maintaining epithelial integrity in vertebrates, insects, and nematodes, it is noteworthy that the evolutionary origin of Grh appears roughly coincident with the evolutionary origin of the epithelium.
Collapse
|
8
|
Chae JH, Kang HC, Kim CG. The relative cellular levels of CP2a and CP2b potentiates erythroid cell-specific expression of the alpha-globin gene by regulating the nuclear localization of CP2c. Biochem Biophys Res Commun 2009; 380:813-7. [PMID: 19338758 DOI: 10.1016/j.bbrc.2009.01.172] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 01/26/2009] [Indexed: 11/29/2022]
Abstract
CP2b activates alpha-globin expression in an erythroid cell-specific manner, through interaction with CP2c and PIAS1. Although CP2a is identical to CP2b except for lacking an exon encoding additional 36 amino acids and has the intrinsic DNA binding and transactivation properties, it does not exert any role in alpha-globin expression. Investigation of subcellular localization of exogenous CP2 proteins revealed that CP2a and CP2b were exclusively localized in the cytosol and nucleus, respectively. The CP2b-specific exon was in charge of the nuclear localization of CP2b. Interestingly, subcellular localization of CP2c was either in the nucleus or cytosol depending on the relative level of CP2a and CP2b although CP2c intrinsically localized in the cytosol in the absence of CP2a/CP2b. Finally, dramatic increment of hemoglobin expression was correlated with nuclear translocation of CP2c during MEL cell differentiation. Our data suggest that CP2b potentiate erythroid cell-specific alpha-globin expression by recruiting CP2c into the nucleus.
Collapse
Affiliation(s)
- Ji Hyung Chae
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Haengdang 17, Sungdong-gu, Seoul 133-791, Republic of Korea
| | | | | |
Collapse
|
9
|
Kang BG, Shin JH, Yi JK, Kang HC, Lee JJ, Heo HS, Chae JH, Shin I, Kim CG. Corepressor MMTR/DMAP1 is involved in both histone deacetylase 1- and TFIIH-mediated transcriptional repression. Mol Cell Biol 2007; 27:3578-88. [PMID: 17371848 PMCID: PMC1899998 DOI: 10.1128/mcb.01808-06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A transcription corepressor, MAT1-mediated transcriptional repressor (MMTR), was found in mouse embryonic stem cell lines. MMTR orthologs (DMAP1) are found in a wide variety of life forms from yeasts to humans. MMTR down-regulation in differentiating mouse embryonic stem cells in vitro resulted in activation of many unrelated genes, suggesting its role as a general transcriptional repressor. In luciferase reporter assays, the transcriptional repression activity resided at amino acids 221 to 468. Histone deacetylase 1 (HDAC1) interacts with MMTR both in vitro and in vivo and also interacts with MMTR in the nucleus. Interestingly, MMTR activity was only partially rescued by competition with dominant-negative HDAC1(H141A) or by treatment with an HDAC inhibitor, trichostatin A (TSA). To identify the protein responsible for HDAC1-independent MMTR activity, we performed a yeast two-hybrid screen with the full-length MMTR coding sequence as bait and found MAT1. MAT1 is an assembly/targeting factor for cyclin-dependent kinase-activating kinase which constitutes a subcomplex of TFIIH. The coiled-coil domain in the middle of MAT1 was confirmed to interact with the C-terminal half of MMTR, and the MMTR-mediated transcriptional repression activity was completely restored by MAT1 in the presence of TSA. Moreover, intact MMTR was required to inhibit phosphorylation of the C-terminal domain in the RNA polymerase II largest subunit by TFIIH kinase in vitro. Taken together, these data strongly suggest that MMTR is part of the basic cellular machinery for a wide range of transcriptional regulation via interaction with TFIIH and HDAC.
Collapse
Affiliation(s)
- Bong Gu Kang
- Department of Life Science, College of Natural Sciences, Hanyang University, Haengdang 17, Sungdong-gu, Seoul 133-791, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bosè F, Fugazza C, Casalgrandi M, Capelli A, Cunningham JM, Zhao Q, Jane SM, Ottolenghi S, Ronchi A. Functional interaction of CP2 with GATA-1 in the regulation of erythroid promoters. Mol Cell Biol 2006; 26:3942-54. [PMID: 16648487 PMCID: PMC1489008 DOI: 10.1128/mcb.26.10.3942-3954.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We observed that binding sites for the ubiquitously expressed transcription factor CP2 were present in regulatory regions of multiple erythroid genes. In these regions, the CP2 binding site was adjacent to a site for the erythroid factor GATA-1. Using three such regulatory regions (from genes encoding the transcription factors GATA-1, EKLF, and p45 NF-E2), we demonstrated the functional importance of the adjacent CP2/GATA-1 sites. In particular, CP2 binds to the GATA-1 HS2 enhancer, generating a ternary complex with GATA-1 and DNA. Mutations in the CP2 consensus greatly impaired HS2 activity in transient transfection assays with K562 cells. Similar results were obtained by transfection of EKLF and p45 NF-E2 mutant constructs. Chromatin immunoprecipitation with K562 cells showed that CP2 binds in vivo to all three regulatory elements and that both GATA-1 and CP2 were present on the same GATA-1 and EKLF regulatory elements. Adjacent CP2/GATA-1 sites may represent a novel module for erythroid expression of a number of genes. Additionally, coimmunoprecipitation and glutathione S-transferase pull-down experiments demonstrated a physical interaction between GATA-1 and CP2. This may contribute to the functional cooperation between these factors and provide an explanation for the important role of ubiquitous CP2 in the regulation of erythroid genes.
Collapse
Affiliation(s)
- Francesca Bosè
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, P.za della Scienza 2, 20126 Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kang HC, Chae JH, Lee YH, Park MA, Shin JH, Kim SH, Ye SK, Cho YS, Fiering S, Kim CG. Erythroid cell-specific alpha-globin gene regulation by the CP2 transcription factor family. Mol Cell Biol 2005; 25:6005-20. [PMID: 15988015 PMCID: PMC1168829 DOI: 10.1128/mcb.25.14.6005-6020.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated that ubiquitously expressed CP2c exerts potent erythroid-specific transactivation of alpha-globin through an unknown mechanism. This mechanism is reported here to involve specific CP2 splice variants and protein inhibitor of activated STAT1 (PIAS1). We identify a novel murine splice isoform of CP2, CP2b, which is identical to CP2a except that it has an additional 36 amino acids encoded by an extra exon. CP2b has an erythroid cell-specific transcriptional activation domain, which requires the extra exon and can form heteromeric complexes with other CP2 isoforms, but lacks the DNA binding activity found in CP2a and CP2c. Transcriptional activation of alpha-globin occurred following dimerization between CP2b and CP2c in erythroid K562 and MEL cells, but this dimerization did not activate the alpha-globin promoter in nonerythroid 293T cells, indicating that an additional erythroid factor is missing in 293T cells. PIAS1 was confirmed as a CP2 binding protein by the yeast two-hybrid screen, and expression of CP2b, CP2c, and PIAS1 in 293T cell induced alpha-globin promoter activation. These results show that ubiquitously expressed CP2b exerts potent erythroid cell-specific alpha-globin gene expression by complexing with CP2c and PIAS1.
Collapse
Affiliation(s)
- Ho Chul Kang
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Haengdang 17, Sungdong-gu, Seoul 133-791, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Veljkovic J, Hansen U. Lineage-specific and ubiquitous biological roles of the mammalian transcription factor LSF. Gene 2005; 343:23-40. [PMID: 15563829 PMCID: PMC3402097 DOI: 10.1016/j.gene.2004.08.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 07/30/2004] [Accepted: 08/12/2004] [Indexed: 01/15/2023]
Abstract
Transcriptional regulation in mammalian cells is driven by a complex interplay of multiple transcription factors that respond to signals from either external or internal stimuli. A single transcription factor can control expression of distinct sets of target genes, dependent on its state of post-translational modifications, interacting partner proteins, and the chromatin environment of the cellular genome. Furthermore, many transcription factors can act as either transcriptional repressors or activators, depending on promoter and cellular contexts [Alvarez, M., Rhodes, S.J., Bidwell, J.P., 2003. Context-dependent transcription: all politics is local. Gene 313, 43-57]. Even in this light, the versatility of LSF (Late SV40 Factor) is remarkable. A hallmark of LSF is its unusual DNA binding domain, as evidenced both by lack of homology to any other established DNA-binding domains and by its DNA recognition sequence. Although a dimer in solution, LSF requires additional multimerization with itself or partner proteins in order to interact with DNA. Transcriptionally, LSF can function as an activator or a repressor. It is a direct target of an increasing number of signal transduction pathways. Biologically, LSF plays roles in cell cycle progression and cell survival, as well as in cell lineage-specific functions, shown most strikingly to date in hematopoietic lineages. This review discusses how the unique aspects of LSF DNA-binding activity may make it particularly susceptible to regulation by signal transduction pathways and may relate to its distinct biological roles. We present current progress in elucidation of both tissue-specific and more universal cellular roles of LSF. Finally, we discuss suggestive data linking LSF to signaling by the amyloid precursor protein and to Alzheimer's disease, as well as to the regulation of latency of the human immunodeficiency virus (HIV).
Collapse
Affiliation(s)
| | - Ulla Hansen
- Corresponding author: Dept. Biology, Boston University, 5 Cummington Street, Boston, MA 02215; Tel.: (617) 353-8730; fax: (617) 353-8484;
| |
Collapse
|
13
|
Kang HC, Chung BM, Chae JH, Yang SI, Kim CG, Kim CG. Identification and characterization of four novel peptide motifs that recognize distinct regions of the transcription factor CP2. FEBS J 2005; 272:1265-77. [PMID: 15720400 DOI: 10.1111/j.1742-4658.2005.04564.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although ubiquitously expressed, the transcriptional factor CP2 also exhibits some tissue- or stage-specific activation toward certain genes such as globin in red blood cells and interleukin-4 in T helper cells. Because this specificity may be achieved by interaction with other proteins, we screened a peptide display library and identified four consensus motifs in numerous CP2-binding peptides: HXPR, PHL, ASR and PXHXH. Protein-database searching revealed that RE-1 silencing factor (REST), Yin-Yang1 (YY1) and five other proteins have one or two of these CP2-binding motifs. Glutathione S-transferase pull-down and coimmunoprecipitation assays showed that two HXPR motif-containing proteins REST and YY1 indeed were able to bind CP2. Importantly, this binding to CP2 was almost abolished when a double amino acid substitution was made on the HXPR sequence of REST and YY1 proteins. The suppressing effect of YY1 on CP2's transcriptional activity was lost by this point mutation on the HXPR sequence of YY1 and reduced by an HXPR-containing peptide, further supporting the interaction between CP2 and YY1 via the HXPR sequence. Mapping the sites on CP2 for interaction with the four distinct CP2-binding motifs revealed at least three different regions on CP2. This suggests that CP2 recognizes several distinct binding motifs by virtue of employing different regions, thus being able to interact with and regulate many cellular partners.
Collapse
Affiliation(s)
- Ho Chul Kang
- Department of Life Science, Hanyang University, Korea
| | | | | | | | | | | |
Collapse
|
14
|
Jegga AG, Sherwood SP, Carman JW, Pinski AT, Phillips JL, Pestian JP, Aronow BJ. Detection and visualization of compositionally similar cis-regulatory element clusters in orthologous and coordinately controlled genes. Genome Res 2002; 12:1408-17. [PMID: 12213778 PMCID: PMC186658 DOI: 10.1101/gr.255002] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2002] [Accepted: 07/18/2002] [Indexed: 02/02/2023]
Abstract
Evolutionarily conserved noncoding genomic sequences represent a potentially rich source for the discovery of gene regulatory regions. However, detecting and visualizing compositionally similar cis-element clusters in the context of conserved sequences is challenging. We have explored potential solutions and developed an algorithm and visualization method that combines the results of conserved sequence analyses (BLASTZ) with those of transcription factor binding site analyses (MatInspector) (http://trafac.chmcc.org). We define hits as the density of co-occurring cis-element transcription factor (TF)-binding sites measured within a 200-bp moving average window through phylogenetically conserved regions. The results are depicted as a Regulogram, in which the hit count is plotted as a function of position within each of the two genomic regions of the aligned orthologs. Within a high-scoring region, the relative arrangement of shared cis-elements within compositionally similar TF-binding site clusters is depicted in a Trafacgram. On the basis of analyses of several training data sets, the approach also allows for the detection of similarities in composition and relative arrangement of cis-element clusters within nonorthologous genes, promoters, and enhancers that exhibit coordinate regulatory properties. Known functional regulatory regions of nonorthologous and less-conserved orthologous genes frequently showed cis-element shuffling, demonstrating that compositional similarity can be more sensitive than sequence similarity. These results show that combining sequence similarity with cis-element compositional similarity provides a powerful aid for the identification of potential control regions.
Collapse
Affiliation(s)
- Anil G Jegga
- Divisions of Pediatric Informatics, University of Cincinnati, Cincinnati, Ohio, 45229 USA
| | | | | | | | | | | | | |
Collapse
|