1
|
Chen J, Wang K, Ye S, Meng X, Jia X, Huang Y, Ma Q. Tyrosine kinase receptor RON activates MAPK/RSK/CREB signal pathway to enhance CXCR4 expression and promote cell migration and invasion in bladder cancer. Aging (Albany NY) 2022; 14:7093-7108. [PMID: 36103228 PMCID: PMC9512502 DOI: 10.18632/aging.204279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022]
Abstract
Bladder cancer (BC) is one of the most lethal malignancies worldwide. The poor survival may be due to a high proportion of tumor metastasis. RON and CXCR4 are the key regulators of cell motility in BC, while the relationship between RON and CXCR4 remains elusive. In the present study, immunohistochemistry analysis of BC and adjacent normal tissues found that higher RON expression was positively correlated with CXCR4 expression. Inhibiting and replenishing RON level were used to regulate CXCR4 expression, observing the effects on migration and invasion of BC cells. Overexpression of RON reversed the inhibited cell migration and invasion following siCXCR4 treatment. Conversely, overexpression of CXCR4 restored the inhibition of cell migration and invasion caused by shRON. The activation of RON-MAPK/RSK/CREB pathway was demonstrated in BC cells under MSP treatment. Dual luciferase and CHIP assay showed that p-CREB targeted CXCR4 by binding to its CRE sequence. RON knockdown suppressed BC tumor growth in xenograft mouse tumors, accompanied by reduced expression of CXCR4. In conclusion, our data adds evidence that RON, a membrane tyrosine kinase receptor, promotes BC migration and invasion not only by itself, but also by activating MAPK/RSK/CREB signaling pathway to enhance CXCR4 expression.
Collapse
Affiliation(s)
- Junfeng Chen
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang, China
- Ningbo Clinical Research Center for Urological Disease, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang, China
| | - Kejie Wang
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang, China
- Ningbo Clinical Research Center for Urological Disease, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang, China
| | - Shazhou Ye
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang, China
- Ningbo Clinical Research Center for Urological Disease, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang, China
| | - Xiangyu Meng
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang, China
- Ningbo Clinical Research Center for Urological Disease, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang, China
| | - Xiaolong Jia
- Ningbo Clinical Research Center for Urological Disease, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang, China
| | - Youju Huang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Qi Ma
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang, China
- Ningbo Clinical Research Center for Urological Disease, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang, China
- Comprehensive Urogenital Cancer Center, Ningbo First Hospital, The affiliated Hospital of Ningbo University, Ningbo 315010, Zhejiang, China
| |
Collapse
|
2
|
Zarei O, Raeppel SL, Hamzeh-Mivehroud M. An alignment-independent three-dimensional quantitative structure-activity relationship study on ron receptor tyrosine kinase inhibitors. J Bioinform Comput Biol 2022; 20:2250015. [PMID: 35880255 DOI: 10.1142/s0219720022500159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recepteur d'Origine Nantais known as RON is a member of the receptor tyrosine kinase (RTK) superfamily which has recently gained increasing attention as cancer target for therapeutic intervention. The aim of this work was to perform an alignment-independent three-dimensional quantitative structure-activity relationship (3D QSAR) study for a series of RON inhibitors. A 3D QSAR model based on GRid-INdependent Descriptors (GRIND) methodology was generated using a set of 19 compounds with RON inhibitory activities. The generated 3D QSAR model revealed the main structural features important in the potency of RON inhibitors. The results obtained from the presented study can be used in lead optimization projects for designing of novel compounds where inhibition of RON is needed.
Collapse
Affiliation(s)
- Omid Zarei
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Stéphane L Raeppel
- ChemRF Laboratories Inc., 3194, rue Claude-Jodoin, Montréal, QC, Canada H1Y 3M2, Canada
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Chen SL, Wang GP, Shi DR, Yao SH, Chen KD, Yao HP. RON in hepatobiliary and pancreatic cancers: Pathogenesis and potential therapeutic targets. World J Gastroenterol 2021; 27:2507-2520. [PMID: 34092972 PMCID: PMC8160627 DOI: 10.3748/wjg.v27.i20.2507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/04/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
The receptor protein tyrosine kinase RON belongs to the c-MET proto-oncogene family. Research has shown that RON has a role in cancer pathogenesis, which places RON on the frontline of the development of novel cancer therapeutic strategies. Hepatobiliary and pancreatic (HBP) cancers have a poor prognosis, being reported as having higher rates of cancer-related death. Therefore, to combat these malignant diseases, the mechanism underlying the aberrant expression and signaling of RON in HBP cancer pathogenesis, and the development of RON as a drug target for therapeutic intervention should be investigated. Abnormal RON expression and signaling have been identified in HBP cancers, and also act as tumorigenic determinants for HBP cancer malignant behaviors. In addition, RON is emerging as an important mediator of the clinical prognosis of HBP cancers. Thus, not only is RON significant in HBP cancers, but also RON-targeted therapeutics could be developed to treat these cancers, for example, therapeutic monoclonal antibodies and small-molecule inhibitors. Among them, antibody-drug conjugates have become increasingly popular in current research and their potential as novel anti-cancer biotherapeutics will be determined in future clinical trials.
Collapse
Affiliation(s)
- Shao-Long Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310000, Zhejiang Province, China
| | - Guo-Ping Wang
- Department of Surgical Oncology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang Province, China
| | - Dan-Rong Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Shu-Hao Yao
- Department of Stomatology, Wenzhou Medical University Renji College, Wenzhou 325035, Zhejiang Province, China
| | - Ke-Da Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310000, Zhejiang Province, China
| | - Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
4
|
Park YL, Lee GH, Kim KY, Myung E, Kim JS, Myung DS, Park KJ, Cho SB, Lee WS, Jung YD, Kim HS, Joo YE. Expression of RON in colorectal cancer and its relationships with tumor cell behavior and prognosis. TUMORI JOURNAL 2018; 98:652-62. [DOI: 10.1177/030089161209800517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aims and background The aims of the current study were to evaluate whether recepteur d'origine nantais (RON) affects tumor cell behavior and oncogenic signaling pathways in colorectal cancer, and to examine the relationship of its expression with various clinicopathological parameters and patient survival. Methods Immunohistochemistry, Western blot and RT-PCR were used to detect the expression of the RON gene in human colorectal cancer tissue. To study the biological role of RON in tumor cell behavior and cellular signaling pathways, we used small interfering RNA (siRNA) to knock down RON gene expression in human colorectal cancer cell lines. Results Knockdown of RON inhibited the induction of the invasive growth phenotype and the activation of oncogenic signaling pathways including Akt, MAPK and β-catenin. RON overexpression was associated with tumor size, lymphovascular invasion, depth of invasion, lymph node metastasis, distant metastasis, tumor stage and poor survival. Conclusions These results suggest that RON overexpression may help in predicting poor clinical outcomes in colorectal cancer.
Collapse
Affiliation(s)
- Young-Lan Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Gi-Hoon Lee
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Kyu-Yeol Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Eun Myung
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Jong-Sun Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Dae-Seong Myung
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Kang-Jin Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Sung-Bum Cho
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Wan-Sik Lee
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Young-Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| | - Hyun-Soo Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Young-Eun Joo
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
5
|
Yang SY, Nguyen TT, Ung TT, Jung YD. Role of Recepteur D'origine Nantais on Gastric Cancer Development and Progression. Chonnam Med J 2017; 53:178-186. [PMID: 29026705 PMCID: PMC5636756 DOI: 10.4068/cmj.2017.53.3.178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 01/12/2023] Open
Abstract
Recepteur d'origine nantais (RON) is a receptor tyrosine kinase belonging to the subfamily of which c-MET is the prototype. Large epidemiologic studies have confirmed the strong association between RON and gastric cancer development. Constitutive activation of RON signaling directly correlates with tumorigenic phenotypes of gastric cancer and a poor survival rate in advanced gastric cancer patients. In this review, we focus on recent evidence of the aberrant expression and activation of RON in gastric cancer tumors and provide insights into the mechanism of RON signaling associated with gastric cancer progression and metastasis. Current therapeutics against RON in gastric cancer are summarized.
Collapse
Affiliation(s)
- Sung Yeul Yang
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| | - Thi Thinh Nguyen
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| | - Trong Thuan Ung
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
6
|
Strategies of targeting the extracellular domain of RON tyrosine kinase receptor for cancer therapy and drug delivery. J Cancer Res Clin Oncol 2016; 142:2429-2446. [PMID: 27503093 DOI: 10.1007/s00432-016-2214-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/01/2016] [Indexed: 01/22/2023]
Abstract
PURPOSE Cancer is one of the most important life-threatening diseases in the world. The current efforts to combat cancer are being focused on molecular-targeted therapies. The main purpose of such approaches is based on targeting cancer cell-specific molecules to minimize toxicity for the normal cells. RON (Recepteur d'Origine Nantais) tyrosine kinase receptor is one of the promising targets in cancer-targeted therapy and drug delivery. METHODS In this review, we will summarize the available agents against extracellular domain of RON with potential antitumor activities. RESULTS The presented antibodies and antibody drug conjugates against RON in this review showed wide spectrum of in vitro and in vivo antitumor activities promising the hope for them entering the clinical trials. CONCLUSION Due to critical role of extracellular domain of RON in receptor activation, the development of therapeutic agents against this region could lead to fruitful outcome in cancer therapy.
Collapse
|
7
|
Glasbey JC, Sanders AJ, Bosanquet DC, Ruge F, Harding KG, Jiang WG. Expression of Hepatocyte Growth Factor-Like Protein in Human Wound Tissue and Its Biological Functionality in Human Keratinocytes. Biomedicines 2015; 3:110-123. [PMID: 28536402 PMCID: PMC5344237 DOI: 10.3390/biomedicines3010110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/29/2014] [Accepted: 01/27/2015] [Indexed: 01/04/2023] Open
Abstract
human keratinocyte model, may indicate a role for HGFl in active wound healing.
Collapse
Affiliation(s)
- James C Glasbey
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University-Peking University Cancer Institute, Cardiff University-Capital Medical University Joint Centre Biomedical Research, Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK.
- Department of Wound Healing and Welsh Wound Innovation Centre, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | - Andrew J Sanders
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University-Peking University Cancer Institute, Cardiff University-Capital Medical University Joint Centre Biomedical Research, Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK.
| | - David C Bosanquet
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University-Peking University Cancer Institute, Cardiff University-Capital Medical University Joint Centre Biomedical Research, Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK.
- Department of Wound Healing and Welsh Wound Innovation Centre, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | - Fiona Ruge
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University-Peking University Cancer Institute, Cardiff University-Capital Medical University Joint Centre Biomedical Research, Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK.
- Department of Wound Healing and Welsh Wound Innovation Centre, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | - Keith G Harding
- Department of Wound Healing and Welsh Wound Innovation Centre, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University-Peking University Cancer Institute, Cardiff University-Capital Medical University Joint Centre Biomedical Research, Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
8
|
Wang MH, Zhang R, Zhou YQ, Yao HP. Pathogenesis of RON receptor tyrosine kinase in cancer cells: activation mechanism, functional crosstalk, and signaling addiction. J Biomed Res 2013; 27:345-56. [PMID: 24086167 PMCID: PMC3783819 DOI: 10.7555/jbr.27.20130038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/27/2013] [Indexed: 12/15/2022] Open
Abstract
The RON receptor tyrosine kinase, a member of the MET proto-oncogene family, is a pathogenic factor implicated in tumor malignancy. Specifically, aberrations in RON signaling result in increased cancer cell growth, survival, invasion, angiogenesis, and drug resistance. Biochemical events such as ligand binding, receptor overexpression, generation of structure-defected variants, and point mutations in the kinase domain contribute to RON signaling activation. Recently, functional crosstalk between RON and signaling proteins such as MET and EFGR has emerged as an additional mechanism for RON activation, which is critical for tumorigenic development. The RON signaling crosstalk acts either as a regulatory feedback loop that strengthens or enhances tumorigenic phenotype of cancer cells or serves as a signaling compensatory pathway providing a growth/survival advantage for cancer cells to escape targeted therapy. Moreover, viral oncoproteins derived from Friend leukemia or Epstein-Barr viruses interact with RON to drive viral oncogenesis. In cancer cells, RON signaling is integrated into cellular signaling network essential for cancer cell growth and survival. These activities provide the molecular basis of targeting RON for cancer treatment. In this review, we will discuss recent data that uncover the mechanisms of RON activation in cancer cells, review evidence of RON signaling crosstalk relevant to cancer malignancy, and emphasize the significance of the RON signaling addiction by cancer cells for tumor therapy. Understanding aberrant RON signaling will not only provide insight into the mechanisms of tumor pathogenesis, but also lead to the development of novel strategies for molecularly targeted cancer treatment.
Collapse
Affiliation(s)
- Ming-Hai Wang
- Cancer Biology Research Center, ; Department of Biomedical Sciences, and
| | | | | | | |
Collapse
|
9
|
Abstract
Since the discovery of MSP (macrophage-stimulating protein; also known as MST1 and hepatocyte growth factor-like (HGFL)) as the ligand for the receptor tyrosine kinase RON (also known as MST1R) in the early 1990s, the roles of this signalling axis in cancer pathogenesis has been extensively studied in various model systems. Both in vitro and in vivo evidence has revealed that MSP-RON signalling is important for the invasive growth of different types of cancers. Currently, small-molecule inhibitors and antibodies blocking RON signalling are under investigation. Substantial responses have been achieved in human tumour xenograft models, laying the foundation for clinical validation. In this Review, we discuss recent advances that demonstrate the importance of MSP-RON signalling in cancer and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Hang-Ping Yao
- Viral Oncogenesis Section in State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P. R. China
| | | | | | | |
Collapse
|
10
|
Wang J, Rajput A, Kan JLC, Rose R, Liu XQ, Kuropatwinski K, Hauser J, Beko A, Dominquez I, Sharratt EA, Brattain L, Levea C, Sun FL, Keane DM, Gibson NW, Brattain MG. Knockdown of Ron kinase inhibits mutant phosphatidylinositol 3-kinase and reduces metastasis in human colon carcinoma. J Biol Chem 2009; 284:10912-22. [PMID: 19224914 DOI: 10.1074/jbc.m809551200] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abnormal accumulation and activation of receptor tyrosine kinase Ron (recepteur d'origine nantais) has been demonstrated in a variety of primary human cancers. We show that RNA interference-mediated knockdown of Ron kinase in a highly tumorigenic colon cancer cell line led to reduced proliferation as compared with the control cells. Decreased Ron expression sensitized HCT116 cells to growth factor deprivation stress-induced apoptosis as reflected by increased DNA fragmentation and caspase 3 activation. In addition, cell motility was decreased in Ron knockdown cells as measured by wound healing assays and transwell assays. HCT116 cells are heterozygous for gain of function mutant PIK3CA H1047R. Analysis of signaling proteins that are affected by Ron knockdown revealed that phosphatidylinositol 3-kinase (PI3K) activity of the mutant PI3K as well as AKT phosphorylation was substantially reduced in the Ron knockdown cells compared with the control cells. Moreover, we demonstrated in vivo that knockdown of Ron expression significantly reduced lung metastasis as compared with the control cells in the orthotopic models. In summary, our results demonstrate that Ron plays an essential role in maintaining malignant phenotypes of colon cancer cells through regulating mutant PI3K activity. Therefore, targeting Ron kinase could be a potential strategy for colon cancer treatment, especially in patients bearing gain of function mutant PI3K activity.
Collapse
Affiliation(s)
- Jing Wang
- University of Nebraska Medical Center, Eppley Institute for Research in Cancer and Allied Diseases, Omaha, Nebraska 68198, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lu Y, Yao HP, Wang MH. Significance of the entire C-terminus in biological activities mediated by the RON receptor tyrosine kinase and its oncogenic variant RON160. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2008; 27:55. [PMID: 18950514 PMCID: PMC2584002 DOI: 10.1186/1756-9966-27-55] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 10/25/2008] [Indexed: 01/28/2023]
Abstract
The RON receptor tyrosine kinase regulates epithelial cell homeostasis and tumorigenesis by transducing multiple signals through its functional domains. The present study was to determine the significance of the entire C-terminus in RON or its variant RON160-mediated activities related to cell motility and tumorigenesis. Analysis of protein phosphorylation revealed that elimination of the entire C-terminus significantly impairs the ligand-dependent or independent RON or RON160 phosphorylation and dimerization. Phosphorylation of downstream signaling proteins such as Erk1/2, AKT, and p38 MAP kinase was also diminished in cells expressing the C-terminus-free RON or RON160. These dysfunctional activities were accompanied with the inability of truncated RON or RON160 to mediate cytoplasmic β-catenin accumulation. Functional analysis further demonstrated that truncation of the C-terminus significantly impairs RON or RON160-mediated cell proliferation, morphological changes, and cellular migration. Significantly, oncogenic RON160-mediated tumor growth in athymic nude mice was lost after the deletion of the C-terminus. Thus, the C-terminus is a critical component of the RON receptor. The entire C-terminus is required for RON or RON160-mediated intracellular signaling events leading to various cellular activities.
Collapse
Affiliation(s)
- Yi Lu
- Laboratory of Cancer Biology and Therapeutics, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China.
| | | | | |
Collapse
|
12
|
Zinser GM, Leonis MA, Toney K, Pathrose P, Thobe M, Kader SA, Peace BE, Beauman SR, Collins MH, Waltz SE. Mammary-specific Ron receptor overexpression induces highly metastatic mammary tumors associated with beta-catenin activation. Cancer Res 2007; 66:11967-74. [PMID: 17178895 DOI: 10.1158/0008-5472.can-06-2473] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activated growth factor receptor tyrosine kinases (RTK) play pivotal roles in a variety of human cancers, including breast cancer. Ron, a member of the Met RTK proto-oncogene family, is overexpressed or constitutively active in 50% of human breast cancers. To define the significance of Ron overexpression and activation in vivo, we generated transgenic mice that overexpress a wild-type or constitutively active Ron receptor in the mammary epithelium. In these animals, Ron expression is significantly elevated in mammary glands and leads to a hyperplastic phenotype by 12 weeks of age. Ron overexpression is sufficient to induce mammary transformation in all transgenic animals and is associated with a high degree of metastasis, with metastatic foci detected in liver and lungs of >86% of all transgenic animals. Furthermore, we show that Ron overexpression leads to receptor phosphorylation and is associated with elevated levels of tyrosine phosphorylated beta-catenin and the up-regulation of genes, including cyclin D1 and c-myc, which are associated with poor prognosis in patients with human breast cancers. These studies suggest that Ron overexpression may be a causative factor in breast tumorigenesis and provides a model to dissect the mechanism by which the Ron induces transformation and metastasis.
Collapse
Affiliation(s)
- Glendon M Zinser
- Department of Surgery, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wang MH, Yao HP, Zhou YQ. Oncogenesis of RON receptor tyrosine kinase: a molecular target for malignant epithelial cancers. Acta Pharmacol Sin 2006; 27:641-50. [PMID: 16723080 DOI: 10.1111/j.1745-7254.2006.00361.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Recepteur d'origine nantais (RON) belongs to a subfamily of receptor tyrosine kinases (RTK) with unique expression patterns and biological activities. RON is activated by a serum-derived growth factor macrophage stimulating protein (MSP). The RON gene transcription is essential for embryonic development and critical in regulating certain physiological processes. Recent studies have indicated that altered RON expression contributes significantly to cancer progression and malignancy. In primary tumors, such as colon and breast cancers, overexpression of RON exists in large numbers and is often accompanied by the generation of different splicing variants. These RON variants direct a unique program that controls cell transformation, growth, migration, and invasion, indicating that altered RON expression has the ability to regulate motile/invasive phenotypes. These activities were also seen in transgenic mice, in which targeted expression of RON in lung epithelial cells resulted in numerous tumors with pathological features of human bronchioloalveolar carcinoma. Thus, abnormal RON activation is a pathogenic factor that transduces oncogenic signals leading to uncontrolled cell growth and subsequent malignant transformation. Considering these facts, RON and its variants can be considered as potential targets for therapeutic intervention. Experiments using small interfering RNA and neutralizing monoclonal antibodies demonstrated that suppressing RON expression and activation decreases cancer cell proliferation, increases apoptotic death, prevents tumor formation in nude mice, and reduces malignant phenotypes. Thus, blocking RON expression and activation has clinical significance in reversing malignant phenotypes and controlling tumor growth.
Collapse
Affiliation(s)
- Ming-Hai Wang
- Laboratory of Chang-Kung Scholars Program for Tumor Biology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | | | | |
Collapse
|
14
|
Peace BE, Toney-Earley K, Collins MH, Waltz SE. Ron receptor signaling augments mammary tumor formation and metastasis in a murine model of breast cancer. Cancer Res 2005; 65:1285-93. [PMID: 15735014 DOI: 10.1158/0008-5472.can-03-3580] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The tyrosine kinase receptor Ron has been implicated in several types of cancer, including overexpression in human breast cancer. This is the first report describing the effect of Ron signaling on tumorigenesis and metastasis in a mouse model of breast cancer. Mice with a targeted deletion of the Ron tyrosine kinase signaling domain (TK-/-) were crossed to mice expressing the polyoma virus middle T antigen (pMT) under the control of the mouse mammary tumor virus promoter. Both pMT-expressing wild-type control (pMT+/- TK+/+) and pMT+/- TK-/- mice developed mammary tumors and lung metastases. However, a significant decrease in mammary tumor initiation and growth was found in the pMT+/- TK-/- mice compared with controls. An examination of mammary tumors showed that there was a significant decrease in microvessel density, significantly decreased cellular proliferation, and a significant increase in terminal deoxynucleotidyl transferase-mediated nick end labeling-positive staining in mammary tumor cells from the pMT+/- TK-/- mice compared with the pMT+/- TK+/+ mice. Biochemical analyses on mammary tumor lysates showed that whereas both the pMT-expressing TK+/+ and TK-/- tumors have increased Ron expression compared with normal mammary glands, the pMT-expressing TK-/- tumors have deficits in mitogen-activated protein kinase and AKT activation. These results indicate that Ron signaling synergizes with pMT signaling to induce mammary tumor formation, growth, and metastasis. This effect may be mediated in part through the regulation of angiogenesis and through proliferative and cell survival pathways regulated by mitogen-activated protein kinase and AKT.
Collapse
Affiliation(s)
- Belinda E Peace
- Department of Surgery, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | | | |
Collapse
|
15
|
Yokoyama N, Ischenko I, Hayman MJ, Miller WT. The C terminus of RON tyrosine kinase plays an autoinhibitory role. J Biol Chem 2005; 280:8893-900. [PMID: 15632155 DOI: 10.1074/jbc.m412623200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RON is a receptor tyrosine kinase in the MET family. We have expressed and purified active RON using the Sf9/baculovirus system. The constructs used in this study comprise the kinase domain alone and the kinase domain plus the C-terminal region. The construct containing the kinase domain alone has a higher specific activity than the construct containing the kinase and C-terminal domains. Purified RON undergoes autophosphorylation, and the exogenous RON C terminus serves as a substrate. Peptides containing a dityrosine motif derived from the C-terminal tail inhibit RON in vitro or when delivered into intact cells, consistent with an autoinhibitory mechanism. Phenylalanine substitutions within these peptides increase the inhibitory potency. Moreover, introduction of these Phe residues into the dityrosine motif of the RON kinase leads to a decrease in kinase activity. Taken together, our data suggest a model in which the C-terminal tail of RON regulates kinase activity via an interaction with the kinase catalytic domain.
Collapse
Affiliation(s)
- Noriko Yokoyama
- Department of Physiology and Biophysics, School of Medicine, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | |
Collapse
|
16
|
Rulli K, Yugawa T, Hanson C, Thompson D, Ruscetti S, Nishigaki K. Ex vivo and in vivo biological effects of a truncated form of the receptor tyrosine kinase stk when activated by interaction with the friend spleen focus-forming virus envelope glycoprotein or by point mutation. J Virol 2004; 78:4573-81. [PMID: 15078939 PMCID: PMC387688 DOI: 10.1128/jvi.78.9.4573-4581.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The erythroleukemia-inducing Friend spleen focus-forming virus (SFFV) encodes a unique envelope protein, gp55, which interacts with the erythropoietin (Epo) receptor complex, causing proliferation and differentiation of erythroid cells in the absence of Epo. Susceptibility to SFFV-induced erythroleukemia is conferred by the Fv-2 gene, which encodes a short form of the receptor tyrosine kinase Stk/Ron (sf-Stk) only in susceptible strains of mice. We recently demonstrated that sf-Stk becomes activated by forming a strong interaction with SFFV gp55. To examine the biological consequences of activated sf-Stk on erythroid cell growth, we prepared retroviral vectors which express sf-Stk, either in conjunction with gp55 or alone in a constitutively activated mutant form, and tested them for their ability to induce Epo-independent erythroid colonies ex vivo and disease in mice. Our data indicate that both gp55-activated sf-Stk and the constitutively activated mutant of sf-Stk induce erythroid cells from Fv-2-susceptible and Fv-2-resistant (sf-Stk null) mice to form Epo-independent colonies. Mutational analysis of sf-Stk indicated that a functional kinase domain and 8 of its 12 tyrosine residues are required for the induction of Epo-independent colonies. Further studies demonstrated that coexpression of SFFV gp55 with sf-Stk significantly extends the half-life of the kinase. When injected into Fv-2-resistant mice, neither the gp55-activated sf-Stk nor the constitutively activated mutant caused erythroleukemia. Surprisingly, both Fv-2-susceptible and -resistant mice injected with the gp55-sf-Stk vector developed clinical signs not previously associated with SFFV-induced disease. We conclude that sf-Stk, activated by either point mutation or interaction with SFFV gp55, is sufficient to induce Epo-independent erythroid colonies from both Fv-2-susceptible and -resistant mice but is unable to cause erythroleukemia in Fv-2-resistant mice.
Collapse
Affiliation(s)
- Karen Rulli
- Basic Research Laboratory, National Cancer Institute-Frederick, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | |
Collapse
|
17
|
Peace BE, Hill KJ, Degen SJF, Waltz SE. Cross-talk between the receptor tyrosine kinases Ron and epidermal growth factor receptor. Exp Cell Res 2003; 289:317-25. [PMID: 14499632 DOI: 10.1016/s0014-4827(03)00280-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Heterogeneous receptor-receptor interactions may play a role in intracellular signaling. Accordingly, the interaction of two dissimilar tyrosine kinase receptors, Ron and epidermal growth factor receptor (EGFR) was investigated. The functional interaction of Ron and EGFR in cell scatter and oncogenic transformation was investigated in vivo. Transfection of a dominant negative form of EGFR into human embryonic kidney cells stably expressing Ron (293-Ron) dramatically reduced the scatter response induced by the Ron ligand hepatocyte growth factor-like protein/macrophage stimulating protein (HGFL). The scatter response of the 293-Ron cells was also attenuated by treatment of the cells with the specific EGFR inhibitor AG 1478. Co-transfection of Ron and dominant-negative EGFR, or co-transfection of EGFR and a dominant-negative form of Ron reduced focus formation in NIH/3T3 cells. Western analysis of NIH/3T3 cells overexpressing murine Ron and expressing endogenous levels of EGFR was used to demonstrate that Ron and EGFR co-immunoprecipitate. Stimulation of the cells in vitro with the Ron ligand HGFL or with the EGFR ligand epidermal growth factor (EGF) appeared to induce phosphorylation of both receptors. Co-immunoprecipitation and phosphorylation of phosphatidyl inositol 3-kinase (PI3-K) was also observed. This novel finding of a functional and biochemical interaction between Ron and EGFR suggests that heterologous tyrosine kinase receptor interactions may play a role in cellular processes such as scatter and transformation.
Collapse
Affiliation(s)
- Belinda E Peace
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | |
Collapse
|
18
|
Wang MH, Wang D, Chen YQ. Oncogenic and invasive potentials of human macrophage-stimulating protein receptor, the RON receptor tyrosine kinase. Carcinogenesis 2003; 24:1291-300. [PMID: 12807733 DOI: 10.1093/carcin/bgg089] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The product of the RON (recepteur d'origine nantais) gene belongs to the MET proto-oncogene family, a distinct subfamily of receptor tyrosine kinases. The ligand of RON was identified as macrophage-stimulating protein (MSP), a member of the plasminogen-related growth factor family. RON is mainly expressed in cells of epithelial origin and is required for embryonic development. In vitro RON activation results in epithelial cell dissociation, migration and matrix invasion, suggesting that RON might be involved in the pathogenesis of certain epithelial cancers in vivo. Indeed, recent studies have shown that RON expression is significantly altered in several primary human cancers, including those of the breast and colon. Truncation of the RON protein has also been found in primary tumors from the gastrointestinal tract. These alterations lead to constitutive activation of RON that causes cell transformation in vitro, induces neoplasm formation in athymic nude mice, and promotes tumor metastasis into the lung. Studies employing transgenic models further demonstrated that over-expression of RON in lung epithelial cells results in multiple tumor formation with features of large cell undifferentiated carcinoma. The oncogenic activities of RON are mediated by RON-transduced signals that promote unbalanced cell growth and transformation leading to tumor development. Thus, abnormal accumulation and activation of RON could play a critical role in vivo in the progression of certain malignant human epithelial cancers.
Collapse
Affiliation(s)
- Ming-Hai Wang
- Laboratory of Chang-Jiang Scholar Endowment for Biomedical Sciences, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, Peoples Republic of China
| | | | | |
Collapse
|
19
|
Zhou YQ, He C, Chen YQ, Wang D, Wang MH. Altered expression of the RON receptor tyrosine kinase in primary human colorectal adenocarcinomas: generation of different splicing RON variants and their oncogenic potential. Oncogene 2003; 22:186-97. [PMID: 12527888 DOI: 10.1038/sj.onc.1206075] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The RON receptor tyrosine kinase is a member of the MET proto-oncogene family that has been implicated in regulating motile-invasive phenotypes in certain types of epithelial cancers. The purpose of this study was to determine if RON expression is altered in primary human colorectal adenocarcinomas. Results from immunohistochemical staining showed that RON is highly expressed in the majority of colorectal adenocarcinomas (29/49 cases). Accumulated RON is also constitutively active with autophosphorylation in tyrosine residues. Moreover, three splicing variants of RON, namely RONdelta165, RONdelta160, and RONdelta155 were detected and cloned from two primary colon cancer samples. These RON variants were generated by deletions in different regions in extracellular domains of the RON beta chain. Functional studies showed that expression of RONdelta160 or RONdelta155 in Martin-Darby canine kidney cells resulted in increased cell dissociation (scatter-like activity). RON variants, RONdelta160 and RONdelta155, also exerted the ability to induce multiple focus formation and sustain anchorage-independent growth of transfected NIH3T3 cells. Moreover, NIH3T3 cells expressing RONdelta160 or RONdelta155 formed tumors in athymic nude mice and colonized in the lungs. These data suggest that RON expression is altered in certain primary colon cancers. Abnormal accumulation of RON variants may play a role in the progression of certain colorectal cancers in vivo.
Collapse
Affiliation(s)
- Yong-Qing Zhou
- Division of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | | | | | | | | |
Collapse
|
20
|
Gual P, Giordano S, Anguissola S, Comoglio PM. Differential requirement of the last C-terminal tail of Met receptor for cell transformation and invasiveness. Oncogene 2001; 20:5493-502. [PMID: 11571647 DOI: 10.1038/sj.onc.1204713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2001] [Revised: 06/05/2001] [Accepted: 06/08/2001] [Indexed: 11/09/2022]
Abstract
Biological responses to Hepatocyte Growth Factor are mediated by the tyrosine kinase receptor encoded by the Met oncogene. Under physiological conditions, Met triggers a multi-step genetic program called 'invasive growth' including cell-dissociation, invasion of extracellular matrices and growth. When constitutively activated, Met can induce cell transformation and metastasis. Phosphorylation of two docking tyrosines in the receptor tail is essential for all biological responses. To investigate the role of the C-terminal part of Met, we have generated mutants lacking either the last 26 or 47 amino acids. As expected, mutants lacking the docking sites fail to mediate cell transformation and invasion. Interestingly, while Met Delta26 can mediate invasion, its transforming ability is severely impaired. Moreover, the lack of the last 26 amino acids strongly reduces Met ability to phosphorylate substrates in vitro and in vivo. These data indicate that the last 26 amino acids are required to confer the kinase its full enzymatic activity, which is critical for cell transformation but dispensable for invasive properties. Finally, we also show that up-regulation of Met enzymatic activity by insertion of a point mutation in the kinase domain (M1250T) overcomes the regulatory role played by the last 26 amino acids of the tail. It is concluded that the C-terminal domain of Met is crucial not only for recruitment of transducers but also for regulation of receptor enzymatic activity.
Collapse
Affiliation(s)
- P Gual
- Institute for Cancer Research and Treatment (IRCC), University of Torino Medical School, Str. Prov. 142, Km 3.95, 10060 Candiolo, Italy
| | | | | | | |
Collapse
|
21
|
Chen YQ, Zhou YQ, Angeloni D, Kurtz AL, Qiang XZ, Wang MH. Overexpression and activation of the RON receptor tyrosine kinase in a panel of human colorectal carcinoma cell lines. Exp Cell Res 2000; 261:229-38. [PMID: 11082293 DOI: 10.1006/excr.2000.5012] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RON is a receptor tyrosine kinase belonging to the MET proto-oncogene family. The purposes of this study are to determine the expression and activation of RON in a panel of human colon carcinoma cell lines. Western blotting showed that RON is barely detectable in normal and SV-40-transformed colon epithelial cells, but highly expressed and constitutively activated in several colon carcinoma cell lines including Colo201, HT-29, HCT116, and SW837. Moreover, a novel RON variant with a molecular mass of 160 kDa (RONDelta160) was identified from HT-29 cells. The cDNA encoding RONDelta160 has an in-frame deletion of 109 amino acids in the extracellular domain of the RON beta chain, which is caused by splicing out of two exons in the RON mRNA. No mutations were found in the kinase domain of the RON gene in five carcinoma cell lines screened. By expressing RON in colon epithelial cells, we found that RON activation increases cell motile-invasive activities and protects cells against apoptotic death. These data suggest that RON expression and activation are deregulated in colon carcinoma cell lines. By abnormal activation of RON, this receptor and its variant may regulate motile-invasive phenotypes of certain colon carcinoma cells in vivo.
Collapse
Affiliation(s)
- Y Q Chen
- Department of Medicine, University of Colorado School of Medicine and Denver Health Medical Center, Denver, Colorado 80204, USA
| | | | | | | | | | | |
Collapse
|