1
|
He R, Wang J, Yu ZH, Moyers JS, Michael MD, Durham TB, Cramer JW, Qian Y, Lin A, Wu L, Noinaj N, Barrett DG, Zhang ZY. Structure-Based Design of Active-Site-Directed, Highly Potent, Selective, and Orally Bioavailable Low-Molecular-Weight Protein Tyrosine Phosphatase Inhibitors. J Med Chem 2022; 65:13892-13909. [PMID: 36197449 PMCID: PMC10128051 DOI: 10.1021/acs.jmedchem.2c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein tyrosine phosphatases constitute an important class of drug targets whose potential has been limited by the paucity of drug-like small-molecule inhibitors. We recently described a class of active-site-directed, moderately selective, and potent inhibitors of the low-molecular-weight protein tyrosine phosphatase (LMW-PTP). Here, we report our extensive structure-based design and optimization effort that afforded inhibitors with vastly improved potency and specificity. The leading compound inhibits LMW-PTP potently and selectively (Ki = 1.2 nM, >8000-fold selectivity). Many compounds exhibit favorable drug-like properties, such as low molecular weight, weak cytochrome P450 inhibition, high metabolic stability, moderate to high cell permeability (Papp > 0.2 nm/s), and moderate to good oral bioavailability (% F from 23 to 50% in mice), and therefore can be used as in vivo chemical probes to further dissect the complex biological as well as pathophysiological roles of LMW-PTP and for the development of therapeutics targeting LMW-PTP.
Collapse
Affiliation(s)
- Rongjun He
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46225, United States.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, United States
| | - Jifeng Wang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, United States
| | - Zhi-Hong Yu
- Department of Medicinal Chemistry and Molecular Pharmacology and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Julie S Moyers
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46225, United States
| | - M Dodson Michael
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46225, United States
| | - Timothy B Durham
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46225, United States
| | - Jeff W Cramer
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46225, United States
| | - Yuewei Qian
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46225, United States
| | - Amy Lin
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46225, United States
| | - Li Wu
- Department of Medicinal Chemistry and Molecular Pharmacology and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Nicholas Noinaj
- Department of Biological Sciences, Purdue University, 240 S. Martin Jischke Drive, West Lafayette, Indiana 47907, United States
| | - David G Barrett
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46225, United States
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, United States.,Department of Medicinal Chemistry and Molecular Pharmacology and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Sacchetti C, Bottini N. Protein Tyrosine Phosphatases in Systemic Sclerosis: Potential Pathogenic Players and Therapeutic Targets. Curr Rheumatol Rep 2017; 19:28. [PMID: 28397126 DOI: 10.1007/s11926-017-0655-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW The pathogenesis of systemic sclerosis depends on a complex interplay between autoimmunity, vasculopathy, and fibrosis. Reversible phosphorylation on tyrosine residues, in response to growth factors and other stimuli, critically regulates each one of these three key pathogenic processes. Protein tyrosine kinases, the enzymes that catalyze addition of phosphate to tyrosine residues, are known players in systemic sclerosis, and tyrosine kinase inhibitors are undergoing clinical trials for treatment of this disease. Until recently, the role of tyrosine phosphatases-the enzymes that counteract the action of tyrosine kinases by removing phosphate from tyrosine residues-in systemic sclerosis has remained largely unknown. Here, we review the function of tyrosine phosphatases in pathways relevant to the pathogenesis of systemic sclerosis and their potential promise as therapeutic targets to halt progression of this debilitating rheumatic disease. RECENT FINDINGS Protein tyrosine phosphatases are emerging as important regulators of a multitude of signaling pathways and undergoing validation as molecular targets for cancer and other common diseases. Recent advances in drug discovery are paving the ways to develop new classes of tyrosine phosphatase modulators to treat human diseases. Although so far only few reports have focused on tyrosine phosphatases in systemic sclerosis, these enzymes play a role in multiple pathways relevant to disease pathogenesis. Further studies in this field are warranted to explore the potential of tyrosine phosphatases as drug targets for systemic sclerosis.
Collapse
Affiliation(s)
- Cristiano Sacchetti
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California, San Diego, 9500 Gilman Drive MC #0656, La Jolla, CA, 92093, USA
| | - Nunzio Bottini
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California, San Diego, 9500 Gilman Drive MC #0656, La Jolla, CA, 92093, USA.
| |
Collapse
|
3
|
Palma A, Tinti M, Paoluzi S, Santonico E, Brandt BW, Hooft van Huijsduijnen R, Masch A, Heringa J, Schutkowski M, Castagnoli L, Cesareni G. Both Intrinsic Substrate Preference and Network Context Contribute to Substrate Selection of Classical Tyrosine Phosphatases. J Biol Chem 2017; 292:4942-4952. [PMID: 28159843 DOI: 10.1074/jbc.m116.757518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/31/2017] [Indexed: 01/19/2023] Open
Abstract
Reversible tyrosine phosphorylation is a widespread post-translational modification mechanism underlying cell physiology. Thus, understanding the mechanisms responsible for substrate selection by kinases and phosphatases is central to our ability to model signal transduction at a system level. Classical protein-tyrosine phosphatases can exhibit substrate specificity in vivo by combining intrinsic enzymatic specificity with the network of protein-protein interactions, which positions the enzymes in close proximity to their substrates. Here we use a high throughput approach, based on high density phosphopeptide chips, to determine the in vitro substrate preference of 16 members of the protein-tyrosine phosphatase family. This approach helped identify one residue in the substrate binding pocket of the phosphatase domain that confers specificity for phosphopeptides in a specific sequence context. We also present a Bayesian model that combines intrinsic enzymatic specificity and interaction information in the context of the human protein interaction network to infer new phosphatase substrates at the proteome level.
Collapse
Affiliation(s)
- Anita Palma
- From the Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Michele Tinti
- From the Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Serena Paoluzi
- From the Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Elena Santonico
- From the Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Bernd Willem Brandt
- the Centre for Integrative Bioinformatics, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands, and
| | | | - Antonia Masch
- the Institut für Biochemie & Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, 06108 Halle, Germany
| | - Jaap Heringa
- the Centre for Integrative Bioinformatics, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands, and
| | - Mike Schutkowski
- the Institut für Biochemie & Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, 06108 Halle, Germany
| | - Luisa Castagnoli
- From the Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Gianni Cesareni
- From the Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy,
| |
Collapse
|
4
|
He R, Wang J, Yu ZH, Zhang RY, Liu S, Wu L, Zhang ZY. Inhibition of Low Molecular Weight Protein Tyrosine Phosphatase by an Induced-Fit Mechanism. J Med Chem 2016; 59:9094-9106. [PMID: 27676368 DOI: 10.1021/acs.jmedchem.6b00993] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The low molecular weight protein tyrosine phosphatase (LMW-PTP) is a regulator of a number of signaling pathways and has been implicated as a potential target for oncology and diabetes/obesity. There is significant therapeutic interest in developing potent and selective inhibitors to control LMW-PTP activity. We report the discovery of a novel class of LMW-PTP inhibitors derived from sulfophenyl acetic amide (SPAA), some of which exhibit greater than 50-fold preference for LMW-PTP over a large panel of PTPs. X-ray crystallography reveals that binding of SPAA-based inhibitors induces a striking conformational change in the LMW-PTP active site, leading to the formation of a previously undisclosed hydrophobic pocket to accommodate the α-phenyl ring in the ligand. This induced-fit mechanism is likely a major contributor responsible for the exquisite inhibitor selectivity.
Collapse
Affiliation(s)
- Rongjun He
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University , 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Jifeng Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University , 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Zhi-Hong Yu
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University , 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Ruo-Yu Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University , 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Sijiu Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University , 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Li Wu
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University , 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University , 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Minucci A, Canu G, Gentile L, Zuppi C, Giardina B, Capoluongo E. Small amplicons high resolution melting analysis (SA-HRMA) allows successful genotyping of acid phosphatase 1 (ACP1) polymorphisms in the Italian population. Clin Chim Acta 2012. [PMID: 23201490 DOI: 10.1016/j.cca.2012.11.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND The ACP1 gene, encoding a low-molecular-weight phosphotyrosine phosphatase (LMW-PTP), has been suggested as a common genetic factor of several human diseases, including inflammatory and autoimmune diseases, favism and tumors. For this reason, the ACP1 enzyme has been investigated by case-control studies for decades. Initially based on protein electrophoresis, the ACP1 phenotype is now determined by DNA-based techniques. METHODS Here, we report a rapid optimized method which employs HRMA for ACP1 polymorphism identification, a molecular approach that we used to screen 80 healthy Italian subjects. RESULTS HRMA proved particularly suitable for detecting ACP1 genotypes. In fact, HRMA results were 100% concordant with direct sequencing. In addition, ACP1 genotype frequency in the Italian population was in accordance with the literature [4% (*A/A), 36% (*A/B), 4% (*A/C), 50% (*B/B), 6% (*B/C)]. CONCLUSIONS HRMA was found to be a simple, rapid, sensitive and low cost method potentially useful in research and diagnostic laboratories. Finally, use of small amplicons for the set-up allowed us a better optimization of HRMA. For this reason, we present such an approach as small amplicons high resolution melting analysis (SA-HRMA). Finally, ACP1 genotype frequency in the Italian population reported in this study may contribute to a better interpretation of ACP1 allelic frequency variation.
Collapse
Affiliation(s)
- Angelo Minucci
- Laboratory of Clinical Molecular Diagnostics, Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Italy.
| | | | | | | | | | | |
Collapse
|
6
|
Ottanà R, Maccari R, Amuso S, Wolber G, Schuster D, Herdlinger S, Manao G, Camici G, Paoli P. New 4-[(5-arylidene-2-arylimino-4-oxo-3-thiazolidinyl)methyl]benzoic acids active as protein tyrosine phosphatase inhibitors endowed with insulinomimetic effect on mouse C2C12 skeletal muscle cells. Eur J Med Chem 2012; 50:332-43. [DOI: 10.1016/j.ejmech.2012.02.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 02/05/2012] [Accepted: 02/06/2012] [Indexed: 11/24/2022]
|
7
|
Teruel M, Martin JE, Gómez-García M, Cardeña C, Rodrigo L, Nieto A, Alcain G, Cueto I, López-Nevot MA, Martin J. Lack of association of ACP1 gene with inflammatory bowel disease: a case-control study. ACTA ACUST UNITED AC 2012; 80:61-4. [PMID: 22428720 DOI: 10.1111/j.1399-0039.2012.01861.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The red cell acid phosphatease (ACP1) gene, which encodes a low molecular weight phosphotyrosine phosphatase (LMW-PTP), has been suggested as a common genetic factor of autoimmunity. In the present study, we aimed to investigate the possible influence of ACP1 polymorphisms in the susceptibility of inflammatory bowel disease (IBD). A total of 1271 IBD Spanish patients [720 Crohn's disease (CD) and 551 ulcerative colitis (UC)] and 1877 healthy subjects were included. Four single-nucleotide polymorphisms (SNPs), rs10167992, rs11553742, rs7576247 and rs3828329, were genotyped using TaqMan SNP genotyping assays. Common ACP1 alleles (i.e. ACP1*A, ACP1*B and ACP1*C) were determined by two of these SNPs. After the analysis, no evidence of association of the ACP1 genetic variants was found with CD or UC. Therefore, our results suggest that the ACP1 gene may not play a relevant role in the development of IBD.
Collapse
Affiliation(s)
- M Teruel
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Armilla, Granada, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Teruel M, Martin JE, Ortego-Centeno N, Jiménez-Alonso J, Sánchez-Román J, de Ramón E, Gonzalez-Escribano MF, Pons-Estel BA, D'Alfonso S, Sebastiani GD, Witte T, Bottini N, González-Gay MA, Alarcón-Riquelme ME, Martin J. Novel association of acid phosphatase locus 1*C allele with systemic lupus erythematosus. Hum Immunol 2012; 73:107-10. [DOI: 10.1016/j.humimm.2011.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 09/07/2011] [Accepted: 10/07/2011] [Indexed: 10/16/2022]
|
9
|
Maccari R, Ottanà R. Low molecular weight phosphotyrosine protein phosphatases as emerging targets for the design of novel therapeutic agents. J Med Chem 2011; 55:2-22. [PMID: 21988196 DOI: 10.1021/jm200607g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rosanna Maccari
- Dipartimento Farmaco-Chimico, Faculty of Pharmacy, University of Messina, Polo Universitario dell'Annunziata, 98168 Messina, Italy.
| | | |
Collapse
|
10
|
Teruel M, Martin JE, González-Juanatey C, López-Mejias R, Miranda-Filloy JA, Blanco R, Balsa A, Pascual-Salcedo D, Rodriguez-Rodriguez L, Fernández-Gutierrez B, Ortiz AM, González-Alvaro I, Gómez-Vaquero C, Bottini N, Llorca J, González-Gay MA, Martin J. Association of acid phosphatase locus 1*C allele with the risk of cardiovascular events in rheumatoid arthritis patients. Arthritis Res Ther 2011; 13:R116. [PMID: 21767392 PMCID: PMC3239354 DOI: 10.1186/ar3401] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/09/2011] [Accepted: 07/18/2011] [Indexed: 01/14/2023] Open
Abstract
Introduction Acid phosphatase locus 1 (ACP1) encodes a low molecular weight phosphotyrosine phosphatase implicated in a number of different biological functions in the cell. The aim of this study was to determine the contribution of ACP1 polymorphisms to susceptibility to rheumatoid arthritis (RA), as well as the potential contribution of these polymorphisms to the increased risk of cardiovascular disease (CV) observed in RA patients. Methods A set of 1,603 Spanish RA patients and 1,877 healthy controls were included in the study. Information related to the presence/absence of CV events was obtained from 1,284 of these participants. All individuals were genotyped for four ACP1 single-nucleotide polymorphisms (SNPs), rs10167992, rs11553742, rs7576247, and rs3828329, using a predesigned TaqMan SNP genotyping assay. Classical ACP1 alleles (*A, *B and *C) were imputed with SNP data. Results No association between ACP1 gene polymorphisms and susceptibility to RA was observed. However, when RA patients were stratified according to the presence or absence of CV events, an association between rs11553742*T and CV events was found (P = 0.012, odds ratio (OR) = 2.62 (1.24 to 5.53)). Likewise, the ACP1*C allele showed evidence of association with CV events in patients with RA (P = 0.024, OR = 2.43). Conclusions Our data show that the ACP1*C allele influences the risk of CV events in patients with RA.
Collapse
Affiliation(s)
- María Teruel
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Avd, del Conocimiento s/n, 18010, Granada, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Shu YH, Hartiala J, Xiang AH, Trigo E, Lawrence JM, Allayee H, Buchanan TA, Bottini N, Watanabe RM. Evidence for sex-specific associations between variation in acid phosphatase locus 1 (ACP1) and insulin sensitivity in Mexican-Americans. J Clin Endocrinol Metab 2009; 94:4094-102. [PMID: 19622628 PMCID: PMC2758733 DOI: 10.1210/jc.2008-2751] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CONTEXT Acid phosphatase locus 1 (ACP1) is a low molecular weight tyrosine phosphatase that has been shown to be an important regulator of insulin receptor signaling. OBJECTIVE We tested whether variation in ACP1 is associated with type 2 diabetes-related traits in 1035 individuals in 339 Mexican-American families of probands with or without a previous diagnosis of gestational diabetes mellitus (GDM). DESIGN Study participants were phenotyped by oral glucose tolerance test (for glucose and insulin level) and iv glucose tolerance test (for insulin sensitivity and acute insulin response) and had dual-energy x-ray absorptiometry scans to assess body composition. Six tag single nucleotide polymorphisms (SNPs) were identified from among 15 SNPs genotyped across the ACP1 region. SNPs were tested for association with phenotypes using a likelihood ratio test under a variance components framework. RESULTS After Bonferroni correction, none of the SNPs were associated with type 2 diabetes mellitus-related phenotypes. However, we observed a significant sex-specific effect of rs3828329. Among males, rs3828329 was significantly associated with fasting insulin (Bonferroni P = 0.007) and insulin sensitivity (Bonferroni P = 0.019) and marginally associated with 2-h insulin (Bonferroni P = 0.058) and percentage body fat (Bonferroni P = 0.09). CONCLUSIONS There were no significant associations in females. We conclude that variation in ACP1 is associated with fasting insulin and insulin sensitivity in a sex-specific manner.
Collapse
Affiliation(s)
- Yu-Hsiang Shu
- Department of Preventive Medicine, Division of Biostatistics, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Maccari R, Ottanà R, Ciurleo R, Paoli P, Manao G, Camici G, Laggner C, Langer T. Structure-based optimization of benzoic acids as inhibitors of protein tyrosine phosphatase 1B and low molecular weight protein tyrosine phosphatase. ChemMedChem 2009; 4:957-62. [PMID: 19288492 DOI: 10.1002/cmdc.200800427] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have optimized previously discovered benzoic acids 1, which are active as inhibitors of PTP1B and LMW-PTP, two protein tyrosine phosphatases that have emerged as attractive targets for the development of novel therapeutic agents for the treatment of diabetes, obesity, and cancer. Our efforts led to the identification of new and more potent analogues with appreciable selectivity toward human PTP1B and the IF1 isoform of human LMW-PTP.
Collapse
Affiliation(s)
- Rosanna Maccari
- Dipartimento Farmaco-chimico, Università di Messina, Polo Universitario Annunziata, 98168 Messina, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Forghieri M, Laggner C, Paoli P, Langer T, Manao G, Camici G, Bondioli L, Prati F, Costantino L. Synthesis, activity and molecular modeling of a new series of chromones as low molecular weight protein tyrosine phosphatase inhibitors. Bioorg Med Chem 2009; 17:2658-72. [DOI: 10.1016/j.bmc.2009.02.060] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Revised: 02/25/2009] [Accepted: 02/28/2009] [Indexed: 01/19/2023]
|
14
|
Ottanà R, Maccari R, Ciurleo R, Paoli P, Jacomelli M, Manao G, Camici G, Laggner C, Langer T. 5-Arylidene-2-phenylimino-4-thiazolidinones as PTP1B and LMW-PTP inhibitors. Bioorg Med Chem 2009; 17:1928-37. [DOI: 10.1016/j.bmc.2009.01.044] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 01/14/2009] [Accepted: 01/20/2009] [Indexed: 01/28/2023]
|
15
|
Lee JK, Edderkaoui M, Truong P, Ohno I, Jang KT, Berti A, Pandol SJ, Gukovskaya AS. NADPH oxidase promotes pancreatic cancer cell survival via inhibiting JAK2 dephosphorylation by tyrosine phosphatases. Gastroenterology 2007; 133:1637-48. [PMID: 17983808 DOI: 10.1053/j.gastro.2007.08.022] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 07/26/2007] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Growth factors, such as insulin-like growth factor-1 (IGF-I), protect pancreatic cancer (PaCa) cells from death. We recently showed that reactive oxygen species (ROS) produced by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase Nox4 mediate the antiapoptotic effect of growth factors. Here, we examine the mechanisms of the antiapoptotic role of NADPH oxidase. We hypothesized that ROSs produced by NADPH oxidase inhibit key protein tyrosine phosphatases (PTPs) and thus sustain the activation of kinases mediating antiapoptotic pathways in PaCa cells. METHODS Transfections and pharmacologic inhibition were used to assess the effects of NADPH oxidase on Janus kinase 2 (JAK2) kinase, the low molecular weight-protein tyrosine phosphatase (LMW-PTP), and apoptosis. RESULTS We found that 1 target of ROSs is JAK2, an important antiapoptotic kinase in PaCa cells. Both serum-induced and IGF-I biphasic JAK2 phosphorylation, with a rapid (minutes) and transient first phase, and a slow and sustained (24-72 hours) second phase. Nox4 mediated the sustained phase of JAK2 phosphorylation, which was required for the antiapoptotic effects of IGF-I and serum. Transfection experiments identified the LMW-PTP as a negative regulator of sustained JAK2 phosphorylation. Growth factors inhibited LMW-PTP through its oxidation by NADPH oxidase. LMW-PTP colocalizes with Nox4 both in PaCa cells and in human pancreatic adenocarcinoma. CONCLUSIONS The results suggest a novel signaling pathway, in which NADPH oxidase activation results in inhibition of PTPs, such as LMW-PTP, leading, in turn, to enhanced and sustained phosphorylation of kinases, such as JAK2, and suppression of apoptosis. This pathway mediates the prosurvival effect of ROSs and suggests new targets for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Jong Kyun Lee
- Veterans Affairs Greater Los Angeles Healthcare System and University of California at Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Maccari R, Paoli P, Ottanà R, Jacomelli M, Ciurleo R, Manao G, Steindl T, Langer T, Vigorita MG, Camici G. 5-Arylidene-2,4-thiazolidinediones as inhibitors of protein tyrosine phosphatases. Bioorg Med Chem 2007; 15:5137-49. [PMID: 17543532 DOI: 10.1016/j.bmc.2007.05.027] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 05/04/2007] [Accepted: 05/11/2007] [Indexed: 11/20/2022]
Abstract
4-(5-Arylidene-2,4-dioxothiazolidin-3-yl)methylbenzoic acids (2) were synthesized and evaluated in vitro as inhibitors of PTP1B and LMW-PTP, two protein tyrosine phosphatases (PTPs) which act as negative regulators of the metabolic and mitotic signalling of insulin. The synthesis of compounds 2 represents an example of utilizing phosphotyrosine-mimetics to identify effective low molecular weight nonphosphorus inhibitors of PTPs. Several thiazolidinediones 2 exhibited PTP1B inhibitory activity in the low micromolar range with moderate selectivity for human PTP1B and IF1 isoform of human LMW-PTP compared with other related PTPs.
Collapse
Affiliation(s)
- Rosanna Maccari
- Dipartimento Farmaco-Chimico, Università di Messina, Vl SS Annunziata, Messina, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Deng Y, Xu H, Riedel H. PSM/SH2-B distributes selected mitogenic receptor signals to distinct components in the PI3-kinase and MAP kinase signaling pathways. J Cell Biochem 2007; 100:557-73. [PMID: 16960871 DOI: 10.1002/jcb.21030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Pro-rich, PH, and SH2 domain containing mitogenic signaling adapter PSM/SH2-B has been implicated as a cellular partner of various mitogenic receptor tyrosine kinases and related signaling mechanisms. Here, we report in a direct comparison of three peptide hormones, that PSM participates in the assembly of distinct mitogenic signaling complexes in response to insulin or IGF-I when compared to PDGF in cultured normal fibroblasts. The complex formed in response to insulin or IGF-I involves the respective peptide hormone receptor and presumably the established components leading to MAP kinase activation. However, our data suggest an alternative link from the PDGF receptor via PSM directly to MEK1/2 and consequently also to p44/42 activation, possibly through a scaffold protein. At least two PSM domains participate, the SH2 domain anticipated to link PSM to the respective receptor and the Pro-rich region in an association with an unidentified downstream component resulting in direct MEK1/2 and p44/42 regulation. The PDGF receptor signaling complex formed in response to PDGF involves PI 3-kinase in addition to the same components and interactions as described for insulin or IGF-I. PSM associates with PI 3-kinase via p85 and in addition the PSM PH domain participates in the regulation of PI 3-kinase activity, presumably through membrane interaction. In contrast, the PSM Pro-rich region appears to participate only in the MAP kinase signal. Both pathways contribute to the mitogenic response as shown by cell proliferation, survival, and focus formation. PSM regulates p38 MAP kinase activity in a pathway unrelated to the mitogenic response.
Collapse
Affiliation(s)
- Youping Deng
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | | | | |
Collapse
|
18
|
Pandey SK, Yu XX, Watts LM, Michael MD, Sloop KW, Rivard AR, Leedom TA, Manchem VP, Samadzadeh L, McKay RA, Monia BP, Bhanot S. Reduction of low molecular weight protein-tyrosine phosphatase expression improves hyperglycemia and insulin sensitivity in obese mice. J Biol Chem 2007; 282:14291-9. [PMID: 17353188 DOI: 10.1074/jbc.m609626200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To investigate the role of low molecular weight protein-tyrosine phosphatase (LMW-PTP) in glucose metabolism and insulin action, a specific antisense oligonucleotide (ASO) was used to reduce its expression both in vitro and in vivo. Reduction of LMW-PTP expression with the ASO in cultured mouse hepatocytes and in liver and fat tissues of diet-induced obese (DIO) mice and ob/ob mice led to increased phosphorylation and activity of key insulin signaling intermediates, including insulin receptor-beta subunit, phosphatidylinositol 3-kinase, and Akt in response to insulin stimulation. The ASO-treated DIO and ob/ob animals showed improved insulin sensitivity, which was reflected by a lowering of both plasma insulin and glucose levels and improved glucose and insulin tolerance in DIO mice. The treatment did not decrease body weight or increase metabolic rate. These data demonstrate that LMW-PTP is a key negative regulator of insulin action and a potential novel target for the treatment of insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Sanjay K Pandey
- Metabolic Disease Program, Antisense Drug Discovery, Isis Pharmaceuticals, Carlsbad, CA 92008, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Faggioni G, Grassi S, Fillo S, Stefanini L, Bottini E, Lista F. Rapid single tube genotyping of ACP1 by FRET based amplification and dual color melting curve analysis. Mol Cell Probes 2006; 20:27-30. [PMID: 16226867 DOI: 10.1016/j.mcp.2005.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 08/10/2005] [Accepted: 08/10/2005] [Indexed: 10/25/2022]
Abstract
Erythrocyte acid phosphatase (ACP1), also named low molecular weight phosphotyrosine phosphatase (LMW-PTP) is an enzyme involved in signal transduction pathways of tyrosine kinase receptor. The precise physiological role of ACP1 remains to be elucidated, however recent advancements suggest that it may play an important role in the control of cell proliferation. ACP1 is a highly polymorphic enzyme that has been investigated by case-control studies for decades. Initially based on protein electrophoresis, the phenotype of ACP1 is now detected by DNA-based techniques. Here, we report a new rapid single tube genotyping method for ACP1 by FRET based amplification and dual color melting curve analysis. This method does not require a post-procedure amplification process and allows unambiguous genotyping of 30 samples in less than 1 h.
Collapse
Affiliation(s)
- G Faggioni
- Laboratory of Genetics, Army Medical and Veterinary Research Center, Via S. Stefano Rotondo, 4 00184 Rome, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Magherini F, Busti S, Gamberi T, Sacco E, Raugei G, Manao G, Ramponi G, Modesti A, Vanoni M. In Saccharomyces cerevisiae an unbalanced level of tyrosine phosphorylation down-regulates the Ras/PKA pathway. Int J Biochem Cell Biol 2005; 38:444-60. [PMID: 16297653 DOI: 10.1016/j.biocel.2005.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 10/01/2005] [Accepted: 10/07/2005] [Indexed: 02/07/2023]
Abstract
The role of tyrosyl phosphorylation/dephosphorylation in the budding yeast Saccharomyces cerevisiae, whose genome does not encode typical tyrosine kinases, has long remained elusive. Nevertheless, several protein kinases phosphorylating poly(TyrGlu) substrates have been identified. In this work, we use the expression of the low molecular weight tyrosine phosphatase Stp1 from the distantly related yeast Schizosaccharomyces pombe, as a tool to investigate whether an unbalanced level of protein tyrosine phosphorylation affects S. cerevisiae growth and metabolism. We correlate the previously reported down-regulation of the phosphotyrosine level brought about by overexpression of Stp1 with a large number of phenotypes indicative of down-regulation of the Ras pathway. These phenotypes include reduction in both glucose- and acidification-induced GTP loading of the Ras2 protein and cAMP signaling, impaired growth on a non-fermentable carbon source, alteration of cell cycle parameters, delayed recovery from nitrogen starvation, increased heat-shock resistance, attenuated pseudohyphal and invasive growth. Genetic data suggest that Stp1 acts either at, or above, the level of Ras2, possibly on the Ira proteins. Consistently, Stp1 was found to bind to immunoprecipitated Ira2. Since a catalytically inactive mutant form of Stp1 (Stp1(C11S)) effectively binds to Ira2 without producing any effect on yeast physiology, we conclude that down-regulation of the Ras pathway by Stp1 requires its phosphatase activity. In conclusion, our data suggest a possible cross-talk between tyrosine phosphorylation and the Ras pathway in yeast.
Collapse
Affiliation(s)
- Francesca Magherini
- Dipartimento di Scienze Biochimiche, Università degli Studi di Firenze, Firenze, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Shin JH, Yang JW, Le Pecheur M, London J, Hoeger H, Lubec G. Altered expression of hypothetical proteins in hippocampus of transgenic mice overexpressing human Cu/Zn-superoxide dismutase 1. Proteome Sci 2004; 2:2. [PMID: 15193154 PMCID: PMC446209 DOI: 10.1186/1477-5956-2-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Accepted: 06/11/2004] [Indexed: 11/25/2022] Open
Abstract
Background Cu/Zn-superoxide dismutase 1 (SOD1), encoded on chromosome 21, is a key enzyme in the metabolism of reactive oxygen species (ROS) and pathogenetically relevant for several disease states including Down syndrome (DS; trisomy 21). Systematically studying protein expression in human brain and animal models of DS we decided to carry out "protein hunting" for hypothetical proteins, i.e. proteins that have been predicted based upon nucleic sequences only, in a transgenic mouse model overexpressing human SOD1. Results We applied a proteomics approach using two-dimensional electrophoresis (2-DE) with in-gel digestion of spots followed by mass spectrometric (matrix-assisted laser desorption/ionization-time of flight) identification and quantification of hypothetical proteins using specific software. Hippocampi of wild type, hemizygous and homozygous SOD1 transgenic mice (SOD1-TGs) were analysed. We identified fourteen hypothetical proteins in mouse hippocampus. Of these, expression levels of 2610008O03Rik protein (Q9D0K2) and 4632432E04Rik protein (Q9D358) were significantly decreased (P < 0.05 and 0.001) and hypothetical protein (Q99KP6) was significantly increased (P < 0.05) in hippocampus of SOD1-TGs as compared with non-transgenic mice. Conclusions The biological meaning of aberrant expression of these proteins may be impairment of metabolism, signaling and transcription machinery in SOD1-TGs brain that in turn may help to explain deterioration of these systems in DS brain.
Collapse
Affiliation(s)
- Joo-Ho Shin
- Department of Pediatrics, University of Vienna, Vienna, Austria
| | - Jae-Won Yang
- Department of Pediatrics, University of Vienna, Vienna, Austria
| | - Marie Le Pecheur
- Biochemisty Department, Universite Paris 7 Denis - Diderot, Paris, France
| | - Jacqueline London
- Biochemisty Department, Universite Paris 7 Denis - Diderot, Paris, France
| | - Harald Hoeger
- Institute for Animal Breeding, University of Vienna, Vienna, Austria
| | - Gert Lubec
- Department of Pediatrics, University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Lucentini L, Fulle S, Ricciolini C, Lancioni H, Panara F. Low molecular weight phosphotyrosine protein phosphatase from PC12 cells. Purification, some properties and expression during neurogenesis in vitro and in vivo. Int J Biochem Cell Biol 2003; 35:1378-87. [PMID: 12798350 DOI: 10.1016/s1357-2725(03)00099-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The purification and partial characterization of low molecular weight phosphotyrosine phosphatase (LMW-PTP) was reported for the first time in PC12 cells. In addition, the expression levels during neuronal phenotype induction by nerve growth factor (NGF) and during neurogenesis in chick embryos were investigated. LMW-PTP was purified to homogeneity and showed a single band of about 18 kDa with sodium dodecyl sulfate polyacrylamide gel electrophoresis. A native molecular mass of 20.1 kDa was determined by gel filtration on Sephadex G-75 column. The LMW-PTP from PC12 cells displays structural and biochemical characteristics similar to the enzyme isolated for normal tissues. It was specifically immunoprecipitated by an affinity purified antibody directed against the bovine liver enzyme. The enzyme is present in the cytosolic and cytoskeletal cell compartment where is tyrosine phosphorylated. Time course expression of LMW-PTP in PC12 cells was investigated after NGF treatment and showed an increase of about 30% in the basal level of LMW-PTP from 0 to 72 h. These changes were related to the appearance in PC12 cells of neuronal processes and to a decrease in cell proliferation. An increase of the LMW-PTP expression was also observed in vivo during chick embryo neurogenesis from 8-day-old embryos to adult chicks. The protein level, assayed by immunoblotting, increases from 14-day-old embryos to the hatched chicks reaching the adult levels within the first week after birth. These data indicate that the neurogenesis process is accompanied by a physiological increment of LMW-PTP expression in vitro and in vivo.
Collapse
Affiliation(s)
- Livia Lucentini
- Dipartimento di Biologia Cellulare e Molecolare, Università di Perugia, Via Pascoli, I-06123 Perugia, Italy
| | | | | | | | | |
Collapse
|
23
|
Park EK, Warner N, Mood K, Pawson T, Daar IO. Low-molecular-weight protein tyrosine phosphatase is a positive component of the fibroblast growth factor receptor signaling pathway. Mol Cell Biol 2002; 22:3404-14. [PMID: 11971972 PMCID: PMC133800 DOI: 10.1128/mcb.22.10.3404-3414.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Low-molecular-weight protein tyrosine phosphatase (LMW-PTP) has been implicated in the regulation of cell growth and actin rearrangement mediated by several receptor tyrosine kinases, including platelet-derived growth factor and epidermal growth factor. Here we identify the Xenopus laevis homolog of LMW-PTP1 (XLPTP1) as an additional positive regulator in the fibroblast growth factor (FGF) signaling pathway during Xenopus development. XLPTP1 has an expression pattern that displays substantial overlap with FGF receptor 1 (FGFR1) during Xenopus development. Using morpholino antisense technology, we show that inhibition of endogenous XLPTP1 expression dramatically restricts anterior and posterior structure development and inhibits mesoderm formation. In ectodermal explants, loss of XLPTP1 expression dramatically blocks the induction of the early mesoderm gene, Xbrachyury (Xbra), by FGF and partially blocks Xbra induction by Activin. Moreover, FGF-induced activation of mitogen-activated protein (MAP) kinase is also inhibited by XLPTP1 morpholino antisense oligonucleotides; however, introduction of RNA encoding XLPTP1 is able to rescue morphological and biochemical effects of antisense inhibition. Inhibition of FGF-induced MAP kinase activity due to loss of XLPTP1 is also rescued by an active Ras, implying that XLPTP1 may act upstream of or parallel to Ras. Finally, XLPTP1 physically associates only with an activated FGFR1, and this interaction requires the presence of SNT1/FRS-2 (FGFR substrate 2). Although LMW-PTP1 has been shown to participate in other receptor systems, the data presented here also reveal XLPTP1 as a new and important component of the FGF signaling pathway.
Collapse
Affiliation(s)
- Eui Kyun Park
- Regulation of Cell Growth Laboratory, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | | | | | |
Collapse
|
24
|
Lucentini L, Angiolillo A, Varasano E, Panara F. Low‐molecular‐weight phosphotyrosyl protein phosphatase expression in brain of chicken and some lower vertebrates. ACTA ACUST UNITED AC 2002. [DOI: 10.1080/11250000209356445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Modesti A, Bini L, Carraresi L, Magherini F, Liberatori S, Pallini V, Manao G, Pinna LA, Raugei G, Ramponi G. Expression of the small tyrosine phosphatase (Stp1) in Saccharomyces cerevisiae: a study on protein tyrosine phosphorylation. Electrophoresis 2001; 22:576-85. [PMID: 11258771 DOI: 10.1002/1522-2683(200102)22:3<576::aid-elps576>3.0.co;2-p] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Small tyrosine phoshatase 1 (Stp1) is a Schizosaccharomyces pombe low-molecular-mass phosphotyrosine-phosphatase 50% identical to Saccharomyces cerevisiae Ltp1. In order to investigate the role of Stp1 in yeast, a mutant was generated having the characteristic of a dominant negative molecule. Changes in protein tyrosine phosphorylation in S. cerevisiae proteome in response to Stp1 or its dominant negative mutant expression were analyzed by high-resolution two-dimensional (2-D) electrophoresis. The most remarkable result is the modification by phosphorylation on tyrosine of several proteins involved in carbohydrate metabolism. Twelve proteins were identified on the basis of their positions in the anti-phosphotyrosine immunoblot of the 2-D electrophoresis. Ten of these present tyrosyl residues that are within the consensus sequence for protein kinase CK2 (casein kinase-2). These data open the possibility for the identification of Stp1 substrates in yeast and provide hints about the nature of tyrosine phosphorylating agents in yeast and in other organisms where bona fide tyrosine kinases are lacking.
Collapse
Affiliation(s)
- A Modesti
- Dipartimento di Scienze Biochemiche, Università di Firenze, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|