1
|
Herrera VE, Charles TP, Scott TG, Prather KY, Nguyen NT, Sohl CD, Thomas LM, Richter-Addo GB. Insights into Nitrosoalkane Binding to Myoglobin Provided by Crystallography of Wild-Type and Distal Pocket Mutant Derivatives. Biochemistry 2023; 62:1406-1419. [PMID: 37011611 PMCID: PMC10338068 DOI: 10.1021/acs.biochem.2c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Nitrosoalkanes (R-N═O; R = alkyl) are biological intermediates that form from the oxidative metabolism of various amine (RNH2) drugs or from the reduction of nitroorganics (RNO2). RNO compounds bind to and inhibit various heme proteins. However, structural information on the resulting Fe-RNO moieties remains limited. We report the preparation of ferrous wild-type and H64A sw MbII-RNO derivatives (λmax 424 nm; R = Me, Et, Pr, iPr) from the reactions of MbIII-H2O with dithionite and nitroalkanes. The apparent extent of formation of the wt Mb derivatives followed the order MeNO > EtNO > PrNO > iPrNO, whereas the order was the opposite for the H64A derivatives. Ferricyanide oxidation of the MbII-RNO derivatives resulted in the formation of the ferric MbIII-H2O precursors with loss of the RNO ligands. X-ray crystal structures of the wt MbII-RNO derivatives at 1.76-2.0 Å resoln. revealed N-binding of RNO to Fe and the presence of H-bonding interactions between the nitroso O-atoms and distal pocket His64. The nitroso O-atoms pointed in the general direction of the protein exterior, and the hydrophobic R groups pointed toward the protein interior. X-ray crystal structures for the H64A mutant derivatives were determined at 1.74-1.80 Å resoln. An analysis of the distal pocket amino acid surface landscape provided an explanation for the differences in ligand orientations adopted by the EtNO and PrNO ligands in their wt and H64A structures. Our results provide a good baseline for the structural analysis of RNO binding to heme proteins possessing small distal pockets.
Collapse
Affiliation(s)
- Viridiana E. Herrera
- Department of Chemistry and Physics, Ivory V. Nelson Science Center, Lincoln University, Lincoln University, PA, 19352
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA 19104
- Price Family Foundation Institute of Structural Biology and Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73071
| | - Tatyana P. Charles
- Department of Chemistry and Physics, Ivory V. Nelson Science Center, Lincoln University, Lincoln University, PA, 19352
| | - Tiala G. Scott
- Department of Chemistry and Physics, Ivory V. Nelson Science Center, Lincoln University, Lincoln University, PA, 19352
| | - Kiana Y. Prather
- Price Family Foundation Institute of Structural Biology and Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73071
- University of Oklahoma College of Medicine, 800 Stanton L. Young Blvd, Oklahoma City, OK 73117
| | - Nancy T. Nguyen
- Price Family Foundation Institute of Structural Biology and Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73071
- University of Oklahoma College of Medicine, 800 Stanton L. Young Blvd, Oklahoma City, OK 73117
| | - Christal D. Sohl
- Price Family Foundation Institute of Structural Biology and Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73071
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182
| | - Leonard M. Thomas
- Price Family Foundation Institute of Structural Biology and Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73071
| | - George B. Richter-Addo
- Price Family Foundation Institute of Structural Biology and Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73071
| |
Collapse
|
2
|
Abucayon EG, Chu JM, Ayala M, Khade RL, Zhang Y, Richter-Addo GB. Insight into the preferential N-binding versus O-binding of nitrosoarenes to ferrous and ferric heme centers. Dalton Trans 2021; 50:3487-3498. [PMID: 33634802 PMCID: PMC8061117 DOI: 10.1039/d0dt03604h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrosoarenes (ArNOs) are toxic metabolic intermediates that bind to heme proteins to inhibit their functions. Although much of their biological functions involve coordination to the Fe centers of hemes, the factors that determine N-binding or O-binding of these ArNOs have not been determined. We utilize X-ray crystallography and density functional theory (DFT) analyses of new representative ferrous and ferric ArNO compounds to provide the first theoretical insight into preferential N-binding versus O-binding of ArNOs to hemes. Our X-ray structural results favored N-binding of ArNO to ferrous heme centers, and O-binding to ferric hemes. Results of the DFT calculations rationalize this preferential binding on the basis of the energies of associated spin-states, and reveal that the dominant stabilization forces in the observed ferrous N-coordination and ferric O-coordination are dπ-pπ* and dσ-pπ*, respectively. Our results provide, for the first time, an explanation why in situ oxidation of the ferrous-ArNO compound to its ferric state results in the observed subsequent dissociation of the ligand.
Collapse
Affiliation(s)
- Erwin G Abucayon
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA.
| | - Jia-Min Chu
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030, USA.
| | - Megan Ayala
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA.
| | - Rahul L Khade
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030, USA.
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030, USA.
| | - George B Richter-Addo
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA.
| |
Collapse
|
3
|
Powell SM, Thomas LM, Richter-Addo GB. The nitrosoamphetamine metabolite is accommodated in the active site of human hemoglobin: Spectroscopy and crystal structure. J Inorg Biochem 2020; 213:111262. [PMID: 33049600 DOI: 10.1016/j.jinorgbio.2020.111262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 11/17/2022]
Abstract
Amphetamine-based (Amph) drugs are metabolized in humans to their hydroxylamine (AmphNHOH) and nitroso (AmphNO) derivatives. The latter metabolites are known to bind to the Fe centers of cytochrome P450 and other heme enzymes to inhibit their activities. Although these AmphNHOH/AmphNO metabolites are present in vivo, their interactions with the blood protein hemoglobin (Hb) and the muscle protein (Mb) have been largely discounted due to a perception that the relatively small heme active sites of Hb and Mb will not be able to accommodate the large AmphNO group. We report the 2.15 Å resolution X-ray crystal structure of the AmphNO adduct of adult human hemoglobin as the Hb [α-FeIII(H2O)][β-FeII(AmphNO)] derivative. We show that the binding of AmphNO to the β subunit is enabled by an E helix movement and stabilization of ligand binding by H-bonding with the distal His63 residue. We also observe an AmphNHOH group in the Xe2 pocket in close proximity to the α heme site in this derivative. Additionally, UV-vis spectroscopy was used to characterize this and related wt and mutant Mb adducts. Importantly, our X-ray crystal structure of this Hb-nitrosoamphetamine complex represents the first crystal structure of a wild-type heme protein adduct of any amphetamine metabolite. Our results provide a framework for further studies of AmphNHOH/AmphNO interactions with Hb and Mb as viable processes that potentially contribute to the overall biological inorganic chemistry of amphetamine drugs.
Collapse
Affiliation(s)
- Samantha M Powell
- Price Family Foundation Institute of Structural Biology, and Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States of America
| | - Leonard M Thomas
- Price Family Foundation Institute of Structural Biology, and Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States of America
| | - George B Richter-Addo
- Price Family Foundation Institute of Structural Biology, and Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States of America.
| |
Collapse
|
4
|
Chan SC, Wong CY. Recent developments in ruthenium–nitrosoarene chemistry: Unconventional synthetic strategies, new ligand designs, and exploration of ligands redox non-innocence. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
5
|
Wang B, Powell SM, Guan Y, Xu N, Thomas LM, Richter-Addo GB. Nitrosoamphetamine binding to myoglobin and hemoglobin: Crystal structure of the H64A myoglobin-nitrosoamphetamine adduct. Nitric Oxide 2017; 67:26-29. [PMID: 28450187 DOI: 10.1016/j.niox.2017.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/19/2017] [Accepted: 04/23/2017] [Indexed: 01/02/2023]
Abstract
N-hydroxyamphetamine (AmphNHOH) is an oxidative metabolite of amphetamine and methamphetamine. It is known to form inhibitory complexes upon binding to heme proteins. However, its interactions with myoglobin (Mb) and hemoglobin (Hb) have not been reported. We demonstrate that the reactions of AmphNHOH with ferric Mb and Hb generate the respective heme-nitrosoamphetamine derivatives characterized by UV-vis spectroscopy. We have determined the X-ray crystal structure of the H64A Mb-nitrosoamphetamine complex to 1.73 Å resolution. The structure reveals the N-binding of the nitroso-d-amphetamine isomer, with no significant H-bonding interactions between the ligand and the distal pocket amino acid residues.
Collapse
Affiliation(s)
- Bing Wang
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, University of Oklahoma, Norman, OK 73019, United States
| | - Samantha M Powell
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, University of Oklahoma, Norman, OK 73019, United States
| | - Ye Guan
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, University of Oklahoma, Norman, OK 73019, United States
| | - Nan Xu
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, University of Oklahoma, Norman, OK 73019, United States
| | - Leonard M Thomas
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, University of Oklahoma, Norman, OK 73019, United States
| | - George B Richter-Addo
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, University of Oklahoma, Norman, OK 73019, United States.
| |
Collapse
|
6
|
Mahy JP, Maréchal JD, Ricoux R. Various strategies for obtaining oxidative artificial hemoproteins with a catalytic oxidative activity: from "Hemoabzymes" to "Hemozymes"? J PORPHYR PHTHALOCYA 2015. [DOI: 10.1142/s1088424614500813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The design of artificial hemoproteins that could lead to new biocatalysts for selective oxidation reactions using clean oxidants such as O 2 or H 2 O 2 under ecocompatible conditions constitutes a really promising challenge for a wide range of industrial applications. In vivo, such reactions are performed by heme-thiolate proteins, cytochromes P450, that catalyze the oxidation of drugs by dioxygen in the presence of electrons delivered from NADPH by cytochrome P450 reductase. Several strategies were used to design new artificial hemoproteins to mimic these enzymes, that associate synthetic metalloporphyrin derivatives to a protein that is supposed to induce a selectivity in the catalyzed reaction. A first generation of artificial hemoproteins or "hemoabzymes" was obtained by the non-covalent association of synthetic hemes such as N-methyl-mesoporphyrin IX, Fe(III) -α3β-tetra-o-carboxyphenylporphyrin or microperoxidase 8 with monoclonal antibodies raised against these cofactors. The obtained antibody-metalloporphyrin complexes displayed a peroxidase activity and some of them catalyzed the regio-selective nitration of phenols by H 2 O 2/ NO 2 and the stereo-selective oxidation of sulphides by H 2 O 2. A second generation of artificial hemoproteins or "hemozymes", was obtained by the non-covalent association of non-relevant proteins with metalloporphyrin derivatives. Several strategies were used, the most successful of which, named "host-guest" strategy involved the non-covalent incorporation of metalloporphyrin derivatives into easily affordable proteins. The artificial hemoproteins obtained were found to be able to perform efficiently the stereoselective oxidation of organic compounds such as sulphides and alkenes by H 2 O 2 and KHSO 5.
Collapse
Affiliation(s)
- Jean-Pierre Mahy
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182 CNRS, Laboratoire de Chimie, Bioorganique et Bioinorganique, Bât. 420, Université Paris-sud, 91405 Orsay Cedex, France
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdonyola del Vallès, Barcelona, Spain
| | - Rémy Ricoux
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182 CNRS, Laboratoire de Chimie, Bioorganique et Bioinorganique, Bât. 420, Université Paris-sud, 91405 Orsay Cedex, France
| |
Collapse
|
7
|
Mahy JP, Maréchal JD, Ricoux R. From “hemoabzymes” to “hemozymes”: towards new biocatalysts for selective oxidations. Chem Commun (Camb) 2015; 51:2476-94. [DOI: 10.1039/c4cc08169b] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two generations of artificial hemoproteins have been obtained: “hemoabzymes”, by non-covalent association of synthetic hemes with monoclonal antibodies raised against these cofactors and “hemozymes”, by non-covalent association of non-relevant proteins with metalloporphyrin derivatives. A review of the different strategies employed as well as their structural and catalytic properties is presented here.
Collapse
Affiliation(s)
- J.-P. Mahy
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- UMR 8182 CNRS
- Laboratoire de Chimie Bioorganique et Bioinorganique
- 91435 Orsay Cedex
- France
| | - J.-D. Maréchal
- Departament de Química
- Universitat Autònoma de Barcelona
- Barcelona
- Spain
| | - R. Ricoux
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- UMR 8182 CNRS
- Laboratoire de Chimie Bioorganique et Bioinorganique
- 91435 Orsay Cedex
- France
| |
Collapse
|
8
|
El Ichi S, Miodek A, Sauriat-Dorizon H, Mahy JP, Henry C, Marzouki MN, Korri-Youssoufi H. Characterization of structure and activity of garlic peroxidase (POX(1B)). J Biol Inorg Chem 2010; 16:157-72. [PMID: 21042820 DOI: 10.1007/s00775-010-0714-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 10/04/2010] [Indexed: 11/29/2022]
Abstract
Structural characterization and study of the activity of new POX(1B) protein from garlic which has a high peroxidase activity and can be used as a biosensor for the detection of hydrogen peroxide and phenolic compounds were performed and compared with the findings for other heme peroxidases. The structure-function relationship was investigated by analysis of the spectroscopic properties and correlated to the structure determined by a new generation of high-performance hybrid mass spectrometers. The reactivity of the enzyme was analyzed by studies of the redox activity toward various ligands and the reactivity with various substrates. We demonstrated that, in the case of garlic peroxidase, the heme group is pentacoordinated, and has an histidine as a proximal ligand. POX(1B) exhibited a high affinity for hydrogen peroxide as well as various reducing cosubstrates. In addition, high enzyme specificity was demonstrated. The k(cat) and K(M) values were 411 and 400 mM(-1) s(-1) for 3,3',5,5'-tetramethylbenzidine and 2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid), respectively. Furthermore, the reduction of nitro compounds in the presence of POX(1B) was demonstrated by iron(II) nitrosoalkane complex assay. In addition, POX(1B) showed a great potential for application for drug metabolism since its ability to react with 1-nitrohexane in the presence of sodium dithionite was demonstrated by the appearance of a characteristic Soret band at 411 nm. The high catalytic efficiency obtained in the case of the new garlic peroxidase (POX(1B)) is suitable for the monitoring of different analytes and biocatalysis.
Collapse
Affiliation(s)
- Sarra El Ichi
- Equipe de Chimie Bioorganique et Bioinorganique, Institut de Chimie Moléculaire et Matériaux d'Orsay, UMR 8182, CNRS, Université Paris-Sud, Orsay, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Wang Q, Yang Z, Ma M, Chang CK, Xu B. High catalytic activities of artificial peroxidases based on supramolecular hydrogels that contain heme models. Chemistry 2008; 14:5073-8. [PMID: 18399529 DOI: 10.1002/chem.200702010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Composed of a supramolecular hydrogel and a heme model compound, a new type of artificial peroxidase shows high catalytic activity in organic media. The activity of this new type of artificial enzyme is significantly higher than that of the heme model compounds alone. Changes in the distal substituents above the coordinated-metal centers of the model compounds directly modulate catalytic activity. This supramolecular-hydrogel-based artificial enzyme is most active in toluene, reaching about 90% of the nascent activity of horseradish peroxidase. Moreover, this study confirms that the incorporation of the heme models into the nanofibers of gelators accounts for most of the enhancement of catalytic activity.
Collapse
Affiliation(s)
- Qigang Wang
- Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong, China
| | | | | | | | | |
Collapse
|
10
|
Korri-Youssoufi H, Desbenoit N, Ricoux R, Mahy JP, Lecomte S. Elaboration of a new hydrogen peroxide biosensor using microperoxidase 8 (MP8) immobilized on a polypyrrole coated electrode. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2008. [DOI: 10.1016/j.msec.2007.10.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Marques HM. Insights into porphyrin chemistry provided by the microperoxidases, the haempeptides derived from cytochrome c. Dalton Trans 2007:4371-85. [PMID: 17909648 DOI: 10.1039/b710940g] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The water-soluble haem-containing peptides obtained by proteolytic digestion of cytochrome c, the microperoxidases, have been used to explore aspects of the chemistry of iron porphyrins, and as mimics for some reactions catalysed by the haemoproteins, including the reactions catalysed by the peroxidases and the cytochromes P450. The preparation of the microperoxidases, their physical and chemical properties including their electronic structure, the kinetics and thermodynamics of their reactions with ligands, electrochemical studies and examples of their uses as haemoproteins mimics, is reviewed.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
12
|
|
13
|
Ricoux R, Lecomte S, Policar C, Boucher JL, Mahy JP. Spectroscopic investigation of isonitrile complexes of ferric and ferrous microperoxidase 8. J Inorg Biochem 2005; 99:1165-73. [PMID: 15833340 DOI: 10.1016/j.jinorgbio.2005.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Revised: 02/10/2005] [Accepted: 02/12/2005] [Indexed: 11/27/2022]
Abstract
Microperoxidase 8 (MP8) is able to react with alkyl- and aryl-isonitriles (RNC) both in its reduced and oxidized states, to form MP8Fe(II)- and MP8Fe(III)-CNR complexes. The coordination and spin states of these complexes have been fully characterized by UV-visible and resonance Raman spectroscopies. Both MP8Fe(II)- and MP8Fe(III)-CNR complexes are hexacoordinate low-spin complexes, which bear a single RNC ligand on the distal face of the heme and keep the His 18 ligand on its proximal face, trans to the RNC ligand. A comparison of these characteristics with those of the Fe-CNR complexes of other hemoproteins suggests that both MP8Fe(II)- and MP8Fe(III)-CNR complexes present a Fe-C-N linear arrangement. This may be due to the lack of any interactions of the RNC ligand with the octapeptide of MP8 that is mainly located over the opposite face of the heme. Finally the formation of hexacoordinate low-spin MP8Fe(II)- and MP8Fe(III)-CNR complexes constitutes a new example of the reactivity of MP8 with a new class of weak sigma-donating and strong pi-accepting ligands, which adds to its already very rich coordination chemistry.
Collapse
Affiliation(s)
- Rémy Ricoux
- Laboratoire de Chimie Bioorganique et Bioinorganique, UMR 8124, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Bâtiment 420, Université Paris-Sud XI, F-91405 Orsay, France
| | | | | | | | | |
Collapse
|
14
|
Lecomte S, Ricoux R, Mahy JP, Korri-Youssoufi H. Microperoxidase 8 adsorbed on a roughened silver electrode as a monomeric high-spin penta-coordinated species: characterization by SERR spectroscopy and electrochemistry. J Biol Inorg Chem 2004; 9:850-8. [PMID: 15340868 DOI: 10.1007/s00775-004-0586-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Accepted: 07/26/2004] [Indexed: 10/26/2022]
Abstract
Microperoxidase 8 (MP8), a heme octapeptide obtained by hydrolytic digestion of cytochrome c, was adsorbed at the surface of a roughened silver electrode in order to provide a new supported biomimetic system for hemoproteins. A combination of two techniques was used to study its redox and coordination properties: electrochemistry and surface-enhanced resonance Raman (SERR) spectroscopy. This allowed us to show that MP8 could be adsorbed as a monolayer at the surface of the roughened silver electrode, where it could undergo a reversible electron transfer. Under those conditions, a redox potential of -0.4 V vs. SCE (-0.16 V vs. NHE) was measured for MP8, which was almost identical to that reported for N-acetyl-MP8 in aqueous solution. In addition, whereas MP8 appeared to aggregate in solution, and led to a mixture of high-spin penta-coordinated (5cHS) and low-spin hexa-coordinated (6cLS) iron(III) or iron(II) species, it was recovered almost exclusively as a monomeric high-spin penta-coordinated species at the surface of the electrode, both in the reduced and in the oxidized states. This then allowed a free coordination site on the iron, on the distal face of MP8 accessible to ligands. Accordingly, experiments performed in the presence of potassium cyanide demonstrated that MP8 adsorbed on a silver electrode could be ligated by a sixth CN(-) ligand. Thus there is the possibility of binding several kinds of ligands such as O(2) or H(2)O(2), which will open the way to biocatalysis of oxidation reactions at the surface of an electrode, or ligands such as drugs which will lead to the design of new biosensors for molecules of biological interest.
Collapse
Affiliation(s)
- Sophie Lecomte
- LADIR, CNRS/UPMC, 2 rue Henri Dunant, 94320 Thiais, France.
| | | | | | | |
Collapse
|
15
|
Boutros J, Bayachou M. Myoglobin as an Efficient Electrocatalyst for Nitromethane Reduction. Inorg Chem 2004; 43:3847-53. [PMID: 15206865 DOI: 10.1021/ic035173e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Xenobiotic metabolizing heme enzymes are thought to take a crucial part in the activation of a variety of carcinogens, including nitro compounds, through catalytic electron-transfer reactions, especially under anaerobic conditions. Myoglobin (Mb), as a model heme enzyme, is found to act as an efficient electrocatalyst for the reduction of nitromethane in thin surfactant films on pyrolytic graphite electrodes. The electrocatalytic process is characterized by cyclic voltammetry. The Mb-Fe(II)-nitrosomethane complex, a possible intermediate in the catalysis, is characterized spectroscopically in the surfactant film on indium tin oxide electrodes. Bulk electrolysis indicates the formation of mainly methylhydroxylamine as an end aqueous product. A rationale for the catalysis invokes the highly reduced Fe(I) state of myoglobin in surfactant film; the latter engages in efficient inner-sphere electron transfers to the nitro compound coupled to proton transfers.
Collapse
Affiliation(s)
- Jean Boutros
- Department of Chemistry, Cleveland State University, SR 397, Cleveland, OH 44115-2406, USA
| | | |
Collapse
|
16
|
Ricoux R, Lukowska E, Pezzotti F, Mahy JP. New activities of a catalytic antibody with a peroxidase activity. ACTA ACUST UNITED AC 2004; 271:1277-83. [PMID: 15030477 DOI: 10.1111/j.1432-1033.2004.04032.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In order to estimate the size of the cavity remaining around the heme of the 3A3-microperoxidase 8 (MP8) hemoabzyme, the formation of 3A3-MP8-Fe(II)-nitrosoalkane complexes upon oxidation of N-monosubstituted hydroxylamines was examined. This constituted a new reaction for hemoabzymes and is the first example of fully characterized Fe(II)-metabolite complexes of antibody-porphyrin. Also, via a comparison of the reactions with N-substituted hydroxylamines of various size and hydrophobicity, antibody 3A3 was confirmed to bring about a partial steric hindrance on the distal face of MP8. Subsequently, the influence of the antibody on the stereoselectivity of the S-oxidation of sulfides was examined. Our results showed that MP8 alone and the antibody-MP8 complex catalyze the oxidation of thioanisole by H(2)O(2) and tert-butyl hydroperoxide, following a peroxidase-like two-step oxygen-transfer mechanism involving a radical-cation intermediate. The best system, associating H(2)O(2) as oxidant and 3A3-MP8 as a catalyst, in the presence of 5% tert-butyl alcohol, led to the stereoselective S-oxidation of thioanisole with a 45% enantiomeric excess in favour of the R isomer. This constitutes the highest enantiomeric excess reported to date for the oxidation of sulfides catalyzed by hemoabzymes.
Collapse
Affiliation(s)
- Rémy Ricoux
- Laboratoire de Chimie Bioorganique et Bioinorganique, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Sud XI, Orsay, France
| | | | | | | |
Collapse
|
17
|
Suruga K, Murakami K, Taniyama Y, Hama T, Chida H, Satoh T, Yamada S, Hakamata W, Kawachi R, Isogai Y, Nishio T, Oku T. A novel microperoxidase activity: methyl viologen-linked nitrite reducing activity of microperoxidase. Biochem Biophys Res Commun 2004; 315:815-22. [PMID: 14985085 DOI: 10.1016/j.bbrc.2004.01.133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Indexed: 11/22/2022]
Abstract
To investigate the nitrite reducing activity of microperoxidases (mps) in the presence of methyl viologen and dithionite, the fragments C14-K22 (mp9), V11-L32 (mp22), and G1-M65 (mp65) containing heme were prepared by enzymatic hydrolysis of commercially equine heart cytochrome c (Cyt c), in which His is axially coordinated to heme iron, and acts as its fifth ligand. The nitrite reducing activity of mps was measured under anaerobic condition, and the nitrite reducing activity of mps increased with the cutting of the peptide chain. The activity of the shortest nonapeptide mp9 was approximately 120-fold that of Cyt c (104 amino acid residues) and 3.2-fold that of nitrite reductase (EC 1.7.7.1) from Escherichia coli. In the nitrite reduction by mp, nitrite was completely reduced to ammonia. We presumed that ferrous mps reduced NO2- to NO by donating one electron, the NO was completely reduced to NH4+ under anaerobic condition via ferrous-NO complexes as a reaction intermediate using visible spectra and ESR spectra, and this overall reaction was a 6-electron and 8-proton reduction. Sepharose-immobilized mp9 had a nitrite reducing activity similar to that of mp9 in solution, and the resin retained the activity after five uses and even 1-year storage. The mp will be able to use as a substitute for nitrite reductase.
Collapse
Affiliation(s)
- Kohei Suruga
- Department of Biological Chemistry, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Copeland DM, West AH, Richter-Addo GB. Crystal structures of ferrous horse heart myoglobin complexed with nitric oxide and nitrosoethane. Proteins 2003; 53:182-92. [PMID: 14517970 DOI: 10.1002/prot.10495] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The interactions of nitric oxide (NO) and organic nitroso compounds with heme proteins are biologically important, and adduct formation between NO-containing compounds and myoglobin (Mb) have served as prototypical systems for studies of these interactions. We have prepared crystals of horse heart (hh) MbNO from nitrosylation of aqua-metMb crystals, and we have determined the crystal structure of hh MbNO at a resolution of 1.9 A. The Fe-N-O angle of 147 degrees in hh MbNO is larger than the corresponding 112 degrees angle previously determined from the crystal structure of sperm whale MbNO (Brucker et al., Proteins 1998;30:352-356) but is similar to the 150 degrees angle determined from a MS XAFS study of a frozen solution of hh MbNO (Rich et al., J Am Chem Soc 1998;120:10827-10836). The Fe-N(O) bond length of 2.0 A (this work) is longer than the 1.75 A distance determined from the XAFS study and suggests distal pocket influences on FeNO geometry. The nitrosyl N atom is located 3.0 A from the imidazole N(epsilon) atom of the distal His64 residue, suggesting electrostatic stabilization of the FeNO moiety by His64. The crystal structure of the nitrosoethane adduct of ferrous hh Mb was determined at a resolution of 1.7 A. The nitroso O atom of the EtNO ligand is located 2.7 A from the imidazole N(epsilon) atom of His64, suggesting a hydrogen bond interaction between these groups. To the best of our knowledge, the crystal structure of hh Mb(EtNO) is the first such determination of a nitrosoalkane adduct of a heme protein.
Collapse
Affiliation(s)
- Daniel M Copeland
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | | | | |
Collapse
|
19
|
Ricoux R, Sauriat-Dorizon H, Girgenti E, Blanchard D, Mahy JP. Hemoabzymes: towards new biocatalysts for selective oxidations. J Immunol Methods 2002; 269:39-57. [PMID: 12379351 DOI: 10.1016/s0022-1759(02)00223-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Catalytic antibodies with a metalloporphyrin cofactor or <<hemoabzymes>>, used as models for hemoproteins like peroxidases and cytochrome P450, represent a promising route to catalysts tailored for selective oxidation reactions. A brief overview of the literature shows that until now, the first strategy for obtaining such artificial hemoproteins has been to produce antiporphyrin antibodies, raised against various free-base, N-substituted Sn-, Pd- or Fe-porphyrins. Five of them exhibited, in the presence of the corresponding Fe-porphyrin cofactor, a significant peroxidase activity, with k(cat)/K(m) values of 3.7 x 10(3) - 2.9 x 10(5) M(-1) min(-1). This value remained, however, low when compared to that of peroxidases. This strategy has also led to a few models of cytochrome P450. The best of them, raised against a water-soluble tin(IV) porphyrin containing an axial alpha-naphtoxy ligand, was reported to catalyze the stereoselective oxidation of aromatic sulfides by iodosyl benzene using a Ru(II)-porphyrin cofactor. The relatively low efficiency of the porphyrin-antibody complexes is probably due, at least in part, to the fact that no proximal ligand of Fe has been induced in those antibodies. We then proposed to use, as a hapten, microperoxidase 8 (MP8), a heme octapeptide in which the imidazole side chain of histidine 18 acts as a proximal ligand of the iron atom. This led to the production of seven antibodies recognizing MP8, the best of them, 3A3, binding it with an apparent binding constant of 10(-7) M. The corresponding 3A3-MP8 complex was found to have a good peroxidase activity characterized by a k(cat)/K(m) value of 2 x 10(6) M(-1) min(-1), which constitutes the best one ever reported for an antibody-porphyrin complex. Active site topology studies suggest that the binding of MP8 occurs through interactions of its carboxylate substituents with amino acids of the antibody and that the protein brings a partial steric hindrance of the distal face of the heme of MP8. Consequently, the use of the 3A3-MP8 complexes for the selective oxidation of substrates, such as sulfides, alkanes and alkenes will be undertaken in the future.
Collapse
Affiliation(s)
- Rémy Ricoux
- Laboratoire de Chimie Bioorganique et Bioinorganique, FRE 2127 CNRS, Institut de Chimie Moléculaire d'Orsay, Bâtiment 420, Université de Paris-sud XI, 91405 Cedex, Orsay, France
| | | | | | | | | |
Collapse
|
20
|
Lee J, Chen L, West AH, Richter-Addo GB. Interactions of organic nitroso compounds with metals. Chem Rev 2002; 102:1019-66. [PMID: 11942786 DOI: 10.1021/cr0000731] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jonghyuk Lee
- Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Norman, OK 73019, USA
| | | | | | | |
Collapse
|
21
|
Affiliation(s)
- A Lombardi
- Department of Chemistry, University of Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cynthia 45, I-80126 Napoli, Italy.
| | | | | |
Collapse
|
22
|
Ricoux R, Boucher JL, Mansuy D, Mahy JP. Microperoxidase 8 catalyzed nitration of phenol by nitrogen dioxide radicals. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3783-8. [PMID: 11432746 DOI: 10.1046/j.1432-1327.2001.02288.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microperoxidase 8 (MP8) is a heme octapeptide obtained by hydrolytic digestion of horse heart cytochrome c. At pH below 9, the heme iron is axially coordinated to the imidazole side chain of His18 and to a water molecule. Replacement of this weak ligand by H2O2 allows the formation of high-valent iron-oxo species which are responsible for both peroxidase-like and cytochrome P450-like activities of MP8. This paper shows that MP8 is able to catalyze the nitration of phenol by nitrite. The reaction requires H2O2 and is inhibited by ligands having a high affinity for the iron, catalase and radical scavengers. This suggests that the nitrating species could be NO2* radicals formed by the oxidation of nitrite by high-valent iron-oxo species. This new activity of MP8 opens a new access to nitro-aromatic compounds under mild conditions and validates the use of this minienzyme to mimick heme peroxidases, especially in the reactions of NO-derived species with biomolecules under oxidative stress conditions.
Collapse
Affiliation(s)
- R Ricoux
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université Paris V, France
| | | | | | | |
Collapse
|