1
|
Wu Y, Xu S, Ding F, Zhang W, Liu H. A Type of Ferrocene-Based Derivative FE-1 COF Material for Glycopeptide and Phosphopeptide Selective Enrichment. J Funct Biomater 2024; 15:185. [PMID: 39057306 PMCID: PMC11277842 DOI: 10.3390/jfb15070185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
In this work, a new type of FE-1 COF material is prepared by a reversible imine condensation reaction with diaminoferrocene and diaminodiformaldehyde as materials. The material is connected by imine bonds to form a COF skeleton, and the presence of plenty of nitrogen-containing groups gives the material good hydrophilicity; the presence of metal Fe ions provides the material application potential in the enrichment of phosphopeptides. According to the different binding abilities of N-glycopeptide and phosphopeptide on FE-1 COF, it can simultaneously enrich N-glycopeptide and phosphopeptide through different elution conditions to realize its controllable and selective enrichment. Using the above characteristics, 18 phosphopeptides were detected from α-casein hydrolysate, 8 phosphopeptides were detected from β-casein hydrolysate and 21 glycopeptides were detected from IgG hydrolysate. Finally, the gradual elution strategy was used; 16 phosphopeptides and 19 glycopeptides were detected from the α-casein hydrolysate and IgG hydrolysate. The corresponding glycopeptides and phosphopeptides were identified from the human serum. It proves that the FE-1 COF material has a good enrichment effect on phosphopeptides and glycopeptides.
Collapse
Affiliation(s)
- Yu Wu
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; (Y.W.); (S.X.)
| | - Sen Xu
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; (Y.W.); (S.X.)
| | - Fengjuan Ding
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chempistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weibing Zhang
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; (Y.W.); (S.X.)
| | - Haiyan Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chempistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Reddi KK, Zhang W, Shahrabi-Farahani S, Anderson KM, Liu M, Kakhniashvili D, Wang X, Zhang YH. Tetraspanin CD82 Correlates with and May Regulate S100A7 Expression in Oral Cancer. Int J Mol Sci 2024; 25:2659. [PMID: 38473906 PMCID: PMC10932236 DOI: 10.3390/ijms25052659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Many metastatic cancers with poor prognoses correlate to downregulated CD82, but exceptions exist. Understanding the context of this correlation is essential to CD82 as a prognostic biomarker and therapeutic target. Oral squamous cell carcinoma (OSCC) constitutes over 90% of oral cancer. We aimed to uncover the function and mechanism of CD82 in OSCC. We investigated CD82 in human OSCC cell lines, tissues, and healthy controls using the CRISPR-Cas9 gene knockout, transcriptomics, proteomics, etc. CD82 expression is elevated in CAL 27 cells. Knockout CD82 altered over 300 genes and proteins and inhibited cell migration. Furthermore, CD82 expression correlates with S100 proteins in CAL 27, CD82KO, SCC-25, and S-G cells and some OSCC tissues. The 37-50 kDa CD82 protein in CAL 27 cells is upregulated, glycosylated, and truncated. CD82 correlates with S100 proteins and may regulate their expression and cell migration. The truncated CD82 explains the invasive metastasis and poor outcome of the CAL 27 donor. OSCC with upregulated truncated CD82 and S100A7 may represent a distinct subtype with a poor prognosis. Differing alternatives from wild-type CD82 may elucidate the contradictory functions and pave the way for CD82 as a prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Kiran Kumar Reddi
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, 875 Union Ave, Memphis, TN 38163, USA
| | - Weiqiang Zhang
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- USDA-ARS, Pollinator Health in Southern Crop Ecosystem Research Unit, 141 Experiment Station Road, P.O. Box 346, Stoneville, MS 38776, USA
| | - Shokoufeh Shahrabi-Farahani
- Department of Diagnostic Sciences, College of Dentistry, University of Tennessee Health Science Center, 875 Union Ave, Memphis, TN 38163, USA
| | - Kenneth Mark Anderson
- Department of Diagnostic Sciences, College of Dentistry, University of Tennessee Health Science Center, 875 Union Ave, Memphis, TN 38163, USA
| | - Mingyue Liu
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, 875 Union Ave, Memphis, TN 38163, USA
| | - David Kakhniashvili
- The Proteomics & Metabolomics Core Facility, University of Tennessee Health Science Center, 71 S. Manassas, Suite 110, Memphis, TN 38163, USA
| | - Xusheng Wang
- Department of Genetics, Genomics & Informatics, University of Tennessee Health Science Center, 71 S. Manassas, Room 410H, Memphis, TN 38163, USA
| | - Yanhui H. Zhang
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, 875 Union Ave, Memphis, TN 38163, USA
| |
Collapse
|
3
|
Ruangsuwast A, Smout MJ, Brindley PJ, Loukas A, Laha T, Chaiyadet S. Tetraspanins from the liver fluke Opisthorchis viverrini stimulate cholangiocyte migration and inflammatory cytokine production. Folia Parasitol (Praha) 2023; 70:2023.017. [PMID: 37752807 DOI: 10.14411/fp.2023.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/26/2023] [Indexed: 09/28/2023]
Abstract
The liver fluke Opisthorchis viverrini (Poirier, 1886) (Digenea) secretes extracellular vesicles (EVs) bearing CD63-like tetraspanins on their surface. Fluke EVs are actively internalised by host cholangiocytes in the bile ducts, where they drive pathology and promote neoplasia through induction of cellular proliferation and secretion of inflammatory cytokines. We investigated the effects of tetraspanins of the CD63 superfamily by co-culturing recombinant forms of the large extracellular loop (LEL) of O. viverrini tetraspanin-2 (rLEL-Ov-TSP-2) and tetraspanin-3 (rLEL-Ov-TSP-3) with non-cancerous human bile duct (H69) and cholangiocarcinoma (CCA, M213) cell lines. The results showed that cell lines co-cultured with excretory/secretory products from adult O. viverrini (Ov-ES) underwent significantly increased cell proliferation at 48 hours but not 24 hours compared to untreated control cells (P < 0.05), whereas rLEL-Ov-TSP-3 co-culture resulted in significantly increased cell proliferation at both 24 hours (P < 0.05) and 48 hours (P < 0.01) time points. In like fashion, H69 cholangiocytes co-cultured with both Ov-ES and rLEL-Ov-TSP-3 underwent significantly elevated Il-6 and Il-8 gene expression for at least one of the time points assessed. Finally, both rLEL-Ov-TSP-2 and rLEL-Ov-TSP-3 significantly enhanced migration of both M213 and H69 cell lines. These findings indicated that O. viverrini CD63 family tetraspanins can promote a cancerous microenvironment by enhancing innate immune responses and migration of biliary epithelial cells.
Collapse
Affiliation(s)
- Apisit Ruangsuwast
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Michael J Smout
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, D.C., USA
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sujittra Chaiyadet
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand *Address for correspondence: Sujittra Chaiyadet, Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand. E-mail
| |
Collapse
|
4
|
Ruangsuwast A, Smout MJ, Brindley PJ, Loukas A, Laha T, Chaiyadet S. Tetraspanins from Opisthorchis viverrini stimulate cholangiocyte migration and inflammatory cytokine production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544604. [PMID: 37398394 PMCID: PMC10312640 DOI: 10.1101/2023.06.12.544604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The liver fluke Opsithorchis viverrini secretes extracellular vesicles (EVs) bearing CD63-like tetraspanins on their surface. Fluke EVs are actively internalized by host cholangiocytes in the bile ducts, where they drive pathology and promote neoplasia through induction of cellular proliferation and secretion of inflammatory cytokines. We investigated the effects of tetraspanins of the CD63 superfamily by co-culturing recombinant forms of the large extracellular loop (LEL) of O. viverrini tetraspanin-2 (rLEL- Ov -TSP-2) and tetraspanin-3 (rLEL- Ov -TSP-3) with non-cancerous human bile duct (H69) and cholangiocarcinoma (CCA, M213) cell lines. The results showed that cell lines co-cultured with excretory/secretory products from adult O. viverrini ( Ov- ES) underwent significantly increased cell proliferation at 48 hours but not 24 hours compared to untreated control cells ( P <0.05), whereas rLEL- Ov -TSP-3 co-culture resulted in significantly increased cell proliferation at both 24 hr ( P <0.05) and 48 hr ( P <0.01) time points. In like fashion, H69 cholangiocytes co-cultured with both Ov -ES and rLEL- Ov -TSP-3 underwent significantly elevated Il-6 and Il-8 gene expression for at least one of the time points assessed. Finally, both rLEL- Ov -TSP-and rLEL- Ov -TSP-3 significantly enhanced migration of both M213 and H69 cell lines. These findings indicated that O. viverrini CD63 family tetraspanins can promote a cancerous microenvironment by enhancing innate immune responses and migration of biliary epithelial cells.
Collapse
Affiliation(s)
- Apisit Ruangsuwast
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Michael J. Smout
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, 4878, Australia
| | - Paul J. Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, D.C. 20037, USA
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, 4878, Australia
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sujittra Chaiyadet
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand
| |
Collapse
|
5
|
Yang J, Guo F, Chin HS, Chen GB, Ang CH, Lin Q, Hong W, Fu NY. Sequential genome-wide CRISPR-Cas9 screens identify genes regulating cell-surface expression of tetraspanins. Cell Rep 2023; 42:112065. [PMID: 36724073 DOI: 10.1016/j.celrep.2023.112065] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/16/2022] [Accepted: 01/18/2023] [Indexed: 02/02/2023] Open
Abstract
Tetraspanins, a superfamily of membrane proteins, mediate diverse biological processes through tetraspanin-enriched microdomains in the plasma membrane. However, how their cell-surface presentation is controlled remains unclear. To identify the regulators of tetraspanin trafficking, we conduct sequential genome-wide loss-of-function CRISPR-Cas9 screens based on cell-surface expression of a tetraspanin member, TSPAN8. Several genes potentially involved in endoplasmic reticulum (ER) targeting, different biological processes in the Golgi apparatus, and protein trafficking are identified and functionally validated. Importantly, we find that biantennary N-glycans generated by MGAT1/2, but not more complex glycan structures, are important for cell-surface tetraspanin expression. Moreover, we unravel that SPPL3, a Golgi intramembrane-cleaving protease reported previously to act as a sheddase of multiple glycan-modifying enzymes, controls cell-surface tetraspanin expression through a mechanism associated with lacto-series glycolipid biosynthesis. Our study provides critical insights into the molecular regulation of cell-surface presentation of tetraspanins with implications for strategies to manipulate their functions, including cancer cell invasion.
Collapse
Affiliation(s)
- Jicheng Yang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Fusheng Guo
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Hui San Chin
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Gao Bin Chen
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Chow Hiang Ang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Nai Yang Fu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore; Department of Physiology, National University of Singapore, Singapore 117593, Singapore; Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
6
|
Zhu L, Chen Y, Du H, Cong Y, Yan W, Ma K, Huang X. N-glycosylation of CD82 at Asn157 is required for suppressing migration and invasion by reversing EMT via Wnt/β-catenin pathway in colon cancer. Biochem Biophys Res Commun 2022; 629:121-127. [DOI: 10.1016/j.bbrc.2022.08.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/02/2022]
|
7
|
Santos RCM, Lucena DMS, Loponte HFBR, Alisson-Silva F, Dias WB, Lins RD, Todeschini AR. GM2/GM3 controls the organizational status of CD82/Met microdomains: further studies in GM2/GM3 complexation. Glycoconj J 2022; 39:653-661. [PMID: 35536494 DOI: 10.1007/s10719-022-10061-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/01/2022]
Abstract
At cell surface gangliosides might associate with signal transducers proteins, grown factor receptors, integrins, small G-proteins and tetraspanins establishing microdomains, which play important role in cell adhesion, cell activation, motility, and growth. Previously, we reported that GM2 and GM3 form a heterodimer that interacts with the tetraspanin CD82, controlling epithelial cell mobility by inhibiting integrin-hepatocyte growth factor-induced cMet tyrosine kinase signaling. By using molecular dynamics simulations to study the molecular basis of GM2/GM3 interaction we demonstrate, here, that intracellular levels of Ca2+ mediate GM2/GM3 complexation via electrostatic interaction with their carboxyl groups, while hydrogen bonds between the ceramide groups likely aid stabilizing the complex. The presence of GM2/GM3 complex alters localization of CD82 on cell surface and therefore downstream signalization. These data contribute for the knowledge of how glycosylation may control signal transduction and phenotypic changes.
Collapse
Affiliation(s)
- Ronan C M Santos
- Carlos Chagas Filho Biophysics' Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniela M S Lucena
- Carlos Chagas Filho Biophysics' Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hector F B R Loponte
- Carlos Chagas Filho Biophysics' Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Frederico Alisson-Silva
- Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Wagner B Dias
- Carlos Chagas Filho Biophysics' Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto D Lins
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, 50740-465, Brazil
| | - Adriane R Todeschini
- Carlos Chagas Filho Biophysics' Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Roupakia E, Chavdoula E, Karpathiou G, Vatsellas G, Chatzopoulos D, Mela A, Gillette JM, Kriegsmann K, Kriegsmann M, Batistatou A, Goussia A, Marcu KB, Karteris E, Klinakis A, Kolettas E. Canonical NF-κB Promotes Lung Epithelial Cell Tumour Growth by Downregulating the Metastasis Suppressor CD82 and Enhancing Epithelial-to-Mesenchymal Cell Transition. Cancers (Basel) 2021; 13:cancers13174302. [PMID: 34503110 PMCID: PMC8428346 DOI: 10.3390/cancers13174302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Canonical NF-κB signalling pathway acts as a tumour promoter in several types of cancer including non-small cell lung cancer (NSCLC), but the mechanism(s) by which it contributes to NSCLC is still under investigation. We show here that NF-κB RelA/p65 is required for the tumour growth of human NSCLC cells grown in vivo as xenografts in immune-compromised mice. RNA-seq transcriptome profile analysis identified the metastasis suppressor CD82/KAI1/TSPAN27 as a canonical NF-κB target. Loss of CD82 correlated with malignancy. RelA/p65 stimulates cell migration and epithelial-to-mesenchymal cell transition (EMT), mediated, in part, by CD82/KAI1, through integrin-mediated signalling, thus, identifying a mechanism mediating NF-κB RelA/p65 lung tumour promoting function. Abstract Background: The development of non-small cell lung cancer (NSCLC) involves the progressive accumulation of genetic and epigenetic changes. These include somatic oncogenic KRAS and EGFR mutations and inactivating TP53 tumour suppressor mutations, leading to activation of canonical NF-κB. However, the mechanism(s) by which canonical NF-κB contributes to NSCLC is still under investigation. Methods: Human NSCLC cells were used to knock-down RelA/p65 (RelA/p65KD) and investigate its impact on cell growth, and its mechanism of action by employing RNA-seq analysis, qPCR, immunoblotting, immunohistochemistry, immunofluorescence and functional assays. Results: RelA/p65KD reduced the proliferation and tumour growth of human NSCLC cells grown in vivo as xenografts in immune-compromised mice. RNA-seq analysis identified canonical NF-κB targets mediating its tumour promoting function. RelA/p65KD resulted in the upregulation of the metastasis suppressor CD82/KAI1/TSPAN27 and downregulation of the proto-oncogene ROS1, and LGR6 involved in Wnt/β-catenin signalling. Immunohistochemical and bioinformatics analysis of human NSCLC samples showed that CD82 loss correlated with malignancy. RelA/p65KD suppressed cell migration and epithelial-to-mesenchymal cell transition (EMT), mediated, in part, by CD82/KAI1, through integrin-mediated signalling involving the mitogenic ERK, Akt1 and Rac1 proteins. Conclusions: Canonical NF-κB signalling promotes NSCLC, in part, by downregulating the metastasis suppressor CD82/KAI1 which inhibits cell migration, EMT and tumour growth.
Collapse
Affiliation(s)
- Eugenia Roupakia
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, Institute of Biosciences, University Research Centre, University of Ioannina, University Campus, 45110 Ioannina, Greece;
- Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, University of Ioannina Campus, 45115 Ioannina, Greece;
| | - Evangelia Chavdoula
- Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, University of Ioannina Campus, 45115 Ioannina, Greece;
- Biomedical Research Foundation, Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, 11527 Athens, Greece; (G.V.); (D.C.); (K.B.M.); (A.K.)
| | - Georgia Karpathiou
- Laboratory of Pathology, School of Medicine, Faculty of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (G.K.); (A.B.); (A.G.)
| | - Giannis Vatsellas
- Biomedical Research Foundation, Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, 11527 Athens, Greece; (G.V.); (D.C.); (K.B.M.); (A.K.)
| | - Dimitrios Chatzopoulos
- Biomedical Research Foundation, Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, 11527 Athens, Greece; (G.V.); (D.C.); (K.B.M.); (A.K.)
| | - Angeliki Mela
- Department of Pathology and Cell Biology Columbia University Medical Center, Irving Comprehensive Cancer Research Center, Columbia University, New York, NY 10032, USA;
| | - Jennifer M. Gillette
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Katharina Kriegsmann
- Department of Internal Medicine V, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Mark Kriegsmann
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Anna Batistatou
- Laboratory of Pathology, School of Medicine, Faculty of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (G.K.); (A.B.); (A.G.)
| | - Anna Goussia
- Laboratory of Pathology, School of Medicine, Faculty of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (G.K.); (A.B.); (A.G.)
| | - Kenneth B. Marcu
- Biomedical Research Foundation, Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, 11527 Athens, Greece; (G.V.); (D.C.); (K.B.M.); (A.K.)
- Department of Biochemistry and Cell Biology, Microbiology and Pathology, Stony Brook University, New York, NY 11794, USA
| | - Emmanouil Karteris
- Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex, London UB8 PH, UK;
| | - Apostolos Klinakis
- Biomedical Research Foundation, Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, 11527 Athens, Greece; (G.V.); (D.C.); (K.B.M.); (A.K.)
| | - Evangelos Kolettas
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, Institute of Biosciences, University Research Centre, University of Ioannina, University Campus, 45110 Ioannina, Greece;
- Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, University of Ioannina Campus, 45115 Ioannina, Greece;
- Correspondence: ; Tel.: +30-26510-07578; Fax: +30-26510-07863
| |
Collapse
|
9
|
CD82 and Gangliosides Tune CD81 Membrane Behavior. Int J Mol Sci 2021; 22:ijms22168459. [PMID: 34445169 PMCID: PMC8395132 DOI: 10.3390/ijms22168459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/26/2022] Open
Abstract
Tetraspanins are a family of transmembrane proteins that form a network of protein–protein interactions within the plasma membrane. Within this network, tetraspanin are thought to control the lateral segregation of their partners at the plasma membrane through mechanisms involving specific lipids. Here, we used a single molecule tracking approach to study the membrane behavior of tetraspanins in mammary epithelial cells and demonstrate that despite a common overall behavior, each tetraspanin (CD9, CD81 and CD82) has a specific signature in terms of dynamics. Furthermore, we demonstrated that tetraspanin dynamics on the cell surface are dependent on gangliosides. More specifically, we found that CD82 expression increases the dynamics of CD81 and alters its localization at the plasma membrane, this has no effect on the behavior of CD9. Our results provide new information on the ability of CD82 and gangliosides to differentially modulate the dynamics and organization of tetraspanins at the plasma membrane and highlight that its lipid and protein composition is involved in the dynamical architecture of the tetraspanin web. We predict that CD82 may act as a regulator of the lateral segregation of specific tetraspanins at the plasma membrane while gangliosides could play a crucial role in establishing tetraspanin-enriched areas.
Collapse
|
10
|
Li J, Xu J, Li L, Ianni A, Kumari P, Liu S, Sun P, Braun T, Tan X, Xiang R, Yue S. MGAT3-mediated glycosylation of tetraspanin CD82 at asparagine 157 suppresses ovarian cancer metastasis by inhibiting the integrin signaling pathway. Am J Cancer Res 2020; 10:6467-6482. [PMID: 32483464 PMCID: PMC7255015 DOI: 10.7150/thno.43865] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Tetraspanins constitute a family of transmembrane spanning proteins that function mainly by organizing the plasma membrane into micro-domains. CD82, a member of tetraspanins, is a potent inhibitor of cancer metastasis in numerous malignancies. CD82 is a highly glycosylated protein, however, it is still unknown whether and how this post-translational modification affects CD82 function and cancer metastasis. Methods: The glycosylation of CD82 profiles are checked in the paired human ovarian primary and metastatic cancer tissues. The functional studies on the various glycosylation sites of CD82 are performed in vitro and in vivo. Results: We demonstrate that CD82 glycosylation at Asn157 is necessary for CD82-mediated inhibition of ovarian cancer cells migration and metastasis in vitro and in vivo. Mechanistically, we discover that CD82 glycosylation is pivotal to disrupt integrin α5β1-mediated cellular adhesion to the abundant extracellular matrix protein fibronectin. Thereby the glycosylated CD82 inhibits the integrin signaling pathway responsible for the induction of the cytoskeleton rearrangements required for cellular migration. Furthermore, we reveal that the glycosyltransferase MGAT3 is responsible for CD82 glycosylation in ovarian cancer cells. Metastatic ovarian cancers express reduced levels of MGAT3 which in turn may result in impaired CD82 glycosylation. Conclusions: Our work implicates a pathway for ovarian cancers metastasis regulation via MGAT3 mediated glycosylation of tetraspanin CD82 at asparagine 157.
Collapse
|
11
|
Huang C, Hays FA, Tomasek JJ, Benyajati S, Zhang XA. Tetraspanin CD82 interaction with cholesterol promotes extracellular vesicle-mediated release of ezrin to inhibit tumour cell movement. J Extracell Vesicles 2019; 9:1692417. [PMID: 31807237 PMCID: PMC6882436 DOI: 10.1080/20013078.2019.1692417] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/16/2019] [Accepted: 10/26/2019] [Indexed: 01/04/2023] Open
Abstract
Tumour metastasis suppressor KAI1/CD82 inhibits tumour cell movement. As a transmembrane protein, tetraspanin CD82 bridges the interactions between membrane microdomains of lipid rafts and tetraspanin-enriched microdomains (TEMs). In this study, we found that CD82 and other tetraspanins contain cholesterol recognition/interaction amino-acid consensus (CRAC) sequences in their transmembrane domains and revealed that cholesterol binding of CD82 determines its interaction with lipid rafts but not with TEMs. Functionally, CD82 needs cholesterol binding to inhibit solitary migration, collective migration, invasion and infiltrative outgrowth of tumour cells. Importantly, CD82–cholesterol/–lipid raft interaction not only promotes extracellular release of lipid raft components such as cholesterol and gangliosides but also facilitates extracellular vesicle (EV)–mediated release of ezrin–radixin–moesin (ERM) protein Ezrin. Since ERM proteins link actin cytoskeleton to the plasma membrane, we show for the first time that cell movement can be regulated by EV-mediated releases, which disengage the plasma membrane from cytoskeleton and then impair cell movement. Our findings also conceptualize that interactions between membrane domains, in this case converge of lipid rafts and TEMs by CD82, can change cell movement. Moreover, CD82 coalescences with both lipid rafts and TEMs are essential for its inhibition of tumour cell movement and for its enhancement of EV release. Finally, our study underpins that tetraspanins as a superfamily of functionally versatile molecules are cholesterol-binding proteins. Abbreviations:Ab: antibody; CBM: cholesterol-binding motif; CCM: cholesterol consensus motif; CRAC/CARC: cholesterol recognition or interaction amino-acid consensus; CTxB: cholera toxin B subunit; ECM: extracellular matrix; ERM: ezrin, radixin and moesin; EV: extracellular vesicles; FBS: foetal bovine serum; mAb: monoclonal antibody; MST: microscale thermophoresis; pAb: polyclonal antibody; and TEM: tetraspanin-enriched microdomain
Collapse
Affiliation(s)
- Chao Huang
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Franklin A Hays
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - James J Tomasek
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Siribhinya Benyajati
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xin A Zhang
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
12
|
Kolasińska E, Janik ME, Lityńska A, Przybyło M. Contribution of sialic acids to integrin α5β1 functioning in melanoma cells. Adv Med Sci 2019; 64:267-273. [PMID: 30844664 DOI: 10.1016/j.advms.2019.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 11/13/2018] [Accepted: 02/19/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE To establish the relationship between sialylation of integrin α5β1 and possible alteration in the function of α5β1 receptor in melanoma cells. MATERIALS AND METHODS Integrin α5β1 was isolated from primary WM115 (RGP/VGP-like phenotype) and metastatic WM266-4 (lymph node metastasis) cells via affinity chromatography. Integrin α5β1 sialylation and the shift in relative masses of the enzymatically desialylated subunits were confirmed by confocal microscopy and SDS-PAGE, respectively. The ELISA assay was performed to evaluate sialic acid (SA) influence on integrin α5β1 binding to fibronectin (FN). Cell invasion was investigated by the Transwell invasion assay. The effect of neuraminidases treatment on melanoma cells was assessed by flow cytometry using Maackia amurensis and Sambucus nigra lectins. RESULTS Both subunits of integrin α5β1 were found to be more abundantly sialylated in primary than in metastatic cells. The removal of SA had no effect on the purified integrin α5β1 binding to FN. Although metastatic cells underwent more pronounced desialylation than primary cells, invasion of primary WM115 cells was more dependent on the presence of α2-3 linked SA than it was in the case of metastatic WM266-4 cells. In both melanoma cell lines not only integrin α5β1 was involved in invasion, however simultaneous desialylation and usage of anti-integrin α5β1 antibodies resulted in lower invasion abilities of primary WM115 cells. CONCLUSIONS Our data suggest that in primary melanoma cells integrin α5β1 action is more likely dependent on its glycosylation profile, i.e. the presence of SA residues, which influence (decreased) their invasion properties and may facilitate malignant melanoma progression.
Collapse
Affiliation(s)
- Ewa Kolasińska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Marcelina E Janik
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.
| | - Anna Lityńska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| |
Collapse
|
13
|
Murru L, Moretto E, Martano G, Passafaro M. Tetraspanins shape the synapse. Mol Cell Neurosci 2018; 91:76-81. [DOI: 10.1016/j.mcn.2018.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/29/2018] [Accepted: 04/01/2018] [Indexed: 01/01/2023] Open
|
14
|
Sonnino S, Chiricozzi E, Grassi S, Mauri L, Prioni S, Prinetti A. Gangliosides in Membrane Organization. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:83-120. [PMID: 29747825 DOI: 10.1016/bs.pmbts.2017.12.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Since the structure of GM1 was elucidated 55years ago, researchers have been attracted by the sialylated glycans of gangliosides. Gangliosides head groups, protruding toward the extracellular space, significantly contribute to the cell glycocalyx; and in certain cells, such as neurons, are major determinants of the features of the cell surface. Expression of glycosyltransferases involved in the de novo biosynthesis of gangliosides is tightly regulated along cell differentiation and activation, and is regarded as the main metabolic mechanism responsible for the acquisition of cell-specific ganglioside patterns. The resulting sialooligosaccharides are characterized by a high degree of geometrical complexity and by highly dynamic properties, which seem to be functional for complex interactions with other molecules sitting on the same cellular membrane (cis-interactions) or soluble molecules present in the extracellular environment, or molecules associated with the surface of other cells (trans-interactions). There is no doubt that the multifaceted biological functions of gangliosides are largely dependent on oligosaccharide-mediated molecular interactions. However, gangliosides are amphipathic membrane lipids, and their chemicophysical, aggregational, and, consequently, biological properties are dictated by the properties of the monomers as a whole, which are not merely dependent on the structures of their polar head groups. In this chapter, we would like to focus on the peculiar chemicophysical features of gangliosides (in particular, those of the nervous system), that represent an important driving force determining the organization and properties of cellular membranes, and to emphasize the causal connections between altered ganglioside-dependent membrane organization and relevant pathological conditions.
Collapse
|
15
|
The metastasis suppressor CD82/KAI1 inhibits fibronectin adhesion-induced epithelial-to-mesenchymal transition in prostate cancer cells by repressing the associated integrin signaling. Oncotarget 2018; 8:1641-1654. [PMID: 27926483 PMCID: PMC5352085 DOI: 10.18632/oncotarget.13767] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/14/2016] [Indexed: 11/25/2022] Open
Abstract
The transmembrane protein CD82/KAI1 suppresses the metastatic potential of various cancer cell types. Moreover, decrease or loss of CD82 expression is closely associated with malignancy and poor prognosis in many human cancers including prostate cancer. Despite intense scrutiny, the mechanisms underlying the metastasis-suppressing role of CD82 are still not fully understood. Here, we found that a fibronectin matrix induced mesenchymal phenotypes in human prostate cancer cells with no or low CD82 expression levels. However, high CD82 expression rendered prostate cancer cells to have intensified epithelial characteristics upon fibronectin engagement, along with decreased cell motility and invasiveness. The CD82 function of inhibiting fibronectin-induced epithelial-to-mesenchymal transition (EMT) was dependent not only on CD82 interactions with fibronectin-binding α3β1/α5β1 integrins but also on the integrin-mediated intracellular signaling events. Notably, CD82 attenuated the FAK-Src and ILK pathways downstream of the fibronectin-receptor integrins. Immunofluorescence staining of human prostate cancer tissue specimens illustrated a negative association of CD82 with EMT-related gene expression as well as prostate malignancy. Altogether, these results suggest that CD82 suppresses EMT in prostate cancer cells adhered to the fibronectin matrix by repressing adhesion signaling through lateral interactions with the associated α3β1 and α5β1 integrins, leading to reduced cell migration and invasive capacities.
Collapse
|
16
|
Molecular interactions shaping the tetraspanin web. Biochem Soc Trans 2017; 45:741-750. [PMID: 28620035 DOI: 10.1042/bst20160284] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 12/31/2022]
Abstract
To facilitate the myriad of different (signaling) processes that take place at the plasma membrane, cells depend on a high degree of membrane protein organization. Important mediators of this organization are tetraspanin proteins. Tetraspanins interact laterally among themselves and with partner proteins to control the spatial organization of membrane proteins in large networks called the tetraspanin web. The molecular interactions underlying the formation of the tetraspanin web were hitherto mainly described based on their resistance to different detergents, a classification which does not necessarily correlate with functionality in the living cell. To look at these interactions from a more physiological point of view, this review discusses tetraspanin interactions based on their function in the tetraspanin web: (1) intramolecular interactions supporting tetraspanin structure, (2) tetraspanin-tetraspanin interactions supporting web formation, (3) tetraspanin-partner interactions adding functional partners to the web and (4) cytosolic tetraspanin interactions regulating intracellular signaling. The recent publication of the first full-length tetraspanin crystal structure sheds new light on both the intra- and intermolecular tetraspanin interactions that shape the tetraspanin web. Furthermore, recent molecular dynamic modeling studies indicate that the binding strength between tetraspanins and between tetraspanins and their partners is the complex sum of both promiscuous and specific interactions. A deeper insight into this complex mixture of interactions is essential to our fundamental understanding of the tetraspanin web and its dynamics which constitute a basic building block of the cell surface.
Collapse
|
17
|
Reimann R, Kost B, Dettmer J. TETRASPANINs in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:545. [PMID: 28458676 PMCID: PMC5394113 DOI: 10.3389/fpls.2017.00545] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/27/2017] [Indexed: 05/20/2023]
Abstract
Tetraspanins are small transmembrane proteins that laterally associate with each other and cluster with numerous partner proteins as well as lipids. These interactions result in the formation of a distinct class of membrane domains, the tetraspanin-enriched microdomains (TEMs), which influence numerous cellular processes such as cell adhesion and fusion, intracellular membrane trafficking, signaling, morphogenesis, motility as well as interaction with pathogens and cancer development. The majority of information available about tetraspanins is based on studies using animal models or cell lines, but tetraspanins are also present in fungi and plants. Recent studies indicate that tetraspanins have important functions in plant development, reproduction and stress responses. Here we provide a brief summary of the current state of tetraspanin research in plants.
Collapse
|
18
|
Albers T, Maniak M, Beitz E, von Bülow J. The C Isoform of Dictyostelium Tetraspanins Localizes to the Contractile Vacuole and Contributes to Resistance against Osmotic Stress. PLoS One 2016; 11:e0162065. [PMID: 27597994 PMCID: PMC5012570 DOI: 10.1371/journal.pone.0162065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/16/2016] [Indexed: 12/20/2022] Open
Abstract
Tetraspanins (Tsps) are membrane proteins that are widely expressed in eukaryotic organisms. Only recently, Tsps have started to acquire relevance as potential new drug targets as they contribute, via protein-protein interactions, to numerous pathophysiological processes including infectious diseases and cancer. However, due to a high number of isoforms and functional redundancy, knowledge on specific functions of most Tsps is still scarce. We set out to characterize five previously annotated Tsps, TspA-E, from Dictyostelium discoideum, a model for studying proteins that have human orthologues. Using reverse transcriptase PCRs, we found mRNAs for TspA-E in the multicellular slug stage, whereas vegetative cells expressed only TspA, TspC and, to a lesser extent, TspD. We raised antibodies against TspA, TspC and TspD and detected endogenous TspA, as well as heterologously expressed TspA and TspC by Western blot. N-deglycosylation assays and mutational analyses showed glycosylation of TspA and TspC in vivo. GFP-tagged Tsps co-localized with the proton pump on the contractile vacuole network. Deletion strains of TspC and TspD exibited unaltered growth, adhesion, random motility and development. Yet, tspC− cells showed a defect in coping with hypo-osmotic stress, due to accumulation of contractile vacuoles, but heterologous expression of TspC rescued their phenotype. In conclusion, our data fill a gap in Dictyostelium research and open up the possibility that Tsps in contractile vacuoles of e.g. Trypanosoma may one day constitute a valuable drug target for treating sleeping sickness, one of the most threatening tropical diseases.
Collapse
Affiliation(s)
- Tineke Albers
- Department of Medicinal and Pharmaceutical Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Markus Maniak
- Department of Cell Biology, University of Kassel, Kassel, Germany
| | - Eric Beitz
- Department of Medicinal and Pharmaceutical Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Julia von Bülow
- Department of Medicinal and Pharmaceutical Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
- * E-mail:
| |
Collapse
|
19
|
Jung YR, Park JJ, Jin YB, Cao YJ, Park MJ, Kim EJ, Lee M. Silencing of ST6Gal I enhances colorectal cancer metastasis by down-regulating KAI1 via exosome-mediated exportation and thereby rescues integrin signaling. Carcinogenesis 2016; 37:1089-1097. [PMID: 27559112 DOI: 10.1093/carcin/bgw091] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 07/31/2016] [Accepted: 08/20/2016] [Indexed: 12/24/2022] Open
Abstract
Aberrant sialylation has long been correlated with human cancer. Increased ST6 Gal I (β-galactoside α 2, 6 sialyltransferase) and consequently higher levels of cell-surface α 2, 6 sialylation has been associated with human colorectal cancer (CRC) metastasis. We have extensive circumstantial data that sialylation is connected to cancer metastasis, but we do not understand in detail how sialylation can switch on/off multiple steps in cancer metastasis. To investigate the molecular mechanism underlying the ST6Gal I-mediated metastasis of CRC, we silenced the ST6Gal I gene in a metastatic SW620 CRC cell line (SW620-shST6Gal I) and examined the metastatic behavior of the cells. We found that various hallmarks of metastatic ability were considerably enhanced in ST6Gal 1-depleted SW620 clones, as assessed both in vitro and in vivo . In particular, the metastasis suppressor, KAI1, was down-regulated in ST6Gal I-deficient SW620 clones. This reflected the increased exosome-mediated exportation of KAI1, and was associated with a decrease in the KAI1-mediated inhibition of integrin. These findings indicate that gene silencing of ST6Gal I could enhance metastasis of CRC by down-regulating KAI1 activity and rescuing its negative effects on integrin signaling.
Collapse
Affiliation(s)
| | - Jung-Jin Park
- Department of Biochemistry and Medical Research Center , College of Medicine , Chungbuk National University , Cheongju 28644 , Republic of Korea
| | - Yeung Bae Jin
- National Primate Research Center , Korea Research Institute of Bioscience and Biotechnology , Cheongju 28116 , Republic of Korea
| | - Yuan Jie Cao
- Department of Radiation Oncology , Tianjin Medical University Cancer Institute and Hospital , National Clinical Research Center for Cancer and Tianjin Key laboratory of Cancer Prevention and Therapy , Huan-Hu-Xi Road , Ti-Yuan-Bei , He Xi District , Tianjin 300060 , P.R. China and
| | - Myung-Jin Park
- Division of Radiation Cancer Research , Korea Institute of Radiological and Medical Sciences , Seoul 01812 , Republic of Korea
| | | | | |
Collapse
|
20
|
Hoja-Łukowicz D, Przybyło M, Duda M, Pocheć E, Bubka M. On the trail of the glycan codes stored in cancer-related cell adhesion proteins. Biochim Biophys Acta Gen Subj 2016; 1861:3237-3257. [PMID: 27565356 DOI: 10.1016/j.bbagen.2016.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/22/2016] [Accepted: 08/14/2016] [Indexed: 12/14/2022]
Abstract
Changes in the profile of protein glycosylation are a hallmark of ongoing neoplastic transformation. A unique set of tumor-associated carbohydrate antigens expressed on the surface of malignant cells may serve as powerful diagnostic and therapeutic targets. Cell-surface proteins with altered glycosylation affect the growth, proliferation and survival of those cells, and contribute to their acquisition of the ability to migrate and invade. They may also facilitate tumor-induced immunosuppression and the formation of distant metastases. Deciphering the information encoded in these particular glycan portions of glycoconjugates may shed light on the mechanisms of cancer progression and metastasis. A majority of the related review papers have focused on overall changes in the patterns of cell-surface glycans in various cancers, without pinpointing the molecular carriers of these glycan structures. The present review highlights the ways in which particular tumor-associated glycan(s) coupled with a given membrane-bound protein influence neoplastic cell behavior during the development and progression of cancer. We focus on altered glycosylated cell-adhesion molecules belonging to the cadherin, integrin and immunoglobulin-like superfamilies, examined in the context of molecular interactions.
Collapse
Affiliation(s)
- Dorota Hoja-Łukowicz
- Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Krakow, Poland.
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Krakow, Poland.
| | - Małgorzata Duda
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Krakow, Poland.
| | - Ewa Pocheć
- Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Krakow, Poland.
| | - Monika Bubka
- Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Krakow, Poland.
| |
Collapse
|
21
|
Jia F, Howlader MA, Cairo CW. Integrin-mediated cell migration is blocked by inhibitors of human neuraminidase. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1170-1179. [PMID: 27344026 DOI: 10.1016/j.bbalip.2016.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 01/08/2023]
Abstract
Integrins are critical receptors in cell migration and adhesion. A number of mechanisms are known to regulate the function of integrins, including phosphorylation, conformational change, and cytoskeletal anchoring. We investigated whether native neuraminidase (Neu, or sialidase) enzymes which modify glycolipids could play a role in regulating integrin-mediated cell migration. Using a scratch assay, we found that exogenously added Neu3 and Neu4 activity altered rates of cell migration. We observed that Neu4 increased the rate of migration in two cell lines (HeLa, A549); while Neu3 only increased migration in HeLa cells. A bacterial neuraminidase was able to increase the rate of migration in HeLa, but not in A549 cells. Treatment of cells with complex gangliosides (GM1, GD1a, GD1b, and GT1b) resulted in decreased cell migration rates, while LacCer was able to increase rates of migration in both lines. Importantly, our results show that treatment of cells with inhibitors of native Neu enzymes had a dramatic effect on the rates of cell migration. The most potent compound tested targeted the human Neu4 isoenzyme, and was able to substantially reduce the rate of cell migration. We found that the lateral mobility of integrins was reduced by treatment of cells with Neu3, suggesting that Neu3 enzyme activity resulted in changes to integrin-co-receptor or integrin-cytoskeleton interactions. Finally, our results support the hypothesis that inhibitors of human Neu can be used to investigate mechanisms of cell migration and for the development of anti-adhesive therapies.
Collapse
Affiliation(s)
- Feng Jia
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Md Amran Howlader
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Christopher W Cairo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| |
Collapse
|
22
|
Hang Q, Isaji T, Hou S, Im S, Fukuda T, Gu J. Integrin α5 Suppresses the Phosphorylation of Epidermal Growth Factor Receptor and Its Cellular Signaling of Cell Proliferation via N-Glycosylation. J Biol Chem 2015; 290:29345-60. [PMID: 26483551 DOI: 10.1074/jbc.m115.682229] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Indexed: 12/26/2022] Open
Abstract
Integrin α5β1-mediated cell adhesion regulates a multitude of cellular responses, including cell proliferation, survival, and cross-talk between different cellular signaling pathways. Integrin α5β1 is known to convey permissive signals enabling anchorage-dependent receptor tyrosine kinase signaling. However, the effects of integrin α5β1 on cell proliferation are controversial, and the molecular mechanisms involved in the regulation between integrin α5β1 and receptor tyrosine kinase remain largely unclear. Here we show that integrin α5 functions as a negative regulator of epidermal growth factor receptor (EGFR) signaling through its N-glycosylation. Expression of WT integrin α5 suppresses the EGFR phosphorylation and internalization upon EGF stimulation. However, expression of the N-glycosylation mutant integrin α5, S3-5, which contains fewer N-glycans, reversed the suppression of the EGFR-mediated signaling and cell proliferation. In a mechanistic manner, WT but not S3-5 integrin α5 forms a complex with EGFR and glycolipids in the low density lipid rafts, and the complex formation is disrupted upon EGF stimulation, suggesting that the N-glycosylation of integrin α5 suppresses the EGFR activation through promotion of the integrin α5-glycolipids-EGFR complex formation. Furthermore, consistent restoration of those N-glycans on the Calf-1,2 domain of integrin α5 reinstated the inhibitory effects as well as the complex formation with EGFR. Taken together, these data are the first to demonstrate that EGFR activation can be regulated by the N-glycosylation of integrin α5, which is a novel molecular paradigm for the cross-talk between integrins and growth factor receptors.
Collapse
Affiliation(s)
- Qinglei Hang
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Tomoya Isaji
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Sicong Hou
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Sanghun Im
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Tomohiko Fukuda
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Jianguo Gu
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| |
Collapse
|
23
|
Guan F, Wang X, He F. Promotion of cell migration by neural cell adhesion molecule (NCAM) is enhanced by PSA in a polysialyltransferase-specific manner. PLoS One 2015; 10:e0124237. [PMID: 25885924 PMCID: PMC4401701 DOI: 10.1371/journal.pone.0124237] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/05/2015] [Indexed: 12/18/2022] Open
Abstract
Neural cell adhesion molecule 140 (NCAM-140) is a glycoprotein and always highly polysialylated in cancer. Functions of polysialic acid (PSA) that binds to N-glycan termini on NCAM remain unclear. ldlD-14 cells, a CHO cell mutant deficient in UDP-Gal 4-epimerase, are useful for structural and functional studies of Gal-containing glycoproteins because their abnormal glycosylation can be converted to normal status by exogenous addition of galactose (Gal). We cloned the genes for NCAM-140 and for polysialyltransferases STX and PST (responsible for PSA synthesis) from normal murine mammary gland epithelial (NMuMG) cells and transfected them into ldlD-14 and human breast cancer cells MCF-7. The effect of PSA on NCAM-mediated cell proliferation, motility, migration and adhesion was studied. We found that NCAM-140 significantly promoted cell proliferation, motility and migration, while polysialylation of NCAM-140 catalyzed by STX, but not by PST, enhanced NCAM-mediated cell migration, but not cell proliferation or motility. In addition, PSA catalyzed by different polysialyltransferases affected the adhesion of NCAM to different extracellular matrix (ECM) components.
Collapse
Affiliation(s)
- Feng Guan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- * E-mail:
| | - Xin Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Fa He
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
24
|
Beckwith KA, Byrd JC, Muthusamy N. Tetraspanins as therapeutic targets in hematological malignancy: a concise review. Front Physiol 2015; 6:91. [PMID: 25852576 PMCID: PMC4369647 DOI: 10.3389/fphys.2015.00091] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/05/2015] [Indexed: 12/11/2022] Open
Abstract
Tetraspanins belong to a family of transmembrane proteins which play a major role in the organization of the plasma membrane. While all immune cells express tetraspanins, most of these are present in a variety of other cell types. There are a select few, such as CD37 and CD53, which are restricted to hematopoietic lineages. Tetraspanins associate with numerous partners involved in a diverse set of biological processes, including cell activation, survival, proliferation, adhesion, and migration. The historical view has assigned them a scaffolding role, but recent discoveries suggest some tetraspanins can directly participate in signaling through interactions with cytoplasmic proteins. Given their potential roles in supporting tumor survival and immune evasion, an improved understanding of tetraspanin activity could prove clinically valuable. This review will focus on emerging data in the study of tetraspanins, advances in the clinical development of anti-CD37 therapeutics, and the future prospects of targeting tetraspanins in hematological malignancy.
Collapse
Affiliation(s)
- Kyle A Beckwith
- Division of Hematology, Department of Internal Medicine, The Ohio State University Columbus, OH, USA
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, The Ohio State University Columbus, OH, USA ; Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University Columbus, OH, USA
| | - Natarajan Muthusamy
- Division of Hematology, Department of Internal Medicine, The Ohio State University Columbus, OH, USA ; Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University Columbus, OH, USA
| |
Collapse
|
25
|
Hakomori SI, Handa K. GM3 and cancer. Glycoconj J 2015; 32:1-8. [DOI: 10.1007/s10719-014-9572-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 01/13/2023]
|
26
|
Inoue S, Kondo S, Parichy DM, Watanabe M. Tetraspanin 3c requirement for pigment cell interactions and boundary formation in zebrafish adult pigment stripes. Pigment Cell Melanoma Res 2014; 27:190-200. [PMID: 24734316 DOI: 10.1111/pcmr.12192] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Skin pigment pattern formation in zebrafish requires pigment-cell autonomous interactions between melanophores and xanthophores, yet the molecular bases for these interactions remain largely unknown. Here, we examined the dali mutant that exhibits stripes in which melanophores are intermingled abnormally with xanthophores. By in vitro cell culture, we found that melanophores of dali mutants have a defect in motility and that interactions between melanophores and xanthophores are defective as well. Positional cloning and rescue identified dali as tetraspanin 3c (tspan3c), encoding a transmembrane scaffolding protein expressed by melanophores and xanthophores. We further showed that dali mutant Tspan3c expressed in HeLa cell exhibits a defect in N-glycosylation and is retained inappropriately in the endoplasmic reticulum. Our results are the first to identify roles for a tetraspanin superfamily protein in skin pigment pattern formation and suggest new mechanisms for the establishment and maintenance of zebrafish stripe boundaries.
Collapse
|
27
|
Glycosylation of the laminin receptor (α3β1) regulates its association with tetraspanin CD151: Impact on cell spreading, motility, degradation and invasion of basement membrane by tumor cells. Exp Cell Res 2014; 322:249-64. [PMID: 24530578 DOI: 10.1016/j.yexcr.2014.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 11/27/2022]
Abstract
Invasion is the key requirement for cancer metastasis. Expression of β1,6 branched N-oligosaccharides associated with invasiveness, has been shown to promote adhesion to most Extra Cellular Matrix (ECM) and basement membrane (BM) components and haptotactic motility on ECM (fibronectin) but attenuate it on BM (laminin/matrigel) components. To explore the mechanism and to evaluate the significance of these observations in terms of invasion, highly invasive B16BL6 cells were compared with the parent (B16F10) cells or B16BL6 cells in which glycosylation was inhibited. We demonstrate that increased adhesion to matrix components induced secretion of MMP-9, important for invasion. Further, both the subunits of integrin receptors for fibronectin (α5β1) and laminin (α3β1) on B16BL6 cells were shown to carry these oligosaccharides. Although, glycosylation of receptors had no effect on their surface expression, it had same differential effect on cell spreading as haptotactic motility. Absence of correlation between invasiveness and expression of most tetraspanins (major regulators of integrin function) hints at an alternate mechanism. Here we show that glycosylation on α3β1 impedes its association with CD151 and modulates spreading and motility of cells apparently to reach an optimum required for invasion of BM. These studies demonstrate the complex mechanisms used by cancer cells to be invasive.
Collapse
|
28
|
Cohen M, Varki A. Modulation of glycan recognition by clustered saccharide patches. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 308:75-125. [PMID: 24411170 DOI: 10.1016/b978-0-12-800097-7.00003-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
All cells in nature are covered with a dense and complex array of glycan chains. Specific recognition and binding of glycans is a critical aspect of cellular interactions, both within and between species. Glycan-protein interactions tend to be of low affinity but high specificity, typically utilizing multivalency to generate the affinity required for biologically relevant binding. This review focuses on a higher level of glycan organization, the formation of clustered saccharide patches (CSPs), which can constitute unique ligands for highly specific interactions. Due to technical challenges, this aspect of glycan recognition remains poorly understood. We present a wealth of evidence for CSPs-mediated interactions, and discuss recent advances in experimental tools that are beginning to provide new insights into the composition and organization of CSPs. The examples presented here are likely the tip of the iceberg, and much further work is needed to elucidate fully this higher level of glycan organization.
Collapse
Affiliation(s)
- Miriam Cohen
- Department Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, USA.
| | - Ajit Varki
- Department of Medicine, University of California, San Diego, California, USA; Department Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, USA.
| |
Collapse
|
29
|
Sphingolipids as modulators of membrane proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:665-70. [PMID: 24201378 DOI: 10.1016/j.bbalip.2013.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/22/2013] [Accepted: 10/28/2013] [Indexed: 12/13/2022]
Abstract
The diversity of the transmembranome of higher eukaryotes is matched by an enormous diversity of sphingolipid classes and molecular species. The intrinsic properties of sphingolipids are not only suited for orchestrating lateral architectures of biological membranes, but their molecular distinctions also allow for the evolution of protein motifs specifically recognising and interacting with individual lipids. Although various reports suggest a role of sphingolipids in membrane protein function, only a few cases have determined the specificity of these interactions. In this review we discuss examples of specific protein-sphingolipid interactions for which a modulator-like dependency on sphingolipids was assigned to specific proteins. These novel functions of sphingolipids in specific protein-lipid assemblies contribute to the complexity of the sphingolipid classes and other molecular species observed in animal cells. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Collapse
|
30
|
Han SY, Lee M, Hong YK, Hwang S, Choi G, Suh YS, Park SH, Lee S, Lee SH, Chung J, Baek SH, Cho KS. Tsp66E, the Drosophila KAI1 homologue, and Tsp74F function to regulate ovarian follicle cell and wing development by stabilizing integrin localization. FEBS Lett 2012; 586:4031-7. [PMID: 23068610 DOI: 10.1016/j.febslet.2012.09.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/13/2012] [Accepted: 09/26/2012] [Indexed: 11/29/2022]
Abstract
The metastasis suppressor KAI1/CD82 has been implicated in various cellular processes; however, its function in development is not fully understood. Here, we generated and characterized mutants of Tsp66E and Tsp74F, which are Drosophila homologues of KAI1/CD82 and Tspan11, respectively. These mutants exhibited egg elongation defects along with disturbed integrin localization and actin polarity. Moreover, the defects were enhanced by mutation of inflated, an αPS2 integrin gene. Mutant ovaries had elevated αPS2 integrin levels and reduced endocytic trafficking. These results suggest that Drosophila KAI1/CD82 affects the polarized localization and the level of integrin, which may contribute to epithelial cell polarity.
Collapse
Affiliation(s)
- Seung Yeop Han
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gu J, Isaji T, Xu Q, Kariya Y, Gu W, Fukuda T, Du Y. Potential roles of N-glycosylation in cell adhesion. Glycoconj J 2012; 29:599-607. [DOI: 10.1007/s10719-012-9386-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 04/13/2012] [Accepted: 04/24/2012] [Indexed: 12/18/2022]
|
32
|
Durrant LG, Noble P, Spendlove I. Immunology in the clinic review series; focus on cancer: glycolipids as targets for tumour immunotherapy. Clin Exp Immunol 2012; 167:206-15. [PMID: 22235996 DOI: 10.1111/j.1365-2249.2011.04516.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Research into aberrant glycosylation and over-expression of glycolipids on the surface of the majority of cancers, coupled with a knowledge of glycolipids as functional molecules involved in a number of cellular physiological pathways, has provided a novel area of targets for cancer immunotherapy. This has resulted in the development of a number of vaccines and monoclonal antibodies that are showing promising results in recent clinical trials.
Collapse
Affiliation(s)
- L G Durrant
- Academic Department of Clinical Oncology, Molecular Medical Sciences, City Hospital, University of Nottingham, Nottingham, UK.
| | | | | |
Collapse
|
33
|
Sonnino S, Prioni S, Chigorno V, Prinetti A. Interactions Between Caveolin-1 and Sphingolipids, and Their Functional Relevance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 749:97-115. [DOI: 10.1007/978-1-4614-3381-1_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Wang H, Zhang W, Zhao J, Zhang L, Liu M, Yan G, Yao J, Yu H, Yang P. N-Glycosylation pattern of recombinant human CD82 (KAI1), a tumor-associated membrane protein. J Proteomics 2011; 75:1375-85. [PMID: 22123080 DOI: 10.1016/j.jprot.2011.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 11/09/2011] [Accepted: 11/12/2011] [Indexed: 11/19/2022]
Abstract
The membrane glycoprotein CD82 (KAI1) has attracted increasing attention as a suppressor of cell migration, related tumor invasion, as well as metastasis. The glycosylation of CD82 has been shown to be involved in a correlative cell adhesion and motility. However, the N-glycosylation pattern of CD82 has not been described yet. In the current study, a detailed characterization of the recombinant human CD82 N-linked glycosylation pattern was conducted by employing an integrative proteomic and glycomic approach, including glycosidase and protease digestions, glycan permethylation, MS analyses, site-directed mutagenesis, and lectin blots. The results reveal three N-glycosylation sites, and further demonstrate a putative glycosylation site at Asn(157) for the first time. A highly heterogeneous pattern of N-linked glycans is described, which express distinct carbohydrate epitopes, such as bisecting N-acetylglucosamine, (α-2,6) N-acetylneuraminic acid, and core fucose. These epitopes are highly associated with various biological functions, including cell adhesion and cancer metastasis, and can possibly influence the anti-cancer inhibition ability of CD82.
Collapse
Affiliation(s)
- Hong Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kariya Y, Gu J. N-glycosylation of ß4 integrin controls the adhesion and motility of keratinocytes. PLoS One 2011; 6:e27084. [PMID: 22073258 PMCID: PMC3206902 DOI: 10.1371/journal.pone.0027084] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 10/10/2011] [Indexed: 01/04/2023] Open
Abstract
α6ß4 integrin is an essential component of hemidesmosomes and modulates cell migration in wound healing and cancer invasion. To elucidate the role of N-glycosylation on ß4 integrin, we investigated keratinocyte adhesion and migration through the re-expression of wild-type or N-glycosylation-defective ß4 integrin (ΔNß4) in ß4 integrin null keratinocytes. N-glycosylation of ß4 integrin was not essential for the heterodimer formation of ß4 integrin with α6 integrin and its expression on a cell surface, but N-glycosylation was required for integrin-mediated cell adhesion and migration. Concomitantly with the reduction of ß4 integrin in the membrane microdomain, the intracellular signals of Akt and ERK activation were decreased in cells expressing ΔNß4 integrin. Forced cross-linking of ß4 integrin rescued the decreased ERK activation in ΔNß4 integrin-expressing cells to a similar extent in wild-type ß4 integrin-expressing cells. Surprisingly, compared with cells expressing wild-type ß4 integrin, an alternation in N-glycan structures expressed on epidermal growth factor receptor (EGFR), and the induction of a stronger association between EGFR and ß4 integrin were observed in ΔNß4 integrin-expressing cells. These results clearly demonstrated that N-glycosylation on ß4 integrin plays an essential role in keratinocyte cellular function by allowing the appropriate complex formation on cell surfaces.
Collapse
Affiliation(s)
- Yoshinobu Kariya
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai City, Miyagi, Japan
- Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai City, Miyagi, Japan
| |
Collapse
|
36
|
Tsai YC, Weissman AM. Dissecting the diverse functions of the metastasis suppressor CD82/KAI1. FEBS Lett 2011; 585:3166-73. [PMID: 21875585 PMCID: PMC3409691 DOI: 10.1016/j.febslet.2011.08.031] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/19/2011] [Accepted: 08/19/2011] [Indexed: 01/22/2023]
Abstract
The recent identification of metastasis suppressor genes, the products of which inhibit metastasis but not primary tumor growth, distinguishes oncogenic transformation and tumor suppression from a hallmark of malignancy, the ability of cancer cells to invade sites distant from the primary tumor. The metastasis suppressor CD82/KAI1 is a member of the tetraspanin superfamily of glycoproteins. CD82 suppresses metastasis by multiple mechanisms including inhibition of cell motility and invasion, promotion of cell polarity as well as induction of senescence and apoptosis in response to extracellular stimuli. A common feature of these diverse effects is CD82 regulation of membrane organization as well as protein trafficking and interactions, which affects cellular signaling and intercellular communication.
Collapse
Affiliation(s)
- Yien Che Tsai
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States.
| | | |
Collapse
|
37
|
Lee HA, Park I, Byun HJ, Jeoung D, Kim YM, Lee H. Metastasis suppressor KAI1/CD82 attenuates the matrix adhesion of human prostate cancer cells by suppressing fibronectin expression and β1 integrin activation. Cell Physiol Biochem 2011; 27:575-86. [PMID: 21691075 DOI: 10.1159/000329979] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2011] [Indexed: 11/19/2022] Open
Abstract
KAI1/CD82, a tetraspanin membrane protein functions as a metastasis suppressor in many types of human cancers and has been shown to regulate cell adhesion properties. In the present study, we investigated the underlying mechanism of KAI1/CD82-mediated changes in cell adhesion to the extracellular matrix using human prostate cancer cells. We found that high KAI1/CD82 expression attenuated short-term cell adhesion to uncoated- or fibronectin-coated plates. Moreover, high KAI1/CD82 expression generated an extracellular environment unfavorable for cell adhesion as compared to low KAI1/CD82 expression, suggesting KAI1/CD82-dependent regulation of extracellular matrix (ECM) molecule(s) expression and/or secretion. Among ECM components examined, fibronectin exhibited decreased expression and secretion in high KAI1/CD82-expressing cells. Furthermore, high KAI1/CD82 expression interfered with the activation of β (1) integrin at the cell surface while total β (1) integrin levels remained unchanged, concomitant with reduced formation of focal adhesion complex and decreased bundling of actin filaments. Finally, high KAI1/CD82 expression significantly retarded cell motility in a scratch wound assay. Taken together, our results strongly suggest that KAI1/CD82 attenuates the activation of β (1) integrin, and thereby down-regulates outside-in signaling of β (1) integrin, leading to the reduction of focal adhesion formation and fibronectin expression/secretion, which subsequently interferes with cell adhesion properties and motility.
Collapse
Affiliation(s)
- Hyun-Ah Lee
- Medical & Bio-Material Research Center, College of Natural Sciences, School of Medicine, Kangwon National University, Chuncheon, Kangwon-do, Republic of Korea
| | | | | | | | | | | |
Collapse
|
38
|
Conley SM, Stuck MW, Naash MI. Structural and functional relationships between photoreceptor tetraspanins and other superfamily members. Cell Mol Life Sci 2011; 69:1035-47. [PMID: 21655915 DOI: 10.1007/s00018-011-0736-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/12/2011] [Accepted: 05/16/2011] [Indexed: 12/14/2022]
Abstract
The two primary photoreceptor-specific tetraspanins are retinal degeneration slow (RDS) and rod outer segment membrane protein-1 (ROM-1). These proteins associate together to form different complexes necessary for the proper structure of the photoreceptor outer segment rim region. Mutations in RDS cause blinding retinal degenerative disease in both rods and cones by mechanisms that remain unknown. Tetraspanins are implicated in a variety of cellular processes and exert their function via the formation of tetraspanin-enriched microdomains. This review focuses on correlations between RDS and other members of the tetraspanin superfamily, particularly emphasizing protein structure, complex assembly, and post-translational modifications, with the goal of furthering our understanding of the structural and functional role of RDS and ROM-1 in outer segment morphogenesis and maintenance, and our understanding of the pathogenesis associated with RDS and ROM-1 mutations.
Collapse
Affiliation(s)
- Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, USA
| | | | | |
Collapse
|
39
|
Prinetti A, Prioni S, Loberto N, Aureli M, Nocco V, Illuzzi G, Mauri L, Valsecchi M, Chigorno V, Sonnino S. Aberrant glycosphingolipid expression and membrane organization in tumor cells: consequences on tumor-host interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:643-67. [PMID: 21618134 DOI: 10.1007/978-1-4419-7877-6_34] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alessandro Prinetti
- Department of Medical Chemistry, Biochemistry and Biotechnology, Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Fratelli Cervi 93, 20090 Segrate, Milano, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhou X, Feng H, Guo Q, Dai H. Identification and characterization of the first reptilian CD9, and its expression analysis in response to bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:150-157. [PMID: 19747940 DOI: 10.1016/j.dci.2009.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 09/02/2009] [Accepted: 09/03/2009] [Indexed: 05/28/2023]
Abstract
In this study, a CD9 homologue in a reptile, Chinese soft-shelled turtle, has been cloned and identified for the first time. The full-length cDNA of turtle CD9 was 1146bp and contained a 672bp open reading frame (ORF) coding for a protein of 224 amino acids. Four transmembrane domains (TMs) divided the turtle CD9 into several parts: short N-, C-termini, an intracellular loop and two (small and large) extracellular loops (SEL and LEL). A CCG motif, a potential N-linked glycosylation site and 10 cysteine residues were well conserved. The deduced amino acid sequence analysis showed that the turtle CD9 shared 82% identity to duck CD9. Most of the differences were found in the LEL. Phylogenetic analysis showed that the turtle CD9 sequence clustered together with bird CD9 sequence. RT-PCR analysis showed that turtle CD9 was ubiquitously expressed in liver, spleen, kidney, heart, blood and intestine tissues of un-infected turtles. Real-time PCR analysis further indicated that after Aeromonas hydrophila infection, the turtle CD9 mRNA was up-regulated in various tissues at 8h, and significantly up-regulated during 8h to 7d. These results indicated that turtle CD9 may be involved in anti-bacterial immune response.
Collapse
Affiliation(s)
- Xiuxia Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | | | | | | |
Collapse
|
41
|
Tian Y, Zhang H. Glycoproteomics and clinical applications. Proteomics Clin Appl 2009; 4:124-32. [PMID: 21137038 DOI: 10.1002/prca.200900161] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 10/27/2009] [Accepted: 11/05/2009] [Indexed: 11/11/2022]
Abstract
Glycosylation is the most structurally complicated and diverse type of protein modifications. Protein glycosylation has long been recognized to play fundamental roles in many biological processes, as well as in disease genesis and progression. Glycoproteomics focuses on characterization of proteins modified by carbohydrates. Glycoproteomic studies normally include strategies to enrich glycoproteins containing particular carbohydrate structures from protein mixtures followed by quantitative proteomic analysis. These glycoproteomic studies determine which proteins are glycosylated, the glycosylation sites, the carbohydrate structures, as well as the abundance and function of the glycoproteins in different biological and pathological processes. Here we review the recent development in methods used in glycoproteomic analysis. These techniques are essential in elucidation of the relationships between protein glycosylation and disease states. We also review the clinical applications of different glycoproteomic methods.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
42
|
Tian Y, Gurley K, Meany DL, Kemp CJ, Zhang H. N-linked glycoproteomic analysis of formalin-fixed and paraffin-embedded tissues. J Proteome Res 2009; 8:1657-62. [PMID: 19714870 PMCID: PMC2975740 DOI: 10.1021/pr800952h] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Formalin-fixed, paraffin-embedded (FFPE) tissues have been used to discover disease-associated protein changes using mass spectrometry. Protein post-translational modifications such as glycosylation are known to associate with disease development. In this study, we investigated whether FFPE tissues preserve such modifications and therefore can be used as specimen of choice to identify the disease-associated modifications. We isolated the glycopeptides from the tryptic digest of frozen and FFPE lung tissues using solid-phase extraction of glycopeptides and analyzed them using mass spectrometry. The glycopeptides identified from FFPE lung tissue were compared to the ones from frozen lung tissue regarding their relative abundance, unique glycosylation sites, and subcellular locations. The results from our study confirmed that glycosylation in FFPE tissues are preserved and FFPE tissues can be used for discovery of new disease associated changes in protein modifications. Furthermore, we demonstrated the feasibility of applying the strategy of glycopeptide isolation from tryptic peptides of FFPE tissue to other tissues such as liver and heart.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Kay Gurley
- Divisions of Human Biology and Public Health Science, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Danni L. Meany
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Christopher J. Kemp
- Divisions of Human Biology and Public Health Science, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21231, USA
| |
Collapse
|
43
|
Isaji T, Sato Y, Fukuda T, Gu J. N-glycosylation of the I-like domain of beta1 integrin is essential for beta1 integrin expression and biological function: identification of the minimal N-glycosylation requirement for alpha5beta1. J Biol Chem 2009; 284:12207-16. [PMID: 19261610 DOI: 10.1074/jbc.m807920200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
N-Glycosylation of integrin alpha5beta1 plays a crucial role in cell spreading, cell migration, ligand binding, and dimer formation, but the detailed mechanisms by which N-glycosylation mediates these functions remain unclear. In a previous study, we showed that three potential N-glycosylation sites (alpha5S3-5) on the beta-propeller of the alpha5 subunit are essential to the functional expression of the subunit. In particular, site 5 (alpha5S5) is the most important for its expression on the cell surface. In this study, the function of the N-glycans on the integrin beta1 subunit was investigated using sequential site-directed mutagenesis to remove the combined putative N-glycosylation sites. Removal of the N-glycosylation sites on the I-like domain of the beta1 subunit (i.e. the Delta4-6 mutant) decreased both the level of expression and heterodimeric formation, resulting in inhibition of cell spreading. Interestingly, cell spreading was observed only when the beta1 subunit possessed these three N-glycosylation sites (i.e. the S4-6 mutant). Furthermore, the S4-6 mutant could form heterodimers with either alpha5S3-5 or alpha5S5 mutant of the alpha5 subunit. Taken together, the results of the present study reveal for the first time that N-glycosylation of the I-like domain of the beta1 subunit is essential to both the heterodimer formation and biological function of the subunit. Moreover, because the alpha5S3-5/beta1S4-6 mutant represents the minimal N-glycosylation required for functional expression of the beta1 subunit, it might also be useful for the study of molecular structures.
Collapse
Affiliation(s)
- Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | | | | | | |
Collapse
|
44
|
Prinetti A, Loberto N, Chigorno V, Sonnino S. Glycosphingolipid behaviour in complex membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:184-93. [DOI: 10.1016/j.bbamem.2008.09.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 09/02/2008] [Accepted: 09/03/2008] [Indexed: 12/12/2022]
|
45
|
Baldwin G, Novitskaya V, Sadej R, Pochec E, Litynska A, Hartmann C, Williams J, Ashman L, Eble JA, Berditchevski F. Tetraspanin CD151 regulates glycosylation of (alpha)3(beta)1 integrin. J Biol Chem 2008; 283:35445-54. [PMID: 18852263 DOI: 10.1074/jbc.m806394200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The tetraspanin CD151 forms a stoichiometric complex with integrin alpha3beta1 and regulates its endocytosis. We observed that down-regulation of CD151 in various epithelial cell lines changed glycosylation of alpha3beta1. In contrast, glycosylation of other transmembrane proteins, including those associated with CD151 (e.g. alpha6beta1, CD82, CD63, and emmprin/CD147) was not affected. The detailed analysis has shown that depletion of CD151 resulted in the reduction of Fucalpha1-2Gal and bisecting GlcNAc-beta(1-->4) linkage on N-glycans of the alpha3 integrin subunit. The modulatory activity of CD151 toward alpha3beta1 was specific, because stable knockdown of three other tetraspanins (i.e. CD9, CD63, and CD81) did not affect glycosylation of the integrin. Analysis of alpha3 glycosylation in CD151-depleted breast cancer cells with reconstituted expression of various CD151 mutants has shown that a direct contact with integrin is required but not sufficient for the modulatory activity of the tetraspanin toward alpha3beta1. We also found that glycosylation of CD151 is also critical; Asn(159) --> Gln mutation in the large extracellular loop did not affect interactions of CD151 with other tetraspanins or alpha3beta1 but negated its modulatory function. Changes in the glycosylation pattern of alpha3beta1 observed in CD151-depleted cells correlated with a dramatic decrease in cell migration toward laminin-332. Migration toward fibronectin or static adhesion of cells to extracellular matrix ligands was not affected. Importantly, reconstituted expression of the wild-type CD151 but not glycosylation-deficient mutant restored the migratory potential of the cells. These results demonstrate that CD151 plays an important role in post-translation modification of alpha3beta1 integrin and strongly suggest that changes in integrin glycosylation are critical for the promigratory activity of this tetraspanin.
Collapse
Affiliation(s)
- Gouri Baldwin
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Miranti CK. Controlling cell surface dynamics and signaling: how CD82/KAI1 suppresses metastasis. Cell Signal 2008; 21:196-211. [PMID: 18822372 DOI: 10.1016/j.cellsig.2008.08.023] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 08/24/2008] [Indexed: 12/29/2022]
Abstract
The recent identification of metastasis suppressor genes, uniquely responsible for negatively controlling cancer metastasis, are providing inroads into the molecular machinery involved in metastasis. While the normal function of a few of these genes is known; the molecular events associated with their loss that promotes tumor metastasis is largely not understood. KAI1/CD82, whose loss is associated with a wide variety of metastatic cancers, belongs to the tetraspanin family. Despite intense scrutiny, many aspects of how CD82 specifically functions as a metastasis suppressor and its role in normal biology remain to be determined. This review will focus on the molecular events associated with CD82 loss, the potential impact on signaling pathways that regulate cellular processes associated with metastasis, and its relationship with other metastasis suppressor genes.
Collapse
Affiliation(s)
- C K Miranti
- Laboratory of Integrin Signaling, Van Andel Research Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, United States.
| |
Collapse
|
47
|
Regina Todeschini A, Hakomori SI. Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1780:421-33. [PMID: 17991443 PMCID: PMC2312458 DOI: 10.1016/j.bbagen.2007.10.008] [Citation(s) in RCA: 340] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 09/29/2007] [Accepted: 10/12/2007] [Indexed: 01/11/2023]
Abstract
At cell surface microdomains, glycosyl epitopes, carried either by glycosphingolipids, N- or O-linked oligosaccharides, are recognized by carbohydrate-binding proteins or complementary carbohydrates. In both cases, the carbohydrate epitopes may be clustered with specific signal transducers, tetraspanins, adhesion receptors or growth factor receptors. Through this framework, carbohydrates can mediate cell signaling leading to changes in cellular phenotype. Microdomains involved in carbohydrate-dependent cell adhesion inducing cell activation, motility, and growth are termed "glycosynapse". In this review a historical synopsis of glycosphingolipids-enriched microdomains study leading to the concept of glycosynapse is presented. Examples of glycosynapse as signaling unit controlling the tumor cell phenotype are discussed in three contexts: (i) Cell-to-cell adhesion mediated by glycosphingolipids-to-glycosphingolipids interaction between interfacing glycosynaptic domains, through head-to-head (trans) carbohydrate-to-carbohydrate interaction. (ii) Functional role of GM3 complexed with tetraspanin CD9, and interaction of such complex with integrins, or with fibroblast growth factor receptor, to control tumor cell phenotype and its reversion to normal cell phenotype. (iii) Inhibition of integrin-dependent Met kinase activity by GM2/tetraspanin CD82 complex in glycosynaptic microdomain. Data present here suggest that the organizational status of glycosynapse strongly affects cellular phenotype influencing tumor cell malignancy.
Collapse
Affiliation(s)
- Adriane Regina Todeschini
- Division of Biomembrane Research, Pacific Northwest Research Institute, University of Washington, Seattle, WA, USA.
| | | |
Collapse
|
48
|
Prinetti A, Prioni S, Loberto N, Aureli M, Chigorno V, Sonnino S. Regulation of tumor phenotypes by caveolin-1 and sphingolipid-controlled membrane signaling complexes. Biochim Biophys Acta Gen Subj 2007; 1780:585-96. [PMID: 17889439 DOI: 10.1016/j.bbagen.2007.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 07/26/2007] [Accepted: 08/02/2007] [Indexed: 12/11/2022]
Abstract
Aberrant (glyco)sphingolipid expression deeply affects several properties of tumor cells that are involved in tumor progression and metastasis formation: cell adhesion (to the extracellular matrix or to the endothelium of blood vessels), motility, recognition and invasion of host tissues. In particular, (glyco)sphingolipids might contribute to the modulation of integrin-dependent interactions of tumor cells (determining their adhesion, motility and invasiveness) with the extracellular matrix as well as with host cells present in the stromal compartment of the tumor. A model based on solid experimental evidence has been proposed: (glyco)sphingolipids at the cell surface interact with plasma membrane receptors (e.g., integrin receptors and growth factor receptors) and adapter molecules (including tetraspanins) forming signaling complexes that are able to influence the activity of signal transduction molecules oriented at the cytosolic surface of the plasma membrane (mainly the Src kinases pathway members). The function of these signaling complexes appears to be strictly dependent on their (glyco)sphingolipid composition, and likely on specific sphingolipid-protein interactions. From this point of view, particularly intriguing is the connection between (glyco)sphingolipids and caveolin-1, a membrane protein that plays multiple roles as a suppressor of tumor growth and metastasis in ovarian, breast and colon human carcinomas.
Collapse
Affiliation(s)
- Alessandro Prinetti
- Center of Excellence on Neurodegenerative Diseases, Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, 20090 Segrate, Italy.
| | | | | | | | | | | |
Collapse
|
49
|
Takayama G, Taniguchi A, Okano T. Identification of differentially expressed genes in hepatocyte/endothelial cell co-culture system. ACTA ACUST UNITED AC 2007; 13:159-66. [PMID: 17518589 DOI: 10.1089/ten.2006.0143] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cell-cell communication between multiple-cell populations is believed to be important for the activation of many cellular functions. Previously, we showed that, in the rat hepatoma cell line Fao, grown in a layered co-culture system with a human umbilical vein endothelial cell (HUVEC) sheet, the expression of albumin and apolipoprotein A-I increased time-dependently for 10 days and was maintained at a significantly higher level than Fao without the HUVEC sheet. Because the gene-expression profile of hepatocytes and HUVECs under double-layered co-culture has not previously been elucidated, in the present study, we examined the difference in messenger ribonucleic acid expression between Fao or HUVEC monolayer cells and double-layered co-cultured Fao cells/HUVECs using suppression subtractive hybridization. More than 200 transcripts were differentially screened to ensure unique expression. The expression levels of genes in the co-cultured and monolayer cells were determined using SYBR Green I real-time reverse transcription polymerase chain reaction with species-specific primers. We found 23 genes that showed at least a 2-fold difference in expression level. Five hepatocyte-specific genes--alpha1-acidglycoprotein, alpha2-microglobulin, hepcidin, transferrin, and transthyretin--were identified from the Fao cells. Two cell-surface protein genes--bone morphogenetic protein receptor type II and CD82--which may be related to cell-cell communication, showed greater expression in the HUVECs co-cultured with Fao cells. These results indicate that many hepatocyte and endothelial cell functions increase in intensity upon layered co-culture.
Collapse
Affiliation(s)
- Goh Takayama
- Cell Engineering Technology Group, Biomaterials Center, National Institute for Materials Science, Tsukuba, Japan
| | | | | |
Collapse
|
50
|
Iezzi G, Piattelli A, Artese L, Goteri G, Fioroni M, Rubini C. KAI-1 protein expression in odontogenic cysts. J Endod 2007; 33:235-8. [PMID: 17320703 DOI: 10.1016/j.joen.2006.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 10/31/2006] [Accepted: 11/04/2006] [Indexed: 10/23/2022]
Abstract
The KAI-1 tumor suppressor gene is widely distributed in normal tissues and its down-regulation may be correlated with the invasive phenotype and metastases in several different epithelial tumors. The aim of the present study was an evaluation of KAI-1 expression in radicular cysts (RC), follicular cysts (FC), orthokeratinized keratocysts (OOKC), and parakeratinized keratocysts (POKC). Eighty-five odontogenic cysts, 28 RC, 22 FC, and 35 OKC (16 OOKC, 19 POKC) were selected. All the POKC were negative and only four of 16 of the OOKC were positive for KAI-1. On the contrary, all RC and FC cases were positive and immunoreactivity for KAI-1 was detected throughout all the layers of the cyst epithelium. The lack of KAI-1 expression in POKC could help to explain the differences in the clinical and pathologic behavior of OKC and, according to what has been reported for epithelial tumors, could be related to the increased aggressive behavior and invasiveness of OKC.
Collapse
|