1
|
Hiraoka M, Takashima S, Wakihara Y, Kamatari YO, Shimizu K, Okada A, Inoshima Y. Identification of Potential mRNA Biomarkers in Milk Small Extracellular Vesicles of Enzootic Bovine Leukosis Cattle. Viruses 2022; 14:1022. [PMID: 35632763 PMCID: PMC9146096 DOI: 10.3390/v14051022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
Enzootic bovine leukosis (EBL) is a disease caused by bovine leukemia virus (BLV); only a small percentage of BLV-infected cattle develop EBL and present with B-cell lymphosarcoma. There is no vaccine against BLV, treatment for EBL, or method for predicting the possibility of EBL onset, thus making EBL control difficult. Herein, to explore biomarkers for EBL in milk, we examined the mRNA profiles of small extracellular vesicles (sEVs) in milk from four BLV-uninfected and four EBL cattle by microarray analysis. It was revealed that 14 mRNAs were encapsulated in significantly higher quantities, and these mRNAs were therefore selected as biomarker candidates. Primers for these mRNAs were designed, and nine primer sets were available for quantitative real-time PCR. Nine mRNAs were evaluated for their availability as biomarkers for EBL using sEVs from newly-collected milk of 7 uninfected and 10 EBL cattle. The quantities of eight mRNAs (TMEM156, SRGN, CXCL8, DEFB4A, FABP5, LAPTM5, LGALS1, and VIM) were significantly higher in milk sEVs of EBL cattle than in those of uninfected cattle. Therefore, our findings indicate that these eight mRNAs in milk sEVs can be used as potential EBL biomarkers with combination use, although single mRNA use is not enough. Consequently, cattle at risk of EBL onset can be identified by monitoring the fluctuation in quantities of these mRNAs in milk before they develop EBL.
Collapse
Affiliation(s)
- Mami Hiraoka
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (M.H.); (K.S.); (A.O.)
| | - Shigeo Takashima
- Division of Genomics Research, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (S.T.); (Y.W.)
| | - Yoshiko Wakihara
- Division of Genomics Research, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (S.T.); (Y.W.)
| | - Yuji O. Kamatari
- Division of Instrumental Analysis, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan;
| | - Kaori Shimizu
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (M.H.); (K.S.); (A.O.)
| | - Ayaka Okada
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (M.H.); (K.S.); (A.O.)
- Education and Research Center for Food Animal Health, Gifu University (GeFAH), 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yasuo Inoshima
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (M.H.); (K.S.); (A.O.)
- Education and Research Center for Food Animal Health, Gifu University (GeFAH), 1-1 Yanagido, Gifu 501-1193, Japan
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
2
|
Imoto S, Suzukawa M, Takeda K, Asari I, Watanabe S, Tohma S, Nagase T, Ohta K, Teruya K, Nagai H. Evaluation of cytokine levels in response to mitogen among HIV-1-infected blood cells and their relationships to the number of T cells. Cytokine 2022; 153:155840. [PMID: 35276635 DOI: 10.1016/j.cyto.2022.155840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Human immunodeficiency virus-1 (HIV-1) infection causes loss and anergy of CD4+ and CD8+ T cells, leading to opportunistic infections, including tuberculosis (TB). QuantiFERON®-TB (QFT) is used as a diagnostic tool to detect TB, but it exhibits limited accuracy among subjects with low CD4+ T cell numbers, including HIV-1-infected individuals. The present study aimed to determine the effect of HIV-1 infection and patients' blood T cell numbers on cytokine production in response to mitogen (Mit) stimulation. METHODS The number of CD4+ and CD8+ T cells in HIV-1-infected individuals was quantified. Levels of various cytokines in Mit-stimulated and un-stimulated (Nil) supernatants of QFT gold "in tube" were assessed using a MAGPIX System. The correlation between cytokine levels and CD4+/CD8+ T cell counts in response to Mit was analyzed. The cytokine levels were compared between HIV-1-infected and healthy subjects. RESULTS HIV-1-infected individuals (110) and control subjects (27) were enrolled. Interferon (IFN)-γ, interleukin-1 receptor antagonist (IL-1RA), IL-6, IL-8, and regulated on activation, normal T cell expressed and secreted (RANTES) values in Mit-Nil tubes showed a significant correlation with CD4+ T cell counts, while IFN-γ, IL-6, and IFN-γ-induced protein 10 (IP-10) values in Mit-Nil tubes had significant correlation with CD8+ T cell counts. IL-1RA, IL-8, IP-10, platelet-derived growth factor (PDGF)-BB, and RANTES levels in Nil tubes were significantly higher in the HIV-1-infected group. IFN-γ, IL-2, IL-5, IL-6, IP-10, and macrophage inflammatory protein-1β values in Mit-Nil tubes were significantly higher, and PDGF-BB and RANTES levels were significantly lower in the HIV-1-infected group. CONCLUSION The functions of HIV-1-infected T cells and uninfected T cells, such as spontaneous and responsive cytokine production in response to Mit, were different. Our findings may be useful for developing new clinical tools for patients with low T cell counts. Additionally, the study provides new insights into the pathogenesis of HIV-1 infection.
Collapse
Affiliation(s)
- Sahoko Imoto
- National Hospital Organization Tokyo National Hospital, Tokyo 204-8585, Japan; Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Maho Suzukawa
- National Hospital Organization Tokyo National Hospital, Tokyo 204-8585, Japan.
| | - Keita Takeda
- National Hospital Organization Tokyo National Hospital, Tokyo 204-8585, Japan
| | - Isao Asari
- National Hospital Organization Tokyo National Hospital, Tokyo 204-8585, Japan
| | - Shizuka Watanabe
- National Hospital Organization Tokyo National Hospital, Tokyo 204-8585, Japan; Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shigeto Tohma
- National Hospital Organization Tokyo National Hospital, Tokyo 204-8585, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Ken Ohta
- National Hospital Organization Tokyo National Hospital, Tokyo 204-8585, Japan; Japan Anti-Tuberculosis Association, Fukujuji Hospital, Tokyo 193-0834, Japan
| | - Katsuji Teruya
- National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Hideaki Nagai
- National Hospital Organization Tokyo National Hospital, Tokyo 204-8585, Japan
| |
Collapse
|
3
|
Martínez LE, Daniels-Wells TR, Guo Y, Magpantay LI, Candelaria PV, Penichet ML, Martínez-Maza O, Epeldegui M. Targeting TfR1 with the ch128.1/IgG1 Antibody Inhibits EBV-driven Lymphomagenesis in Immunosuppressed Mice Bearing EBV + Human Primary B-cells. Mol Cancer Ther 2021; 20:1592-1602. [PMID: 34158342 PMCID: PMC8419068 DOI: 10.1158/1535-7163.mct-21-0074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/05/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022]
Abstract
Epstein-Barr virus (EBV) is a human gammaherpesvirus associated with the development of hematopoietic cancers of B-lymphocyte origin, including AIDS-related non-Hodgkin lymphoma (AIDS-NHL). Primary infection of B-cells with EBV results in their polyclonal activation and immortalization. The transferrin receptor 1 (TfR1), also known as CD71, is important for iron uptake and regulation of cellular proliferation. TfR1 is highly expressed in proliferating cells, including activated lymphocytes and malignant cells. We developed a mouse/human chimeric antibody targeting TfR1 (ch128.1/IgG1) that has previously shown significant antitumor activity in immunosuppressed mouse models bearing human malignant B-cells, including multiple myeloma and AIDS-NHL cells. In this article, we examined the effect of targeting TfR1 to inhibit EBV-driven activation and growth of human B-cells in vivo using an immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl /SzJ [NOD/SCID gamma (NSG)] mouse model. Mice were implanted with T-cell-depleted, human peripheral blood mononuclear cells (PBMCs), either without EBV (EBV-), or exposed to EBV in vitro (EBV+), intravenously via the tail vein. Mice implanted with EBV+ cells and treated with an IgG1 control antibody (400 μg/mouse) developed lymphoma-like growths of human B-cell origin that were EBV+, whereas mice implanted with EBV+ cells and treated with ch128.1/IgG1 (400 μg/mouse) showed increased survival and significantly reduced inflammation and B-cell activation. These results indicate that ch128.1/IgG1 is effective at preventing the growth of EBV+ human B-cell tumors in vivo, thus, indicating that there is significant potential for agents targeting TfR1 as therapeutic strategies to prevent the development of EBV-associated B-cell malignancies. SIGNIFICANCE: An anti-TfR1 antibody, ch128.1/IgG1, effectively inhibits the activation, growth, and immortalization of EBV+ human B-cells in vivo, as well as the development of these cells into lymphoma-like tumors in immunodeficient mice.
Collapse
Affiliation(s)
- Laura E Martínez
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- AIDS Institute, University of California Los Angeles, Los Angeles, California
| | - Tracy R Daniels-Wells
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Yu Guo
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- AIDS Institute, University of California Los Angeles, Los Angeles, California
| | - Larry I Magpantay
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- AIDS Institute, University of California Los Angeles, Los Angeles, California
| | - Pierre V Candelaria
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Manuel L Penichet
- AIDS Institute, University of California Los Angeles, Los Angeles, California
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine University of California Los Angeles, Los Angeles, California
- The Molecular Biology Institute, University of California Los Angeles, Los Angeles, California
| | - Otoniel Martínez-Maza
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- AIDS Institute, University of California Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine University of California Los Angeles, Los Angeles, California
- Department of Epidemiology, UCLA Fielding School of Public Health, University of California Los Angeles, Los Angeles, California
| | - Marta Epeldegui
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.
- AIDS Institute, University of California Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
4
|
Sasakawa A, Hirase C, Yamaguchi T, Morita Y, Miyatake JI, Matsumura I, Maeda Y. Interleukin-8 in the pathogenesis of primary central nervous system lymphoma in association with HIV infection. ACTA ACUST UNITED AC 2012; 17:144-50. [PMID: 22664113 DOI: 10.1179/102453312x13376952196377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The pathogenesis of acquired immunodeficiency syndrome-associated primary central nervous system lymphoma (AIDS-associated PCNSL) remains unclear. However, cell adhesion molecules have been reported to be strongly associated with PCNSL. In this study, we established Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines (LCLs) from HIV-positive patients (LCL(HIV)) and normal individuals (LCL(N)). The expression of CD18 antigen by LCL(HIV) was stronger than that by LCL(N). We performed a cell adhesion assay using ISO-HAS, which is the human hemangiosarcoma cell line and expresses intercellular adhesion molecule 1 (CD54). The binding rates of LCL(HIV) and ISO-HAS without stimulation were higher than those of LCL(N). Further, we demonstrated that azidothymidine or simvastatin inhibited the binding rates of LCL(HIV) and ISO-HAS more significantly than those of LCL(N). Further, the levels of interleukin (IL)-8, a CD18 inducer, were higher in LCL(HIV) than in LCL(N). We conclude that interaction between IL-8 and CD18 may be critical to AIDS-related PCNSL.
Collapse
Affiliation(s)
- Atsushi Sasakawa
- Department of Hematology, Kinki University School of Medicine, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
5
|
Miyauchi K, Urano E, Yoshiyama H, Komano J. Cytokine signatures of transformed B cells with distinct Epstein-Barr virus latencies as a potential diagnostic tool for B cell lymphoma. Cancer Sci 2011; 102:1236-41. [PMID: 21392167 DOI: 10.1111/j.1349-7006.2011.01924.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Immunocompromised individuals, including those infected with human immunodeficiency virus (HIV), are at increased risk of Epstein-Barr virus (EBV)-associated aggressive B cell malignancies such as Burkitt's lymphoma (BL) or diffuse large B cell lymphoma (DLBCL). Differential diagnosis of these lymphomas requires histopathological, immunohistochemical and cytogenetic assessments. Rapid, less invasive approaches to the diagnosis of EBV-associated B cell lymphomas are needed. Here, high-throughput cytokine profiling of BL cell lines and EBV-transformed B lymphoblastoid cell lines (B-LCL), representing DLBCL, was carried out. By monitoring the production of 42 different cytokines, unique cytokine signatures were identified for BL and B-LCL/DLBCL. The BL cells produced interleukin (IL)-10, 10 kDa interferon gamma-induced protein (IP-10)/CXCL10, macrophage-derived chemokine (MDC)/CCL22, macrophage inflammatory protein (MIP)-1α/CCL3 and MIP-1β/CCL4. In addition to these five cytokines, the cytokine signature of B-LCL/DLBCL cells included IL-8/CXCL8, IL-13, platelet-derived growth factor (PDGF)-AA, and regulated upon activation, normal T cell expressed and secreted (RANTES)/CCL5. Epstein-Barr virus latency was responsible for the increased production of IL-10, MDC/CCL22 and MIP-1α/CCL3 in BL cells, suggesting that EBV-mediated BL-genesis involves these three cytokines. These results suggest that high-throughput cytokine profiling might be a valuable tool for the differential diagnosis and might deepen our understanding of the pathogenesis of EBV-associated B cell malignancies.
Collapse
Affiliation(s)
- Kosuke Miyauchi
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | |
Collapse
|
6
|
Expression and Function of the Chemokine, CXCL13, and Its Receptor, CXCR5, in Aids-Associated Non-Hodgkin's Lymphoma. AIDS Res Treat 2010; 2010:164586. [PMID: 21490903 PMCID: PMC3065842 DOI: 10.1155/2010/164586] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 06/23/2010] [Indexed: 12/04/2022] Open
Abstract
Background. The homeostatic chemokine, CXCL13 (BLC, BCA-1), helps direct the recirculation of mature, resting B cells, which express its receptor, CXCR5. CXCL13/CXCR5 are expressed, and may play a role, in some non-AIDS-associated B cell tumors. Objective. To determine if CXCL13/CXCR5 are associated with AIDS-related non-Hodgkin's lymphoma (AIDS-NHL). Methods. Serum CXCL13 levels were measured by ELISA in 46 subjects who developed AIDS-NHL in the Multicenter AIDS Cohort Study and in controls. The expression or function of CXCL13 and CXCR5 was examined on primary AIDS-NHL specimens or AIDS-NHL cell lines. Results. Serum CXCL13 levels were significantly elevated in the AIDS-NHL group compared to controls. All primary AIDS-NHL specimens showed CXCR5 expression and most also showed CXCL13 expression. AIDS-NHL cell lines expressed CXCR5 and showed chemotaxis towards CXCL13. Conclusions. CXCL13/CXCR5 are expressed in AIDS-NHL and could potentially be involved in its biology. CXCL13 may have potential as a biomarker for AIDS-NHL.
Collapse
|
7
|
Ariza ME, Glaser R, Kaumaya PTP, Jones C, Williams MV. The EBV-encoded dUTPase activates NF-kappa B through the TLR2 and MyD88-dependent signaling pathway. THE JOURNAL OF IMMUNOLOGY 2009; 182:851-9. [PMID: 19124728 DOI: 10.4049/jimmunol.182.2.851] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The innate immune response plays a key role as the primary host defense against invading pathogens including viruses. We have previously shown that treatment of human monocyte-derived macrophages with EBV-encoded dUTPase induces the expression of proinflammatory cytokines through the activation of NF-kappaB. However, the receptor responsible for EBV-encoded dUTPase-mediated biological effects is not known. In this study, we demonstrate that the purified EBV-encoded dUTPase activates NF-kappaB in a dose-dependent manner through TLR2 and requires the recruitment of the adaptor molecule MyD88 but not CD14. Furthermore, activation of NF-kappaB was abrogated by anti-TLR2, anti-EBV-encoded dUTPase blocking Abs and the overexpression of a dominant negative construct of MyD88 in human embryonic kidney 293 cells expressing TLR2. In addition, treatment of human monocyte-derived macrophages with the anti-EBV-encoded dUTPase Ab 7D6 or the anti-TLR2 Ab blocked the production of IL-6 by the EBV-encoded dUTPase. To our knowledge, this is the first report demonstrating that a nonstructural protein encoded by EBV is a pathogen-associated molecular pattern and that it has immunomodulatory functions. Although additional studies are necessary to define the signaling pathways activated by the EBV-encoded dUTPase and to determine its role in modulating immune responses to EBV infection, our results suggest that the dUTPase could be a potential target for the development of novel therapeutic agents against infections caused by EBV.
Collapse
Affiliation(s)
- Maria-Eugenia Ariza
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA.
| | | | | | | | | |
Collapse
|
8
|
NAČINOVIĆ-DULETIĆ A, ŠTIFTER S, DVORNIK Š, ŠKUNCA Ž, JONJIĆ NIVES. Correlation of serum IL-6, IL-8 and IL-10 levels with clinicopathological features and prognosis in patients with diffuse large B-cell lymphoma. Int J Lab Hematol 2008; 30:230-9. [DOI: 10.1111/j.1751-553x.2007.00951.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Tsukamoto K, Huang YC, Dorsey WC, Carns B, Sharma V. Juxtacrine function of interleukin-15/interleukin-15 receptor system in tumour derived human B-cell lines. Clin Exp Immunol 2007; 146:559-66. [PMID: 17100778 PMCID: PMC1810416 DOI: 10.1111/j.1365-2249.2006.03240.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Interleukin-15 (IL-15) is a cytokine that induces proliferation and promotes cell survival of human T, B and NK cells. IL-15 and interleukin-2 (IL-2) exhibit a similar spectrum of immune effects and share the IL-2 receptor (IL-2R) subunits IL-2Rbeta and IL-2Rgamma(c) for signalling in haematopoietic cells. Furthermore, each cytokine has a private alpha receptor, namely IL-2Ralpha for IL-2 and IL-15Ralpha for IL-15, that functions in ligand binding. Using reverse transcriptase-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) methods, the expression and secretion of IL-15 and IL-15Ralpha in tumour-derived B-cell lines were studied. The results as presented in this study identify that IL-15 mRNA is predominantly expressed in EBV positive (EBV(+)) B-cell lines, although IL-15Ralpha is ubiquitously and constitutively expressed in all these B-cell lines. Although no detectable levels of IL-15 protein secretion were observed in any of these cell lines, we were able to detect membrane-bound expression of IL-15 protein by FACS analysis in some cell lines. These data imply that the IL-15/IL-15R system requires complex regulatory mechanisms for protein secretion. Taken together, we speculate that these results suggest a juxtacrine, intracrine function for IL-15/IL-15R.
Collapse
Affiliation(s)
- K Tsukamoto
- Laboratory of Cytokine Research, Department of Biology, University of West Florida, Pensacola, Florida 10032, USA
| | | | | | | | | |
Collapse
|
10
|
Glaser R, Litsky ML, Padgett DA, Baiocchi RA, Yang EV, Chen M, Yeh PE, Green-Church KB, Caligiuri MA, Williams MV. EBV-encoded dUTPase induces immune dysregulation: Implications for the pathophysiology of EBV-associated disease. Virology 2006; 346:205-18. [PMID: 16321417 DOI: 10.1016/j.virol.2005.10.034] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 10/06/2005] [Accepted: 10/26/2005] [Indexed: 12/18/2022]
Abstract
Epstein-Barr virus (EBV) encodes for several enzymes that are involved in viral DNA replication. There is evidence that some viral proteins, by themselves, can induce immune dysregulation that may contribute to the pathophysiology of the virus infection. In this study, we focused on the EBV-encoded deoxyuridine triphosphate nucleotidohydrolase (dUTPase) and present the first evidence that the dUTPase is able to induce immune dysregulation in vitro as demonstrated by the inhibition of the replication of stimulated peripheral blood mononuclear cells (PBMCs) and the upregulation of several proinflammatory cytokines including TNF-alpha, IL-1beta, IL-8, IL-6, and IL-10 produced by unstimulated PBMCs treated with purified EBV-encoded dUTPase. Depletion of CD14-positive cells (monocytes) eliminated the cytokine profile induced by EBV dUTPase treatment. The data support the hypothesis that at least one protein of the EBV early antigen complex can induce immune dysregulation and may be involved in the pathophysiology of EBV-associated disease.
Collapse
Affiliation(s)
- Ronald Glaser
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center, 333 W. 10th Avenue, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yang C, Wu J, Zhang R, Zhang P, Eckard J, Yusuf R, Huang X, Rossman TG, Frenkel K. Caffeic acid phenethyl ester (CAPE) prevents transformation of human cells by arsenite (As) and suppresses growth of As-transformed cells. Toxicology 2005; 213:81-96. [PMID: 16085347 DOI: 10.1016/j.tox.2005.05.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 04/14/2005] [Accepted: 05/18/2005] [Indexed: 10/25/2022]
Abstract
Recent evidence suggests that inflammatory cytokines and growth factors contribute to arsenite (As)-induced human carcinogenesis. We investigated the expression of inflammatory cytokine mRNAs during the transformation process induced by chronic As exposure in non-tumorigenic human osteogenic sarcoma (N-HOS) cells using gene arrays, and results were confirmed by RT-PCR and protein arrays. Caffeic acid phenethyl ester (CAPE), a naturally occurring immunomodulating agent, was used to evaluate the role of inflammatory factors in the process of As-mediated N-HOS cell transformation and in As-transformed HOS (AsT-HOS) cells. We found that an 8-week continuous exposure of N-HOS to 0.3 microM arsenite resulted in HOS cell transformation. That exposure also caused substantial decreases in inflammatory cytokine mRNAs, such as interleukin (IL) IL-1alpha, IL-2, IL-8, IL-18, MCP-1, TGF-beta2, and TNF-alpha, while it increased c-jun mRNA in a time-dependent manner. Co-incubation of N-HOS with As and CAPE (0.5-2.5 microM) prevented As-mediated declines in cytokine mRNAs in the co-treated cells, as well as their transformation to anchorage independence, while it caused decreases in c-jun mRNA. CAPE (up to 10 microM) had no effect on growth of N-HOS cells. However, CAPE (1-10 microM) treatment of AsT-HOS cells inhibited cell growth, induced cell cycle G2/M arrest, and triggered apoptosis, accompanied by changes in cytokine gene expression, as well as decreases in cyclin B1 and cdc2 abundance. Resveratrol (RV) and (-)(.) epigallocatechin gallate (EGCG), preventive agents present in grapes and green tea, respectively, induced similar changes in AsT-HOS cell growth but required much higher doses than CAPE to cause 50% growth arrest (<2.5 microM CAPE versus 25 microM RV or 50 microM EGCG). Overall, our findings suggest that inflammatory cytokines play an important role in the suppressive effects of CAPE on As-induced cell transformation and in the selective cytotoxicity of CAPE to As-transformed HOS cells.
Collapse
Affiliation(s)
- Chengfeng Yang
- Department of Environmental Medicine and NYU Cancer Institute, NYU School of Medicine, New York, NY 10016, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hu L, Dixit VD, de Mello-Coelho V, Taub DD. Age-associated alterations in CXCL1 chemokine expression by murine B cells. BMC Immunol 2004; 5:15. [PMID: 15274748 PMCID: PMC509242 DOI: 10.1186/1471-2172-5-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 07/26/2004] [Indexed: 11/10/2022] Open
Abstract
Background The CXCL1 chemokines, macrophage inflammatory protein-2 (MIP-2) and cytokine-induced neutrophil chemoattractant (KC), have been shown to play a role in a number of pathophysiological disease states including endotoxin-induced inflammation and bacterial meningitis. While the expression of these chemokines has been identified in a variety of cell types in the mouse, little is known about their expression with murine B-lymphocytes. Results Here, we demonstrate that highly purified murine splenic B cells are capable of expressing both MIP-2 and KC protein and mRNA upon activation with lipopolysaccharide (LPS) but not in response to anti-μ and anti-CD40 in combination with interleukin-4 (IL-4) stimulation. Moreover, these chemokines are expressed at higher levels in B cells derived from young (4 m) compared to old (24–29 m) mice. Upon fractionation into distinct B-cell subsets, we found that the expression of MIP-2 and KC by aged follicular (FO) B cells is significantly decreased when compared to the same cells from younger mice, while only MIP-2 production was found to be diminished in aged marginal zone (MZ) B cells. Interestingly, MIP-2 and KC production by newly formed (NF) B cells did not significantly differ with age. Moreover, the potential relevance of these findings is supported by the poor ability of LPS-activated aged B cells to specifically mediate CXCL1-dependent leukocyte recruitment when compared to younger B cells. Conclusion Overall, the decreased expression of CXCL1 chemokines by aged B cells in response to LPS may have potential implications on the secondary recruitment of leukocytes to sites of microbial infections and inflammation possibly contributing to the increased susceptibility of older subjects to pathogen challenge.
Collapse
Affiliation(s)
- Lina Hu
- Laboratory of Immunology, Gerontology Research Center, National Institute on Aging-Intramural Research Program, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Vishwa Deep Dixit
- Laboratory of Immunology, Gerontology Research Center, National Institute on Aging-Intramural Research Program, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Valeria de Mello-Coelho
- Laboratory of Immunology, Gerontology Research Center, National Institute on Aging-Intramural Research Program, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Dennis D Taub
- Laboratory of Immunology, Gerontology Research Center, National Institute on Aging-Intramural Research Program, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| |
Collapse
|
13
|
Lorey SL, Huang YC, Sharma V. Constitutive expression of interleukin-18 and interleukin-18 receptor mRNA in tumour derived human B-cell lines. Clin Exp Immunol 2004; 136:456-62. [PMID: 15147347 PMCID: PMC1809060 DOI: 10.1111/j.1365-2249.2004.02465.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Interleukin-18 (IL-18) is a pro-inflammatory cytokine involved in the Th1 immune response and expressed by a variety of cell types. IL-18 is a member of the IL-1 family and plays an important role in autoimmune diseases and inflammation. Using reverse transcriptase-polymerase chain reaction (RT-PCR) mRNA expression of IL-18, IL-18 receptor alpha (IL-18R alpha), and beta (IL-18R beta) were studied in tumour derived human B-cell lines. Furthermore, we investigated IL-18 protein secretion by using enzyme linked immunosorbent assay (ELISA). The results, as presented in this report, suggest that IL-18, IL-18R alpha, and IL-18R beta mRNA are constitutively and ubiquitously expressed in human B-cell lines, but secretion of the functional protein does not occur. We therefore speculate that IL-18 possibly affects B-cells through paracrine actions.
Collapse
Affiliation(s)
- S L Lorey
- Laboratory of Cytokine Research, Department of Biology, University of West Florida, Pensacola, Florida 32514, USA
| | | | | |
Collapse
|