1
|
Long M, Li SX, Xiao JF, Wang J, Lozanoff S, Zhang ZG, Luft BJ, Johnson F. Kidney tubular-cell secretion of osteoblast growth factor is increased by kaempferol: a scientific basis for "the kidney controlling the bone" theory of Chinese medicine. Chin J Integr Med 2014; 20:675-81. [PMID: 25012631 DOI: 10.1007/s11655-014-1336-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To study, at the cytological level, the basic concept of Chinese medicine that "the Kidney (Shen) controls the bone". METHODS Kaempferol was isolated form Rhizoma Drynariae (Gu Sui Bu, GSB) and at several concentrations was incubated with opossum kidney (OK) cells, osteoblasts (MC3T3 E1) and human fibroblasts (HF) at cell concentrations of 2×10(4)/mL. Opossum kidney cell-conditioned culture media with kaempferol at 70 nmol/L (70kaeOKM) and without kaempferol (0OKM) were used to stimulate MC3T3 E1 and HF proliferation. The bone morphological protein receptors I and II (BMPR I and II) in OK cells were identified by immune-fluorescence staining and Western blot analysis. RESULTS Kaempferol was found to increase OK cell growth (P<0.05), but alone did not promote MC3T3 E1 or HF cell proliferation. However, although OKM by itself increased MC3T3 E1 growth by 198% (P<0.01), the 70kaeOKM further increased the growth of these cells by an additional 127% (P<0.01). It indicates that the kidney cell generates a previously unknown osteoblast growth factor (OGF) and kaempferol increases kidney cell secretion of OGF. Neither of these media had any significant effect on HF growth. Kaempferol also was found to increase the level of the BMPR II in OK cells. CONCLUSIONS This lends strong support to the original idea that the Kidney has a significant influence over bone-formation, as suggested by some long-standing Chinese medical beliefs, kaempferol may also serve to stimulate kidney repair and indirectly stimulate bone formation.
Collapse
Affiliation(s)
- Mian Long
- Department of Complementary and Alternative Medicine, University of Hawai'i at Manoa. John A, Burns School of Medicine, Honolulu, 96813, USA,
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Zambuzzi WF, Bonfante EA, Jimbo R, Hayashi M, Andersson M, Alves G, Takamori ER, Beltrão PJ, Coelho PG, Granjeiro JM. Nanometer scale titanium surface texturing are detected by signaling pathways involving transient FAK and Src activations. PLoS One 2014; 9:e95662. [PMID: 24999733 PMCID: PMC4085036 DOI: 10.1371/journal.pone.0095662] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 03/30/2014] [Indexed: 12/03/2022] Open
Abstract
Background It is known that physico/chemical alterations on biomaterial surfaces have the capability to modulate cellular behavior, affecting early tissue repair. Such surface modifications are aimed to improve early healing response and, clinically, offer the possibility to shorten the time from implant placement to functional loading. Since FAK and Src are intracellular proteins able to predict the quality of osteoblast adhesion, this study evaluated the osteoblast behavior in response to nanometer scale titanium surface texturing by monitoring FAK and Src phosphorylations. Methodology Four engineered titanium surfaces were used for the study: machined (M), dual acid-etched (DAA), resorbable media microblasted and acid-etched (MBAA), and acid-etch microblasted (AAMB). Surfaces were characterized by scanning electron microscopy, interferometry, atomic force microscopy, x-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. Thereafter, those 4 samples were used to evaluate their cytotoxicity and interference on FAK and Src phosphorylations. Both Src and FAK were investigated by using specific antibody against specific phosphorylation sites. Principal Findings The results showed that both FAK and Src activations were differently modulated as a function of titanium surfaces physico/chemical configuration and protein adsorption. Conclusions It can be suggested that signaling pathways involving both FAK and Src could provide biomarkers to predict osteoblast adhesion onto different surfaces.
Collapse
Affiliation(s)
- Willian F. Zambuzzi
- Departmento de Química e Bioquímica, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Botucatu, São Paulo, Brazil
- * E-mail: (WFZ); (JMG)
| | - Estevam A. Bonfante
- Faculdade de Odontologia de Bauru, Universidade de São Paulo, Bauru, São Paulo, Brazil
| | - Ryo Jimbo
- Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Mariko Hayashi
- Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Martin Andersson
- Department of Chemical and Biological Engineering, Applied Surface Chemistry, Chalmers University of Technology, Gothenburg, Sweden
| | - Gutemberg Alves
- Department of Cell and Molecular Biology, Institute of Biology, Universidade Federal Fluminense, Niteroi, Brazil
| | | | - Paulo J. Beltrão
- National Institute of Metrology, Quality and Technology - INMETRO, Xerém, Rio de Janeiro, Brazil
| | - Paulo G. Coelho
- Department of Biomaterials and Biomimetics/Director for Research Department of Periodontology and Implant Dentistry, New York University College of Dentistry, New York, New York, United States of America
| | - José M. Granjeiro
- National Institute of Metrology, Quality and Technology - INMETRO, Xerém, Rio de Janeiro, Brazil
- * E-mail: (WFZ); (JMG)
| |
Collapse
|
3
|
Cui S, Xiong F, Hong Y, Jung JU, Li XS, Liu JZ, Yan R, Mei L, Feng X, Xiong WC. APPswe/Aβ regulation of osteoclast activation and RAGE expression in an age-dependent manner. J Bone Miner Res 2011; 26:1084-98. [PMID: 21542009 PMCID: PMC3126661 DOI: 10.1002/jbmr.299] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD), one of the most dreaded neurodegenerative disorders, is characterized by cortical and cerebrovascular amyloid β peptide (Aβ) deposits, neurofibrillary tangles, chronic inflammation, and neuronal loss. Increased bone fracture rates and reduced bone density are commonly observed in patients with AD, suggesting one or more common denominators between both disorders. However, very few studies are available that have addressed this issue. Here, we present evidence for a function of amyloid precursor protein (APP) and Aβ in regulating osteoclast (OC) differentiation in vitro and in vivo. Tg2576 mice, which express the Swedish mutation of APP (APPswe) under the control of a prion promoter, exhibit biphasic effects on OC activation, with an increase of OCs in younger mice (< 4 months old), but a decrease in older Tg2576 mice (> 4 months old). The increase of OCs in young Tg2576 mice appears to be mediated by Aβ oligomers and receptor for advanced glycation end products (RAGE) expression in bone marrow macrophages (BMMs). However, the decrease of OC formation and activity in older Tg2576 mice may be due to the increase of soluble rage (sRAGE) in aged Tg2576 mice, an inhibitor of RANKL-induced osteoclastogenesis. These results suggest an unexpected function of APPswe/Aβ, reveal a mechanism underlying altered bone remodeling in AD patients, and implicate APP/Aβ and RAGE as common denominators for both AD and osteoporosis.
Collapse
Affiliation(s)
- Shun Cui
- Institute of Molecular Medicine & Genetics and Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Zhou J, Lee JM, Jiang P, Henderson S, Lee TD. Reduction in postsurgical adhesion formation after cardiac surgery by application of N,O-carboxymethyl chitosan. J Thorac Cardiovasc Surg 2010; 140:801-6. [DOI: 10.1016/j.jtcvs.2009.11.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 10/17/2009] [Accepted: 11/14/2009] [Indexed: 10/19/2022]
|
5
|
Cairns ML, Meenan BJ, Burke GA, Boyd AR. Influence of surface topography on osteoblast response to fibronectin coated calcium phosphate thin films. Colloids Surf B Biointerfaces 2010; 78:283-90. [PMID: 20392613 DOI: 10.1016/j.colsurfb.2010.03.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 02/17/2010] [Accepted: 03/22/2010] [Indexed: 11/26/2022]
Abstract
The ability to engineer biomaterial surfaces that are capable of a dynamic interaction with cells and tissues is central to the development of medical implants with improved functionality. An important consideration in this regard is the role played by the extracellular proteins that bind to an implant surface in vivo. Deliberate use of an ad-layer of such proteins on an implant surface has been observed to guide and direct cell response. However, the role that changes in surface topography might play in determining the nature of this cell-protein-surface interaction has not been investigated in detail. In this study, calcium phosphate (CaP) thin films have been deposited onto substrates with varying topography such that this is reflected in the (conformal) CaP surface features. A fibronectin (FN) ad-layer was then deposited from solution onto each surface and the response of MG63 osteoblast-like cells investigated. The results revealed that in all cases, the presence of the adsorbed FN layer on the CaP thin films improved MG63 cell adhesion, proliferation and promoted early onset differentiation. Moreover, the nature and scale of the response were shown to be influenced by the underlying CaP surface topography. Specifically, MG63 cell on FN-coated CaP thin films with regular topographical features in the nanometer range showed statistically significant differences in focal adhesion assembly, osteocalcin expression and alkaline phosphase activity compared to CaP thin films that lacked these topographical features. As such, these data indicate that surface topography can be used to further influence cell adhesion and downstream differentiation by enhancing the effects of a surface adsorbed FN layer.
Collapse
Affiliation(s)
- M L Cairns
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), University of Ulster, Shore Road, Newtownabbey, Co. Antrim, BT370QB, Northern Ireland, UK.
| | | | | | | |
Collapse
|
6
|
Reduction in postsurgical adhesion formation after cardiac surgery in a rabbit model using N,O-carboxymethyl chitosan to block cell adherence. J Thorac Cardiovasc Surg 2008; 135:777-83. [DOI: 10.1016/j.jtcvs.2007.09.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 08/23/2007] [Accepted: 09/19/2007] [Indexed: 11/22/2022]
|
7
|
Elkaim R, Obrecht-Pflumio S, Tenenbaum H. Paxillin phosphorylation and integrin expression in osteoblasts infected by Porphyromonas gingivalis. Arch Oral Biol 2006; 51:761-8. [PMID: 16620778 DOI: 10.1016/j.archoralbio.2006.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 02/27/2006] [Accepted: 03/01/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE We investigated early biological events initiated by Porphyromonas gingivalis infection of human osteoblasts, focusing on tyrosine-phosphorylation and the expression of key components in focal adhesion and cell signalling. DESIGN Human primary osteoblasts were challenged for 1h with Porphyromonas gingivalis. Tyrosine-phosphorylation of paxillin and focal adhesion kinase (FAK) was examined by Western blotting. Changes in alpha3- and beta1-integrin mRNA expression were quantified by RT-PCR. RESULTS Tyrosine-phosphorylation of paxillin was proportional to the size of the Porphyromonas gingivalis inoculum. FAK, a potential kinase for paxillin, was not activated. The amount of alpha3- and beta1-integrins, determined by Western blotting, did not vary significantly, while the corresponding mRNA levels fell significantly when a large bacterial inoculum was used. CONCLUSIONS These results indicate that Porphyromonas gingivalis infection of osteoblasts in vitro triggers tyrosine-phosphorylation of paxillin but not FAK and modify alpha3- and beta1-integrin mRNA expression. This infection thus appears to have different effects on components with essential roles in focal adhesion (paxillin) and cell signalling (FAK and integrins).
Collapse
Affiliation(s)
- René Elkaim
- Parogène, 11 rue Humann, 67085 Strasbourg Cedex, France
| | | | | |
Collapse
|
8
|
Takai E, Costa KD, Shaheen A, Hung CT, Guo XE. Osteoblast Elastic Modulus Measured by Atomic Force Microscopy Is Substrate Dependent. Ann Biomed Eng 2005; 33:963-71. [PMID: 16060537 DOI: 10.1007/s10439-005-3555-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The actin and microtubule cytoskeleton have been found to contribute to the elastic modulus of cells, which may be modulated by adhesion to extracellular matrix (ECM) proteins and subsequent alterations in the cytoskeleton. In this study, the apparent elastic modulus (Eapp) of osteoblast-like MC3T3-E1 cells adhered to fibronectin (FN), vitronectin (VN), type I collagen (COLI), fetal bovine serum (FBS), or poly-l-lysine (PLL), and bare glass were determined using an atomic force microscope (AFM). The E(app) of osteoblasts adhered to ECM proteins (FN, VN, COLI, and FBS) that bind cells via integrins were higher compared to cells on glass and PLL, which adhere cells through nonspecific binding. Also, osteoblasts adhered to FN, VN, COLI, and FBS had F-actin stress fiber formation, while osteoblasts on glass and PLL showed few F-actin fibers. Disruption of the actin cytoskeleton decreased E(app) of osteoblasts plated on FN to the level of osteoblasts plated on glass, while microtubule disruption had no significant effect. This suggests that the elevated modulus of osteoblasts adhered to FN was due to remodeling of the actin cytoskeleton upon adhesion to ECM proteins. Modulation of cell stiffness upon adhesion to various substrates may influence mechanosignal transduction in osteoblasts.
Collapse
Affiliation(s)
- Erica Takai
- Bone Bioengineering Laboratory, Columbia University, New York, NY 10027, USA
| | | | | | | | | |
Collapse
|
9
|
Kilpadi KL, Sawyer AA, Prince CW, Chang PL, Bellis SL. Primary human marrow stromal cells and Saos-2 osteosarcoma cells use different mechanisms to adhere to hydroxylapatite. J Biomed Mater Res A 2004; 68:273-85. [PMID: 14704969 DOI: 10.1002/jbm.a.20043] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One important step in bone formation on hard tissue implants is adhesion of osteoblast precursors to the implant surface. In this study, we used function-blocking antibodies against integrin subunits to characterize the mechanisms used by human marrow stromal cells and Saos-2 osteosarcoma cells to adhere to protein-coated hydroxylapatite (HA). We found that Saos-2 use both alpha5- and alphav-containing integrins, whereas stromal cells use alphav-containing integrins but not alpha5-containing integrins, despite the presence of alpha5-containing integrins on cell surfaces. On the basis of this difference, we examined binding of these cell types to HA coated with fibronectin (FN) or vitronectin (VN), to determine whether these ligands for alpha5 and alphav integrins could enhance the numbers or morphology of cells adhered to them. We also examined the adhesion of cells to HA coated with RGD peptides designed to bind to FN or VN receptors. Morphology and number of adherent stromal cells were markedly enhanced on serum-coated surfaces compared with FN or VN alone, whereas, surprisingly, Saos-2 cells failed to spread on serum-coated HA and displayed superior spreading and stress fiber formation on FN-coated [corrected] HA. Collectively, these results have important implications for the design of protein coatings to enhance the performance of HA implants.
Collapse
Affiliation(s)
- Krista L Kilpadi
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | |
Collapse
|
10
|
Washburn NR, Yamada KM, Simon CG, Kennedy SB, Amis EJ. High-throughput investigation of osteoblast response to polymer crystallinity: influence of nanometer-scale roughness on proliferation. Biomaterials 2004; 25:1215-24. [PMID: 14643595 DOI: 10.1016/j.biomaterials.2003.08.043] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A high-throughput method for analyzing cellular response to crystallinity in a polymer material is presented. Variations in crystallinity lead to changes in surface roughness on nanometer length scales, and it is shown that cells are exquisitely sensitive to these changes. Gradients of polymer crystallinity were fabricated on films of poly(L-lactic acid) using a gradient in annealing temperature. The resultant morphologies were characterized using an atomic force microscope. Root-mean-square (rms) roughness values ranging from 0.5 to 13 nm were created on a single sample. MC3T3-E1 osteoblastic cells were cultured for 1, 3 and 5 d, and the number of cells was measured using automated fluorescence microscopy. It is shown that the rate of proliferation on the smooth regions of the films is much greater than that on the rough regions, and a monotonic variation in rate is observed as a function of roughness. The critical rms roughness, above which a statistically significant reduction in rate of proliferation occurs, was approximately 1.1 nm. Fluorescence microscopy measurements on immunostained cells indicate there is no significant change in cell area, the number or type of adhesions formed, or the degree of actin polymerization. Results from enzyme-linked immunofluorescence assays indicated that there was no detectable change in adhesion protein accessibility, suggesting the cells directly respond to substrate topography. The use of the gradient library approach yielded the functional dependence of cell proliferation on nanometer-scale roughness and gave a sensitive estimate of the critical roughness for which a decrease in proliferation is observed.
Collapse
Affiliation(s)
- Newell R Washburn
- Polymers Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | | | | | | | | |
Collapse
|
11
|
Abstract
Paxillin has been recognized as a focal adhesion adapter protein that participates in the integrin-mediated signaling. An earlier study [Ogawa et al. Biochim. Biophys. Acta 1519 (2001) 235] found that frog paxillin was expressed in the kidney epithelial cell line A6 and localized in the nucleus. Here, in this study, we have found that the expression of frog paxillin is up-regulated in the S phase of cell cycle. The protein became phosphorylated on tyrosine when the cells were grown on vitronectin; the tyrosine phosphorylation was not detectable when the cells were cultured on fibronectin, laminin or poly-D-lysine. On the other hand, MAP kinase was revealed to phosphorylate frog paxillin on serine. Both phosphorylation events, namely on tyrosine and serine, were essential for the nuclear translocation of this protein. Our results suggest that the integrin-mediated signaling pathway and the MAP kinase pathway meet at paxillin.
Collapse
Affiliation(s)
- Motoyuki Ogawa
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | |
Collapse
|
12
|
Luu YK, Kim K, Hsiao BS, Chu B, Hadjiargyrou M. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J Control Release 2003; 89:341-53. [PMID: 12711456 DOI: 10.1016/s0168-3659(03)00097-x] [Citation(s) in RCA: 476] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present work utilizes electrospinning to fabricate synthetic polymer/DNA composite scaffolds for therapeutic application in gene delivery for tissue engineering. The scaffolds are non-woven, nano-fibered, membranous structures composed predominantly of poly(lactide-co-glycolide) (PLGA) random copolymer and a poly(D,L-lactide)-poly(ethylene glycol) (PLA-PEG) block copolymer. Release of plasmid DNA from the scaffolds was sustained over a 20-day study period, with maximum release occurring at approximately 2 h. Cumulative release profiles indicated amounts released were approximately 68-80% of the initially loaded DNA. Variations in the PLGA to PLA-PEG block copolymer ratio vastly affected the overall structural morphology, as well as both the rate and efficiency of DNA release. Results indicated that DNA released directly from these electrospun scaffolds was indeed intact, capable of cellular transfection, and successfully encoded the protein beta-galactosidase. When tested under tensile loads, the electrospun polymer/DNA composite scaffolds exhibited tensile moduli of approximately 35 MPa, with approximately 45% strain initially. These values approximate those of skin and cartilage. Taken together, this work represents the first successful demonstration of plasmid DNA incorporation into a polymer scaffold using electrospinning.
Collapse
Affiliation(s)
- Y K Luu
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-2580, USA
| | | | | | | | | |
Collapse
|
13
|
Vautier D, Karsten V, Egles C, Chluba J, Schaaf P, Voegel JC, Ogier J. Polyelectrolyte multilayer films modulate cytoskeletal organization in chondrosarcoma cells. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2003; 13:713-32. [PMID: 12182553 DOI: 10.1163/156856202320269175] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to evaluate polyelectrolyte multilayer films as interfaces for implants. Polyelectrolyte multilayers were built up with different terminating layers by alternate deposition of oppositely charged polyelectrolytes on which chondrosarcoma (HCS-2/8) cells were grown in the presence of serum. Films formed by an increasing number of layers were investigated. The terminating layer was made of one of the following polyelectrolytes: poly-sodium-4-styrenesulfonate (PSS), poly-L-glutamic acid (PGA), poly-allylamine hydrochloride (PAH), or poly(L-lysine) (PLL). Cell viability, inflammatory response, adherence, and cytoskeletal organization were studied. Induction of interleukin-8 (IL-8) secretion was detected on PAH and PLL ending polyelectrolyte films. Early cellular adherence was enhanced with PGA, PAH, PLL, and, to a lower extent, PSS terminating layers. Adherence was independent of the number of layers constituting the films. The presence of actin filaments and vinculin focal adhesion spots was observed on PSS or PAH ending films. They were respectively partially and totally absent on PGA and PLL terminating multilayer architectures. For PLL ending films, vinculin and actin organization was clearly dependent on the number of deposited layers. The results of this study suggest that PSS ending multilayered films constitute a good interfacial micro-environment at the material surface for HCS-2/8 cells.
Collapse
|
14
|
Kao WJ, Liu Y. Intracellular protein tyrosine phosphorylation of adherent human macrophages on adsorbed fibronectin. Biomaterials 2003; 24:1183-91. [PMID: 12527259 DOI: 10.1016/s0142-9612(02)00489-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fibronectin (FN) was pre-adsorbed onto physicochemically distinct substrates: polyethyleneglycol-based networks or tissue culture polystyrene (TCPS). The role of these substrates in modulating FN-mediated intracellular protein tyrosine phosphorylation and cell adhesion was analyzed with human primary blood derived macrophages. Although macrophage adhesion on both FN-pre-adsorbed TCPS and networks was similarly dependent on protein tyrosine kinase (PTK) and protein serine/threonine kinase (PSK), the compensation between PTK and PSK, and the involvement of signaling molecules (such as protein kinase C (PKC) isoforms) were distinct between the substrates. The pattern and the extent of tyrosine phosphorylation of several proteins (i.e. approximately 70, approximately 44, approximately 30kDa) were differentially regulated by PKCs. FN-derived peptides were employed to probe this material-dependency in macrophage adhesion and tyrosine phosphorylation. The PHSRN domain in the peptide sequence was predominant in mediating this substrate-dependent FN signaling event. We conclude that the tyrosine phosphorylation and the cross talk between PTK and PSK are modulated by FN and the substrate onto which the protein is adsorbed.
Collapse
Affiliation(s)
- Weiyuan John Kao
- School of Pharmacy, University of Wisconsin-Madison, Madison WI, USA.
| | | |
Collapse
|
15
|
Lee YJ, Park SJ, Lee WK, Ko JS, Kim HM. MG63 osteoblastic cell adhesion to the hydrophobic surface precoated with recombinant osteopontin fragments. Biomaterials 2003; 24:1059-66. [PMID: 12504528 DOI: 10.1016/s0142-9612(02)00439-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The hydrophobicity of biomaterials has been recognized as a limitation to the adequate function of anchorage-dependent cells when hydrophobic biomaterials are used for tissue engineering. This is due to flawed solid-state signals from cell adhesion. In this study, a recombinant osteopontin (rOPN17-169) fragment containing the cell adhesion motifs was expressed in E. coli and was precoated on the hydrophobic surface prior to osteoblastic MG63 cell culture. Precoating the hydrophobic surface with rOPN17-169 improved osteoblastic cell adhesion, which was blocked by soluble RGDS. The adhesion of MG63 cells to rOPN17-169 pre-coated surface-activated mitogen-activated protein kinases (MAPK) such as extracellular signal-receptor kinase 1/2, p38, and c-Jun N-terminal kinase (JNK). In addition, p38 MAPK was activated in response to a soluble factor of transforming growth factor-beta in the cells adhered to the hydrophobic surface via rOPN17-169. This suggests that rOPN17-169 precoated on the hydrophobic surface can allow osteoblastic cells to generate adhesion signals sufficient for cell adhesion, MAPK activation, and the cytokine activation of osteoblastic cells.
Collapse
Affiliation(s)
- Yun Jung Lee
- Laboratory for the Study of Molecular Biointerfaces, Department of Oral Anatomy, College of Dentistry, BK21HLS, and Intellectual Biointerface Engineering Center, Seoul National University, 28-22, YeonKun-Dong, ChongRo-Ku, Seoul 110-749, South Korea
| | | | | | | | | |
Collapse
|
16
|
Sommerfeldt DW, Zhi J, Rubin CT, Hadjiargyrou M. Proline-rich transcript of the brain (prtb) is a serum-responsive gene in osteoblasts and upregulated during adhesion. J Cell Biochem 2002; 84:301-8. [PMID: 11787059 DOI: 10.1002/jcb.10018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To characterize the temporal expression of genes that play a functional role during the process of osteoblast adhesion, we used differential display (DD-PCR) on mRNA isolated from attached vs. suspended osteoblasts. A 200-bp fragment displaying upregulated expression after 30 and 60 min adhesion was isolated, sequenced, and showed 97% homology to prtb, previously showed to be expressed in mouse brain. Northern analysis confirmed a two-fold increase in prtb message during adhesion to tissue culture polystyrene, both in the presence or absence of surface-adsorbed serum proteins. Serum stimulation alone was also able to induce prtb expression, although to a lesser extent, in suspension cells. Strong prtb expression was also detected in both brain and bone of adult rats. Furthermore, prtb expression analysis during MC3T3-E1 cell differentiation revealed high expression levels independent of proliferation (day 0-7), matrix maturation (day 7-14), and mineralization (day 14-31). Time course analysis of prtb expression during adhesion of sensitized osteoblasts to serum-protein coated surfaces showed robust mRNA expression at 5 min post-plating and a peak at 10 min. The two known serum-inducible immediate early genes c-fos and c-jun showed similar expression kinetics, with c-jun mRNA levels peaking at 15 min and c-fos at 20 min. Based on these data, we hypothesize that prtb may function as an immediate early, serum-responsive, and adhesion-inducible gene with possible involvement in processes such as cell cycle control, adhesion, and proliferation.
Collapse
Affiliation(s)
- Dirk W Sommerfeldt
- Department of Orthopaedics, State University of New York at Stony Brook, Stony Brook, New York 11794-2580, USA
| | | | | | | |
Collapse
|