1
|
Kawaguchi K, Imanaka T. Substrate Specificity and the Direction of Transport in the ABC Transporters ABCD1–3 and ABCD4. Chem Pharm Bull (Tokyo) 2022; 70:533-539. [DOI: 10.1248/cpb.c21-01021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kosuke Kawaguchi
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Tsuneo Imanaka
- Faculty of Pharmaceutical Sciences, Hiroshima International University
| |
Collapse
|
2
|
Imanaka T. Biogenesis and Function of Peroxisomes in Human Disease with a Focus on the ABC Transporter. Biol Pharm Bull 2019; 42:649-665. [PMID: 31061307 DOI: 10.1248/bpb.b18-00723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisomes are indispensable organelles in mammals including humans. They are involved in the β-oxidation of very long chain fatty acids, and the synthesis of ether phospholipids and bile acids. Pre-peroxisomes bud from endoplasmic reticulum and peroxisomal membrane and matrix proteins are imported to the pre-peroxisomes. Then, matured peroxisomes grow by division. Impairment of the biogenesis and function of peroxisomes results in severe diseases. Since I first undertook peroxisome research in Prof. de Duve's laboratory at Rockefeller University in 1985, I have continuously studied peroxisomes for more than 30 years, with a particular focus on the ATP-binding cassette (ABC) transporters. Here, I review the history of peroxisome research, the biogenesis and function of peroxisomes, and peroxisome disease including X-linked adrenoleukodystrophy. The review includes the targeting and function of the ABC transporter subfamily D.
Collapse
Affiliation(s)
- Tsuneo Imanaka
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
3
|
Torres SE, Gallagher CM, Plate L, Gupta M, Liem CR, Guo X, Tian R, Stroud RM, Kampmann M, Weissman JS, Walter P. Ceapins block the unfolded protein response sensor ATF6α by inducing a neomorphic inter-organelle tether. eLife 2019; 8:46595. [PMID: 31149896 PMCID: PMC6588346 DOI: 10.7554/elife.46595] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/30/2019] [Indexed: 01/23/2023] Open
Abstract
The unfolded protein response (UPR) detects and restores deficits in the endoplasmic reticulum (ER) protein folding capacity. Ceapins specifically inhibit the UPR sensor ATF6α, an ER-tethered transcription factor, by retaining it at the ER through an unknown mechanism. Our genome-wide CRISPR interference (CRISPRi) screen reveals that Ceapins function is completely dependent on the ABCD3 peroxisomal transporter. Proteomics studies establish that ABCD3 physically associates with ER-resident ATF6α in cells and in vitro in a Ceapin-dependent manner. Ceapins induce the neomorphic association of ER and peroxisomes by directly tethering the cytosolic domain of ATF6α to ABCD3’s transmembrane regions without inhibiting or depending on ABCD3 transporter activity. Thus, our studies reveal that Ceapins function by chemical-induced misdirection which explains their remarkable specificity and opens up new mechanistic routes for drug development and synthetic biology.
Collapse
Affiliation(s)
- Sandra Elizabeth Torres
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Ciara M Gallagher
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, United States.,Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Meghna Gupta
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Christina R Liem
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Xiaoyan Guo
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| | - Ruilin Tian
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Martin Kampmann
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Peter Walter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
4
|
Predictive Structure and Topology of Peroxisomal ATP-Binding Cassette (ABC) Transporters. Int J Mol Sci 2017; 18:ijms18071593. [PMID: 28737695 PMCID: PMC5536080 DOI: 10.3390/ijms18071593] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/10/2017] [Accepted: 07/19/2017] [Indexed: 12/12/2022] Open
Abstract
The peroxisomal ATP-binding Cassette (ABC) transporters, which are called ABCD1, ABCD2 and ABCD3, are transmembrane proteins involved in the transport of various lipids that allow their degradation inside the organelle. Defective ABCD1 leads to the accumulation of very long-chain fatty acids and is associated with a complex and severe neurodegenerative disorder called X-linked adrenoleukodystrophy (X-ALD). Although the nucleotide-binding domain is highly conserved and characterized within the ABC transporters family, solid data are missing for the transmembrane domain (TMD) of ABCD proteins. The lack of a clear consensus on the secondary and tertiary structure of the TMDs weakens any structure-function hypothesis based on the very diverse ABCD1 mutations found in X-ALD patients. Therefore, we first reinvestigated thoroughly the structure-function data available and performed refined alignments of ABCD protein sequences. Based on the 2.85 Å resolution crystal structure of the mitochondrial ABC transporter ABCB10, here we propose a structural model of peroxisomal ABCD proteins that specifies the position of the transmembrane and coupling helices, and highlight functional motifs and putative important amino acid residues.
Collapse
|
5
|
ABC Transporter Subfamily D: Distinct Differences in Behavior between ABCD1-3 and ABCD4 in Subcellular Localization, Function, and Human Disease. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6786245. [PMID: 27766264 PMCID: PMC5059523 DOI: 10.1155/2016/6786245] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/29/2016] [Indexed: 12/15/2022]
Abstract
ATP-binding cassette (ABC) transporters are one of the largest families of membrane-bound proteins and transport a wide variety of substrates across both extra- and intracellular membranes. They play a critical role in maintaining cellular homeostasis. To date, four ABC transporters belonging to subfamily D have been identified. ABCD1-3 and ABCD4 are localized to peroxisomes and lysosomes, respectively. ABCD1 and ABCD2 are involved in the transport of long and very long chain fatty acids (VLCFA) or their CoA-derivatives into peroxisomes with different substrate specificities, while ABCD3 is involved in the transport of branched chain acyl-CoA into peroxisomes. On the other hand, ABCD4 is deduced to take part in the transport of vitamin B12 from lysosomes into the cytosol. It is well known that the dysfunction of ABCD1 results in X-linked adrenoleukodystrophy, a severe neurodegenerative disease. Recently, it is reported that ABCD3 and ABCD4 are responsible for hepatosplenomegaly and vitamin B12 deficiency, respectively. In this review, the targeting mechanism and physiological functions of the ABCD transporters are summarized along with the related disease.
Collapse
|
6
|
Kemp S, Theodoulou FL, Wanders RJA. Mammalian peroxisomal ABC transporters: from endogenous substrates to pathology and clinical significance. Br J Pharmacol 2012; 164:1753-66. [PMID: 21488864 DOI: 10.1111/j.1476-5381.2011.01435.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Peroxisomes are indispensable organelles in higher eukaryotes. They are essential for a number of important metabolic pathways, including fatty acid α- and β-oxidation, and biosynthesis of etherphospholipids and bile acids. However, the peroxisomal membrane forms an impermeable barrier to these metabolites. Therefore, peroxisomes need specific transporter proteins to transfer these metabolites across their membranes. The mammalian peroxisomal membrane harbours three ATP-binding cassette (ABC) transporters. In recent years, significant progress has been made in unravelling the functions of these ABC transporters. There is ample evidence that they are involved in the transport of very long-chain fatty acids, pristanic acid, di- and trihydroxycholestanoic acid, dicarboxylic acids and tetracosahexaenoic acid (C24:6ω3). Surprisingly, only one disease is associated with a deficiency of a peroxisomal ABC transporter. Mutations in the ABCD1 gene encoding the peroxisomal ABC transporter adrenoleukodystrophy protein are the cause for X-linked adrenoleukodystrophy, an inherited metabolic storage disorder. This review describes the current state of knowledge on the mammalian peroxisomal ABC transporters with a particular focus on their function in metabolite transport.
Collapse
Affiliation(s)
- Stephan Kemp
- Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| | | | | |
Collapse
|
7
|
Morita M, Imanaka T. Peroxisomal ABC transporters: structure, function and role in disease. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1387-96. [PMID: 22366764 DOI: 10.1016/j.bbadis.2012.02.009] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 01/07/2012] [Accepted: 02/08/2012] [Indexed: 12/20/2022]
Abstract
ATP-binding cassette (ABC) transporters belong to one of the largest families of membrane proteins, and are present in almost all living organisms from eubacteria to mammals. They exist on plasma membranes and intracellular compartments such as the mitochondria, peroxisomes, endoplasmic reticulum, Golgi apparatus and lysosomes, and mediate the active transport of a wide variety of substrates in a variety of different cellular processes. These include the transport of amino acids, polysaccharides, peptides, lipids and xenobiotics, including drugs and toxins. Three ABC transporters belonging to subfamily D have been identified in mammalian peroxisomes. The ABC transporters are half-size and assemble mostly as a homodimer after posttranslational transport to peroxisomal membranes. ABCD1/ALDP and ABCD2/ALDRP are suggested to be involved in the transport of very long chain acyl-CoA with differences in substrate specificity, and ABCD3/PMP70 is involved in the transport of long and branched chain acyl-CoA. ABCD1 is known to be responsible for X-linked adrenoleukodystrophy (X-ALD), an inborn error of peroxisomal β-oxidation of very long chain fatty acids. Here, we summarize recent advances and important points in our advancing understanding of how these ABC transporters target and assemble to peroxisomal membranes and perform their functions in physiological and pathological processes, including the neurodegenerative disease, X-ALD.
Collapse
Affiliation(s)
- Masashi Morita
- Department of Biological Chemistry, University of Toyama, Toyama, Japan
| | | |
Collapse
|
8
|
Kashiwayama Y, Asahina K, Morita M, Imanaka T. Hydrophobic Regions Adjacent to Transmembrane Domains 1 and 5 Are Important for the Targeting of the 70-kDa Peroxisomal Membrane Protein. J Biol Chem 2007; 282:33831-33844. [PMID: 17761678 DOI: 10.1074/jbc.m703369200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 70-kDa peroxisomal membrane protein (PMP70) is a major component of peroxisomal membranes. Human PMP70 consists of 659 amino acid residues and has six putative transmembrane domains (TMDs). PMP70 is synthesized on cytoplasmic ribosomes and targeted posttranslationally to peroxisomes by an unidentified peroxisomal membrane protein targeting signal (mPTS). In this study, to examine the mPTS within PMP70 precisely, we expressed various COOH-terminally or NH(2)-terminally deleted constructs of PMP70 fused with green fluorescent protein (GFP) in Chinese hamster ovary cells and determined their intracellular localization by immunofluorescence. In the COOH-terminally truncated PMP70, PMP70(AA.1-144)-GFP, including TMD1 and TMD2 of PMP70, was still localized to peroxisomes. However, by further removal of TMD2, PMP70(AA.1-124)-GFP lost the targeting ability, and PMP70(TMD2)-GFP did not target to peroxisomes by itself. The substitution of TMD2 in PMP70(AA.1-144)-GFP for TMD4 or TMD6 did not affect the peroxisomal localization, suggesting that PMP70(AA.1-124) contains the mPTS and an additional TMD is required for the insertion into the peroxisomal membrane. In the NH(2)-terminal 124-amino acid region, PMP70 possesses hydrophobic segments in the region adjacent to TMD1. By the disruption of these hydrophobic motifs by the mutation of L21Q/L22Q/L23Q or I70N/L71Q, PMP70(AA.1-144)-GFP lost targeting efficiency. The NH(2)-terminally truncated PMP70, GFP-PMP70(AA.263-375), including TMD5 and TMD6, exhibited the peroxisomal localization. PMP70(AA.263-375) also possesses hydrophobic residues (Ile(307)/Leu(308)) in the region adjacent to TMD5, which were important for targeting. These results suggest that PMP70 possesses two distinct targeting signals, and hydrophobic regions adjacent to the first TMD of each region are important for targeting.
Collapse
Affiliation(s)
- Yoshinori Kashiwayama
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kota Asahina
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Masashi Morita
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Tsuneo Imanaka
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
9
|
Hillebrand M, Verrier SE, Ohlenbusch A, Schäfer A, Söling HD, Wouters FS, Gärtner J. Live cell FRET microscopy: homo- and heterodimerization of two human peroxisomal ABC transporters, the adrenoleukodystrophy protein (ALDP, ABCD1) and PMP70 (ABCD3). J Biol Chem 2007; 282:26997-27005. [PMID: 17609205 DOI: 10.1074/jbc.m702122200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The adrenoleukodystrophy protein (ALDP) and the 70-kDa peroxisomal membrane protein (PMP70) are half-ATP-binding cassette (ABC) transporters in the mammalian peroxisome membrane. Mutations in the gene encoding ALDP result in a devastating neurodegenerative disorder, X-linked adrenoleukodystrophy (X-ALD) that is associated with elevated levels of very long chain fatty acids because of impaired peroxisomal beta-oxidation. The interactions of peroxisomal ABC transporters, their role in the peroxisomal membrane, and their functions in disease pathogenesis are poorly understood. Studies on ABC transporters revealed that half-transporters have to dimerize to gain functionality. So far, conflicting observations are described for ALDP. By the use of in vitro methods (yeast two-hybrid and immunoprecipitation assays) on the one hand, it was shown that ALDP can form homodimers as well as heterodimers with PMP70 and ALDR, while on the other hand, it was demonstrated that ALDP and PMP70 exclusively homodimerize. To circumvent the problems of artificial interactions due to biochemical sample preparation in vitro, we investigated protein-protein interaction of ALDP in its physiological environment by FRET microscopy in intact living cells. The statistical relevance of FRET data was determined in two different ways using probability distribution shift analysis and Kolmogorov-Smirnov statistics. We demonstrate in vivo that ALDP and PMP70 form homodimers as well as ALDP/PMP70 heterodimers where ALDP homodimers predominate. Using C-terminal deletion constructs of ALDP, we demonstrate that the last 87 C-terminal amino acids harbor the most important protein domain mediating these interactions, and that the N-terminal transmembrane region of ALDP has an additional stabilization effect on ALDP homodimers. Loss of ALDP homo- or heterodimerization is highly relevant for understanding the disease mechanisms of X-ALD.
Collapse
Affiliation(s)
- Merle Hillebrand
- Department of Pediatrics and Pediatric Neurology, Georg August University, Faculty of Medicine, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Sophie E Verrier
- Department of Neurobiology, Max Planck Institute of Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Andreas Ohlenbusch
- Department of Pediatrics and Pediatric Neurology, Georg August University, Faculty of Medicine, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Annika Schäfer
- Department of Pediatrics and Pediatric Neurology, Georg August University, Faculty of Medicine, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Hans-Dieter Söling
- Department of Neurobiology, Max Planck Institute of Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Fred S Wouters
- Cell Biophysics Group, European Neuroscience Institute, Waldweg 33, 37073 Göttingen, Germany
| | - Jutta Gärtner
- Department of Pediatrics and Pediatric Neurology, Georg August University, Faculty of Medicine, Robert-Koch-Strasse 40, 37075 Göttingen, Germany.
| |
Collapse
|
10
|
Fujiki Y, Matsuzono Y, Matsuzaki T, Fransen M. Import of peroxisomal membrane proteins: The interplay of Pex3p- and Pex19p-mediated interactions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1639-46. [PMID: 17069900 DOI: 10.1016/j.bbamcr.2006.09.030] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 09/07/2006] [Accepted: 09/20/2006] [Indexed: 02/01/2023]
Abstract
In contrast to the molecular mechanisms underlying import of peroxisomal matrix proteins, those involving the transport of membrane proteins remain rather elusive. At present, two targeting routes for peroxisomal membrane proteins (PMPs) have been depicted: class I PMPs are targeted from the cytoplasm directly to the peroxisome membrane, and class II PMPs are sorted indirectly to peroxisomes via the endoplasmic reticulum (ER). In addition, three peroxins--Pex3p, Pex16p, and Pex19p - have been identified as essential factors for PMP assembly in several species including humans: Pex19p is a predominantly cytoplasmic protein that shows a broad PMP-binding specificity; Pex3p serves as the membrane-anchoring site for Pex19p; and Pex16p - a protein absent in most yeasts--is thought to provide the initial scaffold for recruiting the protein import machinery required for peroxisome membrane biogenesis. Remarkably, the function of Pex16p does not appear to be conserved between different species. In addition, significant disagreement exists about whether Pex19p has a chaperone-like role in the cytosol or at the peroxisome membrane and/or functions as a cycling import receptor for newly synthesized PMPs. Here we review the recent progress made in our understanding of the role of two key players in PMP biogenesis, Pex3p and Pex19p.
Collapse
Affiliation(s)
- Yukio Fujiki
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan.
| | | | | | | |
Collapse
|
11
|
Van Ael E, Fransen M. Targeting signals in peroxisomal membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1629-38. [PMID: 17020786 DOI: 10.1016/j.bbamcr.2006.08.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 08/17/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
Abstract
Peroxisomal membrane proteins (PMPs) are encoded by the nuclear genome and translated on cytoplasmic ribosomes. Newly synthesized PMPs can be targeted directly from the cytoplasm to peroxisomes or travel to peroxisomes via the endoplasmic reticulum (ER). The mechanisms responsible for the targeting of these proteins to the peroxisomal membrane are still rather poorly understood. However, it is clear that the trafficking of PMPs to peroxisomes depends on the presence of cis-acting targeting signals, called mPTSs. These mPTSs show great variability both in the identity and number of requisite residues. An emerging view is that mPTSs consist of at least two functionally distinct domains: a targeting element, which directs the newly synthesized PMP from the cytoplasm to its target membrane, and a membrane-anchoring sequence, which is required for the permanent insertion of the protein into the peroxisomal membrane. In this review, we summarize our knowledge of the mPTSs currently identified.
Collapse
Affiliation(s)
- Elke Van Ael
- Katholieke Universiteit Leuven, Faculty of Medicine, Department of Molecular Cell Biology, Division of Pharmacology, Campus Gasthuisberg, Herestraat 49 bus 601, 3000 Leuven, Belgium
| | | |
Collapse
|
12
|
Matsuzono Y, Matsuzaki T, Fujiki Y. Functional domain mapping of peroxin Pex19p: interaction with Pex3p is essential for function and translocation. J Cell Sci 2006; 119:3539-50. [PMID: 16895967 DOI: 10.1242/jcs.03100] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The peroxin Pex19p functions in peroxisomal membrane assembly. Here we mapped functional domains of human Pex19p comprising 299 amino acids. Pex19p mutants deleted in the C-terminal CAAx farnesylation motif, the C-terminal 38 amino acid residues and the N-terminal 11 residues, maintained peroxisome-restoring activity in pex19 cells. The sequence 12-261 was essential for re-establishing peroxisome activity. Pex19p was partly localized to peroxisomes but mostly localized in the cytosol. Pex19p interacted with multiple membrane proteins, including the other two membrane biogenesis peroxins, Pex3p and Pex16p, those involved in matrix protein import such as Pex14p, Pex13p, Pex10p, and Pex26p, peroxisome morphogenesis factor Pex11pbeta, and a PMP70 peroxisome-targeting signal region at residues 1-123. In yeast two-hybrid assays, Pex10p and Pex11pbeta interacted only with full-length Pex19p. Of various truncated Pex19p variants active in translocating to peroxisomes, the mutants with the shortest sequence (residues 12-73 and 40-131) were localized to peroxisomes and competent in binding to Pex3p. Furthermore, membrane peroxins were initially discernible in a cytosolic staining pattern in pex19 cells only when co-expressed with Pex19p and were then localized to peroxisomes in a temporally differentiated manner. Pex19p probably functions as a chaperone for membrane proteins and transports them to peroxisomes by anchoring to Pex3p using residues 12-73 and 40-131.
Collapse
Affiliation(s)
- Yuji Matsuzono
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
13
|
Islinger M, Lüers GH, Zischka H, Ueffing M, Völkl A. Insights into the membrane proteome of rat liver peroxisomes: microsomal glutathione-S-transferase is shared by both subcellular compartments. Proteomics 2006; 6:804-16. [PMID: 16385473 DOI: 10.1002/pmic.200401347] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Peroxisomes are ubiquitous "multipurpose" organelles of eukaryotic cells. Their matrix enzymes catalyze mainly catabolic and anabolic reactions of lipid metabolism, thus contributing to the regulation of lipid homeostasis. Since most metabolites must be actively transported across the peroxisomal membrane and since individual proteins and protein complexes play functional roles in such transport processes, we analyzed the peroxisomal membrane proteome. Benzyldimethyl-n-hexadecylammoniumchloride (16-BAC)/SDS-2-D-PAGE and mass spectrometry were used to characterize the proteomes of highly purified "light" and "heavy" peroxisomes of rat liver obtained by density gradient centrifugation. In both populations, the major integral membrane proteins could be detected in high concentrations, verifying 16-BAC/SDS-2-D-PAGE as a suitable tool for the preparation of membrane proteomes destined for mass spectrometric analysis. Both reliable and reproducible detection of a distinct set of microsomal (ER) membrane proteins, including microsomal glutathione-S-transferase (mGST), in light and heavy peroxisomal fractions was also possible. Compared with the abundance of most microsomal membrane proteins, we found mGST to be specifically enriched in peroxisomal membrane fractions. Furthermore, C terminus epitope-tagged mGST versions were localized at least in part to peroxisomes in different mammalian cell lines. Taken together, these data suggest that the peroxisomal GST is not a mere ER-contaminant, but a bona fide protein comprising the membrane proteome of both intracellular compartments. In addition, we could detect several mitochondrial proteins in light peroxisome fractions. This finding may likely indicate a physical association of light peroxisomes with mitochondria, since the organelles could be partly separated by mechanical stress. Whether this association is of functional importance awaits further investigation.
Collapse
Affiliation(s)
- Markus Islinger
- Department of Anatomy and Cell Biology II, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
14
|
Kashiwayama Y, Asahina K, Shibata H, Morita M, Muntau AC, Roscher AA, Wanders RJA, Shimozawa N, Sakaguchi M, Kato H, Imanaka T. Role of Pex19p in the targeting of PMP70 to peroxisome. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1746:116-28. [PMID: 16344115 DOI: 10.1016/j.bbamcr.2005.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 10/12/2005] [Accepted: 10/13/2005] [Indexed: 11/19/2022]
Abstract
Pex19p is a protein required for the peroxisomal membrane synthesis. The 70-kDa peroxisomal membrane protein (PMP70) is synthesized on free cytosolic ribosomes and then inserted posttranslationally into peroxisomal membranes. Pex19p has been shown to play an important role in this process. Using an in vitro translation system, we investigated the role of Pex19p as a chaperone and identified the regions of PMP70 required for the interaction with Pex19p. When PMP70 was translated in the presence of purified Pex19p, a large part of PMP70 existed as soluble form and was co-immunoprecipitated with Pex19p. However, in the absence of Pex19p, PMP70 formed aggregates during translation. To identify the regions that interact with Pex19p, various truncated PMP70 were translated in the presence of Pex19p and subjected to co-immunoprecipitation. The interaction was markedly reduced by the deletion of the NH(2)-terminal 61 amino acids or the region around TMD6. Further, we expressed these deletion constructs of PMP70 in fusion with the green fluorescent protein in CHO cells. Fusion proteins lacking these Pex19p binding sites did not display any peroxisomal localization. These results suggest that Pex19p binds to PMP70 co-translationally and keeps PMP70 as a proper conformation for the localization to peroxisome.
Collapse
Affiliation(s)
- Yoshinori Kashiwayama
- Department of Biological Chemistry, Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kragt A, Voorn-Brouwer T, van den Berg M, Distel B. Endoplasmic Reticulum-directed Pex3p Routes to Peroxisomes and Restores Peroxisome Formation in a Saccharomyces cerevisiae pex3Δ Strain. J Biol Chem 2005; 280:34350-7. [PMID: 16100114 DOI: 10.1074/jbc.m505432200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies on the sorting of peroxisomal membrane proteins challenge the long-standing model in which peroxisomes are considered to be autonomous organelles that multiply by growth and division. Here, we present data lending support to the idea that the endoplasmic reticulum (ER) is involved in sorting of the peroxisomal membrane protein Pex3p, a protein required early in peroxisome biogenesis. First, we show that the introduction of an artificial glycosylation site into the N terminus of Pex3p leads to partial N-linked core glycosylation, indicative of insertion into the ER membrane. Second, when FLAG-tagged Pex3p is equipped with an ER targeting signal, it can restore peroxisome formation in pex3Delta cells. Importantly, FLAG antibodies that specifically recognize the processed Pex3p show that the signal peptide of the fusion protein is efficiently cleaved off and that the processed protein localizes to peroxisomes. In contrast, a Pex3p construct in which cleavage of the signal peptide is blocked by a mutation localizes to the ER and the cytosol and cannot complement pex3Delta cells. Together, these results strongly suggest that ER-targeted Pex3p indeed routes via the ER to peroxisomes, and we hypothesize that this pathway is also used by endogenous Pex3p.
Collapse
Affiliation(s)
- Astrid Kragt
- Department of Medical Biochemistry, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
16
|
Halbach A, Lorenzen S, Landgraf C, Volkmer-Engert R, Erdmann R, Rottensteiner H. Function of the PEX19-binding site of human adrenoleukodystrophy protein as targeting motif in man and yeast. PMP targeting is evolutionarily conserved. J Biol Chem 2005; 280:21176-82. [PMID: 15781447 DOI: 10.1074/jbc.m501750200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We predicted in human peroxisomal membrane proteins (PMPs) the binding sites for PEX19, a key player in the topogenesis of PMPs, by virtue of an algorithm developed for yeast PMPs. The best scoring PEX19-binding site was found in the adrenoleukodystrophy protein (ALDP). The identified site was indeed bound by human PEX19 and was also recognized by the orthologous yeast PEX19 protein. Likewise, both human and yeast PEX19 bound with comparable affinities to the PEX19-binding site of the yeast PMP Pex13p. Interestingly, the identified PEX19-binding site of ALDP coincided with its previously determined targeting motif. We corroborated the requirement of the ALDP PEX19-binding site for peroxisomal targeting in human fibroblasts and showed that the minimal ALDP fragment targets correctly also in yeast, again in a PEX19-binding site-dependent manner. Furthermore, the human PEX19-binding site of ALDP proved interchangeable with that of yeast Pex13p in an in vivo targeting assay. Finally, we showed in vitro that most of the predicted binding sequences of human PMPs represent true binding sites for human PEX19, indicating that human PMPs harbor common PEX19-binding sites that do resemble those of yeast. Our data clearly revealed a role for PEX19-binding sites as PMP-targeting motifs across species, thereby demonstrating the evolutionary conservation of PMP signal sequences from yeast to man.
Collapse
Affiliation(s)
- André Halbach
- Institut für Physiologische Chemie, Abteilung Systembiochemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Fransen M, Vastiau I, Brees C, Brys V, Mannaerts GP, Van Veldhoven PP. Analysis of Human Pex19p's Domain Structure by Pentapeptide Scanning Mutagenesis. J Mol Biol 2005; 346:1275-86. [PMID: 15713480 DOI: 10.1016/j.jmb.2005.01.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Revised: 01/04/2005] [Accepted: 01/05/2005] [Indexed: 10/25/2022]
Abstract
Pex19p, a primarily cytosolic protein, is essential for the biogenesis of numerous peroxisomal membrane proteins (PMPs); however, its precise function is unclear. Pex19p might function as a PMP-specific chaperone, a cycling PMP-receptor protein, a PMP membrane insertion factor, or an association/dissociation factor of membrane-associated protein complexes. Alternatively, Pex19p might act as a multifunctional peroxin and participate in a number of these activities. Here, we have employed transposon mutagenesis to generate a library of human pex19 alleles coding for Pex19p variants containing random in-frame pentapeptide insertions. A total of 87 different variants were characterized to identify functionally important regions. These studies revealed that Pex19p has a tripartite domain structure consisting of: (i) an amino-terminal domain that binds to Pex3p and is essential for docking at the peroxisome membrane; (ii) a central domain that competes with Pex5p and Pex13p for binding to Pex14p and may play a role in the assembly of PTS-receptor docking complexes; and (iii) a carboxy-terminal domain that interacts with multiple PMPs including Pex3p, Pex11pbeta, Pex12p, Pex13p, Pex16p, and Pex26p. Whether the latter interactions constitute the chaperone or transport functions (or both), remains to be determined. Finally, our observation that Pex19p contains two distinct binding sites for Pex3p suggests that the peroxin may bind PMPs in multiple places and for multiple purposes.
Collapse
Affiliation(s)
- Marc Fransen
- Departement Moleculaire Celbiologie, Afdeling Farmacologie, Katholieke Universiteit Leuven, Faculteit Geneeskunde, Campus Gasthuisberg (O/N 6, box 601), Herestraat 49, 3000 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
18
|
Jones JM, Morrell JC, Gould SJ. PEX19 is a predominantly cytosolic chaperone and import receptor for class 1 peroxisomal membrane proteins. ACTA ACUST UNITED AC 2004; 164:57-67. [PMID: 14709540 PMCID: PMC2171958 DOI: 10.1083/jcb.200304111] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Integral peroxisomal membrane proteins (PMPs) are synthesized in the cytoplasm and imported posttranslationally. Here, we demonstrate that PEX19 binds and stabilizes newly synthesized PMPs in the cytosol, binds to multiple PMP targeting signals (mPTSs), interacts with the hydrophobic domains of PMP targeting signals, and is essential for PMP targeting and import. These results show that PEX19 functions as both a chaperone and an import receptor for newly synthesized PMPs. We also demonstrate the existence of two PMP import mechanisms and two classes of mPTSs: class 1 mPTSs, which are bound by PEX19 and imported in a PEX19-dependent manner, and class 2 mPTSs, which are not bound by PEX19 and mediate protein import independently of PEX19.
Collapse
Affiliation(s)
- Jacob M Jones
- Dept. of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
19
|
Shibata H, Kashiwayama Y, Imanaka T, Kato H. Domain architecture and activity of human Pex19p, a chaperone-like protein for intracellular trafficking of peroxisomal membrane proteins. J Biol Chem 2004; 279:38486-94. [PMID: 15252024 DOI: 10.1074/jbc.m402204200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pex19p is a peroxin involved in peroxisomal membrane biogenesis and probably functions as a chaperone and/or soluble receptor specific for cargo peroxisomal membrane proteins (PMPs). To elucidate the functional constituents of Pex19p in terms of the protein structure, we investigated its domain architecture and binding affinity toward various PMPs and peroxins. The human Pex19p cDNA was overexpressed in Escherichia coli, and a highly purified sample of the Pex19p protein was prepared. When PMP22 was synthesized by cell-free translation in the presence of Pex19p, the PMP22 bound to Pex19p was soluble, whereas PMP22 alone was insoluble. This observation shows that Pex19p plays a role in capturing PMP and maintaining its solubility. In a similar manner, Pex19p was bound to PMP70 and Pex16p as well as the Pex3p soluble fragment. Limited proteolysis analyses revealed that Pex19p consists of the C-terminal core domain flanking the flexible N-terminal region. Separation of Pex19p into its N- and C-terminal halves abolished interactions with PMP22, PMP70, and Pex16p. In contrast, the flexible N-terminal half of Pex19p was bound to the Pex3p soluble fragment, suggesting that the binding mode of Pex3p toward Pex19p differs from that of other PMPs. This idea is supported by our detection of the Pex19p-Pex3p-PMP22 ternary complex.
Collapse
Affiliation(s)
- Hiroyuki Shibata
- Kinetic Crystallography Research Team, Membrane Dynamics Research Group, RIKEN, Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan
| | | | | | | |
Collapse
|
20
|
Landgraf P, Mayerhofer PU, Polanetz R, Roscher AA, Holzinger A. Targeting of the human adrenoleukodystrophy protein to the peroxisomal membrane by an internal region containing a highly conserved motif. Eur J Cell Biol 2004; 82:401-10. [PMID: 14533738 DOI: 10.1078/0171-9335-00331] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study we addressed the targeting requirements of peroxisomal ABC transporters, in particular the human adrenoleukodystrophy protein. This membrane protein is defective or missing in X-linked adrenoleukodystrophy, a neurodegenerative disorder predominantly presenting in childhood. Using adrenoleukodystrophy protein deletion constructs and green fluorescent protein fusion constructs we identified the amino acid regions 1-110 and 67-164 to be sufficient for peroxisomal targeting. However, the minimal region shared by these constructs (amino acids 67-110) is not sufficient for peroxisomal targeting by itself. Additionally, the NH2-terminal 66 amino acids enhance targeting efficiency. Green fluorescent protein-labeled fragments of human peroxisomal membrane protein 69 and Saccharomyces cerevisiae Pxa1 corresponding to the amino acid 67-164 adrenoleukodystrophy protein region were also directed to the mammalian peroxisome. The required region contains a 14-amino-acid motif (71-84) conserved between the adrenoleukodystrophy protein and human peroxisomal membrane protein 69 and yeast Pxa1. Omission or truncation of this motif in the adrenoleukodystrophy protein abolished peroxisomal targeting. The single amino acid substitution L78F resulted in a significant reduction of targeting efficiency. The in-frame deletion of three amino acids (del78-80LLR) within the proposed targeting motif in two patients suffering from X-linked adrenoleukodystrophy resulted in the mislocalization of a green fluorescent protein fusion protein to nucleus, cytosol and mitochondria. Our data define the targeting region of human adrenoleukodystrophy protein containing a highly conserved 14-amino-acid motif.
Collapse
Affiliation(s)
- Pablo Landgraf
- Dr. von Hauner Children's Hospital, Department of Clinical Chemistry, Laboratory of Molecular Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | | | | | | |
Collapse
|
21
|
Fransen M, Vastiau I, Brees C, Brys V, Mannaerts GP, Van Veldhoven PP. Potential role for Pex19p in assembly of PTS-receptor docking complexes. J Biol Chem 2004; 279:12615-24. [PMID: 14715663 DOI: 10.1074/jbc.m304941200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human Pex19p binds a broad spectrum of peroxisomal membrane proteins (PMPs). It has been proposed that this peroxin may: (i) act as a cycling PMP receptor protein, (ii) facilitate the insertion of newly synthesized PMPs into the peroxisomal membrane, or (iii) function as a chaperone to associate and/or dissociate complexes comprising integral PMPs already in the peroxisomal membrane. We previously demonstrated that human Pex19p binds peroxisomal integral membrane proteins at regions distinct from their sorting sequences. Here we demonstrate that a mutant of Pex13p that fails to bind to Pex19p nevertheless targets to and integrates into the peroxisomal membrane. In addition, through in vitro biochemical analysis, we show that Pex19p competes with Pex5p and Pex13p for binding to Pex14p, supporting a role for this peroxin in regulating assembly/disassembly of membrane-associated protein complexes. To further examine the molecular mechanism underlying this competition, six evolutionarily conserved amino acids in the Pex5p/Pex13p/Pex19p binding domain of Pex14p were subjected to site-directed mutagenesis and the corresponding mutants functionally analyzed. Our results indicate that the physically overlapping binding sites of Pex14p for Pex5p, Pex13p, and Pex19p are functionally distinct, suggesting that competition occurs through induction of structural changes, rather than through direct competition. Importantly, we also found that amino acid substitutions resulting in a strongly reduced binding affinity for Pex13p affect the peroxisomal localization of Pex14p.
Collapse
Affiliation(s)
- Marc Fransen
- Katholieke Universiteit Leuven, Faculteit Geneeskunde, Campus Gasthuisberg (O/N), Departement Moleculaire Celbiologie, Afdeling Farmacologie, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
The peroxisome biogenesis disorders (PBDs) comprise 12 autosomal recessive complementation groups (CGs). The multisystem clinical phenotype varies widely in severity and results from disturbances in both development and metabolic homeostasis. Progress over the last several years has lead to identification of the genes responsible for all of these disorders and to a much improved understanding of the biogenesis and function of the peroxisome. Increasing availability of mouse models for these disorders offers hope for a better understanding of their pathophysiology and for development of therapies that might especially benefit patients at the milder end of the clinical phenotype.
Collapse
Affiliation(s)
- Sabine Weller
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
23
|
Biermanns M, von Laar J, Brosius U, Gärtner J. The peroxisomal membrane targeting elements of human peroxin 2 (PEX2). Eur J Cell Biol 2003; 82:155-62. [PMID: 12751901 DOI: 10.1078/0171-9335-00310] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Peroxin 2 (PEX2) is a 35-kDa integral peroxisomal membrane protein with two transmembrane regions and a zinc RING domain within its cytoplasmically exposed C-terminus. Although its role in peroxisome biogenesis and function is poorly understood, it seems to be involved in peroxisomal matrix protein import. PEX2 is synthesized on free cytosolic ribosomes and is posttranslationally imported into the peroxisome membrane by specific targeting information. While a clear picture of the basic targeting mechanisms for peroxisomal matrix proteins has emerged over the past years, the targeting processes for peroxisomal membrane proteins are less well understood. We expressed various deletion constructs of PEX2 in fusion with the green fluorescent protein in COS-7 cells and determined their intracellular localization. We found that the minimum peroxisomal targeting signal of human PEX2 consists of an internal protein region of 30 amino acids (AA130 to AA159) and the first transmembrane domain, and that adding the second transmembrane domain increases targeting efficiency. Within the minimum targeting region we identified the motif "KX6(I/L)X(L/F/I)LK(L/F/I)" that includes important targeting information and is also present in the targeting regions of the 22-kDa peroxisomal membrane protein (PMP22) and the 70-kDa peroxisomal membrane protein (PMP70). Mutations in this targeting motif mislocalize PEX2 to the cytosol. In contrast, the second transmembrane domain does not seem to have specific peroxisomal membrane targeting information. Replacing the second transmembrane domain of human PEX2 with the transmembrane domain of human cytochrome c oxidase subunit IV does not alter PEX2 peroxisome targeting function and efficiency.
Collapse
Affiliation(s)
- Martina Biermanns
- Department of Pediatrics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | | | | |
Collapse
|
24
|
Brosius U, Dehmel T, Gärtner J. Two different targeting signals direct human peroxisomal membrane protein 22 to peroxisomes. J Biol Chem 2002; 277:774-84. [PMID: 11590176 DOI: 10.1074/jbc.m108155200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 22-kDa peroxisomal membrane protein (PMP22) is a major component of peroxisomal membranes in mammals. Although its precise role in peroxisome function is poorly understood, it seems to be involved in pore forming activity and may contribute to the unspecific permeability of the organelle membrane. PMP22 is synthesized on free cytosolic ribosomes and then directed to the peroxisome membrane by specific targeting information. Previous studies in rats revealed that PMP22 contains one distinct peroxisomal membrane targeting signal in the amino-terminal cytoplasmic tail. We cloned and characterized the targeting signal of human PMP22 and compared it with the already described characteristics of the corresponding rat protein. Amino acid sequence alignment of rat and human protein revealed 77% identity including a high conservation of several protein motifs. We expressed various deletion constructs of PMP22 in fusion with the green fluorescent protein in COS-7 cells and determined their intracellular localization. In contrast to previous studies on rat PMP22 and most other peroxisomal membrane proteins, we showed that human as well as rat PMP22 contains two distinct and nonoverlapping peroxisomal membrane targeting signals, one in the amino-terminal and the other in the carboxyl-terminal protein region. They consist of two transmembrane domains and adjacent protein loops with almost identical basic clusters. Both of these peroxisomal targeting regions interact with PEX19, a factor required for peroxisome membrane synthesis. In addition, we observed that fusing the green fluorescent protein immediately adjacent to the targeting region completely abolishes targeting function and mislocalizes PMP22 to the cytosol.
Collapse
Affiliation(s)
- Ute Brosius
- Department of Pediatrics, Heinrich Heine University, Düsseldorf D-40225, Germany
| | | | | |
Collapse
|