1
|
Caveolin-1 rs1997623 Single Nucleotide Polymorphism Creates a New Binding Site for the Early B-Cell Factor 1 That Instigates Adipose Tissue CAV1 Protein Overexpression. Cells 2022; 11:cells11233937. [PMID: 36497195 PMCID: PMC9738758 DOI: 10.3390/cells11233937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Caveolin-1 (CAV1) is implicated in the pathophysiology of diabetes and obesity. Previously, we demonstrated an association between the CAV1 rs1997623 C > A variant and metabolic syndrome (MetS). Here, we decipher the functional role of rs1997623 in CAV1 gene regulation. A cohort of 38 patients participated in this study. The quantitative MetS scores (siMS) of the participants were computed. CAV1 transcript and protein expression were tested in subcutaneous adipose tissue using RT-PCR and immunohistochemistry. Chromatin immunoprecipitation assays were performed using primary preadipocytes isolated from individuals with different CAV1 rs1997623 genotypes (AA, AC, and CC). The regulatory region flanking the variant was cloned into a luciferase reporter plasmid and expressed in human preadipocytes. Additional knockdown and overexpression assays were carried out. We show a significant correlation between siMS and CAV1 transcript levels and protein levels in human adipose tissue collected from an Arab cohort. We found that the CAV1 rs1997623 A allele generates a transcriptionally active locus and a new transcription factor binding site for early B-cell factor 1 (EBF1), which enhanced CAV1 expression. Our in vivo and in vitro combined study implicates, for the first time, EBF1 in regulating CAV1 expression in individuals harboring the rs1997623 C > A variant.
Collapse
|
2
|
Vechetti IJ, Peck BD, Wen Y, Walton RG, Valentino TR, Alimov AP, Dungan CM, Van Pelt DW, von Walden F, Alkner B, Peterson CA, McCarthy JJ. Mechanical overload-induced muscle-derived extracellular vesicles promote adipose tissue lipolysis. FASEB J 2021; 35:e21644. [PMID: 34033143 DOI: 10.1096/fj.202100242r] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/02/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
How regular physical activity is able to improve health remains poorly understood. The release of factors from skeletal muscle following exercise has been proposed as a possible mechanism mediating such systemic benefits. We describe a mechanism wherein skeletal muscle, in response to a hypertrophic stimulus induced by mechanical overload (MOV), released extracellular vesicles (EVs) containing muscle-specific miR-1 that were preferentially taken up by epidydimal white adipose tissue (eWAT). In eWAT, miR-1 promoted adrenergic signaling and lipolysis by targeting Tfap2α, a known repressor of Adrβ3 expression. Inhibiting EV release prevented the MOV-induced increase in eWAT miR-1 abundance and expression of lipolytic genes. Resistance exercise decreased skeletal muscle miR-1 expression with a concomitant increase in plasma EV miR-1 abundance, suggesting a similar mechanism may be operative in humans. Altogether, these findings demonstrate that skeletal muscle promotes metabolic adaptations in adipose tissue in response to MOV via EV-mediated delivery of miR-1.
Collapse
Affiliation(s)
- Ivan J Vechetti
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Bailey D Peck
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | - Yuan Wen
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.,Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | - R Grace Walton
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | - Taylor R Valentino
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Alexander P Alimov
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Cory M Dungan
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | - Douglas W Van Pelt
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | - Ferdinand von Walden
- Division of Neuropediatrics, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Björn Alkner
- Division of Neuropediatrics, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.,Department of Orthopaedics Eksjö, Regional Hospital Eksjö, Region Jönköping County, Sweden.,Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Charlotte A Peterson
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physiology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
3
|
Zhang F, Chen K, Tao H, Kang T, Xiong Q, Zeng Q, Liu Y, Jiang S, Chen M. miR-25-3p, Positively Regulated by Transcription Factor AP-2α, Regulates the Metabolism of C2C12 Cells by Targeting Akt1. Int J Mol Sci 2018. [PMID: 29518009 PMCID: PMC5877634 DOI: 10.3390/ijms19030773] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
miR-25, a member of the miR-106b-25 cluster, has been reported as playing an important role in many biological processes by numerous studies, while the role of miR-25 in metabolism and its transcriptional regulation mechanism remain unclear. In this study, gain-of-function and loss-of-function assays demonstrated that miR-25-3p positively regulated the metabolism of C2C12 cells by attenuating phosphoinositide 3-kinase (PI3K) gene expression and triglyceride (TG) content, and enhancing the content of adenosine triphosphate (ATP) and reactive oxygen species (ROS). Furthermore, the results from bioinformatics analysis, dual luciferase assay, site-directed mutagenesis, qRT-PCR, and Western blotting demonstrated that miR-25-3p directly targeted the AKT serine/threonine kinase 1 (Akt1) 3′ untranslated region (3′UTR). The core promoter of miR-25-3p was identified, and the transcription factor activator protein-2α (AP-2α) significantly increased the expression of mature miR-25-3p by binding to its core promoter in vivo, as indicated by the chromatin immunoprecipitation (ChIP) assay, and AP-2α binding also downregulated the expression of Akt1. Taken together, our findings suggest that miR-25-3p, positively regulated by the transcription factor AP-2α, enhances C2C12 cell metabolism by targeting the Akt1 gene.
Collapse
Affiliation(s)
- Feng Zhang
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
- Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Kun Chen
- Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hu Tao
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Tingting Kang
- Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qi Xiong
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Qianhui Zeng
- Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yang Liu
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Siwen Jiang
- Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mingxin Chen
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
4
|
Gonzalez D, Luyten A, Bartholdy B, Zhou Q, Kardosova M, Ebralidze A, Swanson KD, Radomska HS, Zhang P, Kobayashi SS, Welner RS, Levantini E, Steidl U, Chong G, Collombet S, Choi MH, Friedman AD, Scott LM, Alberich-Jorda M, Tenen DG. ZNF143 protein is an important regulator of the myeloid transcription factor C/EBPα. J Biol Chem 2017; 292:18924-18936. [PMID: 28900037 PMCID: PMC5704476 DOI: 10.1074/jbc.m117.811109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Indexed: 12/21/2022] Open
Abstract
The transcription factor C/EBPα is essential for myeloid differentiation and is frequently dysregulated in acute myeloid leukemia. Although studied extensively, the precise regulation of its gene by upstream factors has remained largely elusive. Here, we investigated its transcriptional activation during myeloid differentiation. We identified an evolutionarily conserved octameric sequence, CCCAGCAG, ∼100 bases upstream of the CEBPA transcription start site, and demonstrated through mutational analysis that this sequence is crucial for C/EBPα expression. This sequence is present in the genes encoding C/EBPα in humans, rodents, chickens, and frogs and is also present in the promoters of other C/EBP family members. We identified that ZNF143, the human homolog of the Xenopus transcriptional activator STAF, specifically binds to this 8-bp sequence to activate C/EBPα expression in myeloid cells through a mechanism that is distinct from that observed in liver cells and adipocytes. Altogether, our data suggest that ZNF143 plays an important role in the expression of C/EBPα in myeloid cells.
Collapse
Affiliation(s)
- David Gonzalez
- From the Cancer Science Institute, National University of Singapore, 117599 Singapore
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Annouck Luyten
- From the Cancer Science Institute, National University of Singapore, 117599 Singapore
| | - Boris Bartholdy
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Qiling Zhou
- From the Cancer Science Institute, National University of Singapore, 117599 Singapore
| | - Miroslava Kardosova
- the Institute of Molecular Genetics of the ASCR, Prague 142 20, Czech Republic
- the Childhood Leukaemia Investigation Prague, Second Faculty of Medicine Charles University, University Hospital Motol, Prague 150 06, Czech Republic
| | - Alex Ebralidze
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Kenneth D Swanson
- the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115
| | - Hanna S Radomska
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
- The Ohio State University, Comprehensive Cancer Center, Columbus, Ohio 43210, and
| | - Pu Zhang
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Susumu S Kobayashi
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
- the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115
| | - Robert S Welner
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
- the Hematology/Oncology Department, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Elena Levantini
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
- the Institute of Biomedical Technologies, National Research Council, 56124 Pisa, Italy
| | - Ulrich Steidl
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
- the Department of Cell Biology, and Department of Medicine (Oncology), Albert Einstein College of Medicine, New York, New York 10461
| | - Gilbert Chong
- From the Cancer Science Institute, National University of Singapore, 117599 Singapore
| | - Samuel Collombet
- From the Cancer Science Institute, National University of Singapore, 117599 Singapore
| | - Min Hee Choi
- From the Cancer Science Institute, National University of Singapore, 117599 Singapore
| | | | - Linda M Scott
- the The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Meritxell Alberich-Jorda
- the Institute of Molecular Genetics of the ASCR, Prague 142 20, Czech Republic,
- the Childhood Leukaemia Investigation Prague, Second Faculty of Medicine Charles University, University Hospital Motol, Prague 150 06, Czech Republic
| | - Daniel G Tenen
- From the Cancer Science Institute, National University of Singapore, 117599 Singapore,
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
5
|
Guo W, Chen J, Yang Y, Zhu J, Wu J. Epigenetic programming of Dnmt3a mediated by AP2α is required for granting preadipocyte the ability to differentiate. Cell Death Dis 2016; 7:e2496. [PMID: 27906176 PMCID: PMC5261006 DOI: 10.1038/cddis.2016.378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 12/20/2022]
Abstract
Adipogenesis has an important role in regulating energy homeostasis in mammals. 3T3-L1 preadipocytes have been widely used as an in vitro model for analyzing the molecular mechanism of adipogenesis. Previous reports indicated that the stage of contact inhibition (CI), through which the proliferating cells exit from the cell cycle, was required for granting preadipocyte the ability to differentiate. While this kind of the granting mechanism remains elusive. In the present study, we showed that DNA (cytosine-5) methyltransferase 3a (Dnmt3a) was upregulated at both the mRNA and protein level during the CI stage, and resulted in increasing promoter methylation of adipogenic genes. We further identified that the expression of Activator protein 2α (AP2α), a member of the transcription factor activator protein 2 (AP2) family, was highly correlated with the expression of Dnmt3a during the CI stage. In addition, we showed that AP2α transcriptionally upregulated Dnmt3a by directly binding to its proximal promoter region. Importantly, treatment of 3T3-L1 preadipocytes with AP2α-specific siRNAs inhibited the preadipocyte differentiation in a stage-dependent manner, supporting the conclusion that AP2α has an important role during the CI stage. Furthermore, overexpression of Dnmt3a partially rescued the impairment of adipogenesis induced by AP2α knockdown. Collectively, our findings reveal that AP2α is an essential regulator for granting preadipocyte the ability to differentiate through the upregulation of Dnmt3a expression during the CI stage.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiangnan Chen
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,School of Life Science, University of Chinese Academy of Sciences, Shanghai,China
| | - Ying Yang
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianbei Zhu
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiarui Wu
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
6
|
Suv39h1 mediates AP-2α-dependent inhibition of C/EBPα expression during adipogenesis. Mol Cell Biol 2014; 34:2330-8. [PMID: 24732798 DOI: 10.1128/mcb.00070-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that CCAAT/enhancer-binding protein α (C/EBPα) plays a very important role during adipocyte terminal differentiation and that AP-2α (activator protein 2α) acts as a repressor to delay the expression of C/EBPα. However, the mechanisms by which AP-2α prevents the expression of C/EBPα are not fully understood. Here, we present evidence that Suv39h1, a histone H3 lysine 9 (H3K9)-specific trimethyltransferase, and G9a, a euchromatic methyltransferase, both interact with AP-2α and enhance AP-2α-mediated transcriptional repression of C/EBPα. Interestingly, we discovered that G9a mediates dimethylation of H3K9, thus providing the substrate, which is methylated by Suv39h1, to H3K9me3 on the C/EBPα promoter. The expression level of AP-2α was consistent with enrichment of H3K9me2 and H3K9me3 on the C/EBPα promoter in 3T3-L1 preadipocytes. Knockdown of Suv39h markedly increased C/EBPα expression and promoted adipogenesis. Conversely, ectopic expression of Suv39h1 delayed C/EBPα expression and impaired the accumulation of triglyceride, while simultaneous knockdown of AP-2α or G9a partially rescued this process. These findings indicate that Suv39h1 enhances AP-2α-mediated transcriptional repression of C/EBPα in an epigenetic manner and further inhibits adipocyte differentiation.
Collapse
|
7
|
Kim E, Kim EJ, Seo SW, Hur CG, McGregor RA, Choi MS. Meta-Review of Protein Network Regulating Obesity Between Validated Obesity Candidate Genes in the White Adipose Tissue of High-Fat Diet-Induced Obese C57BL/6J Mice. Crit Rev Food Sci Nutr 2014; 54:910-23. [DOI: 10.1080/10408398.2011.619283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Ren P, Sheng Z, Wang Y, Yi X, Zhou Q, Zhou J, Xiang S, Hu X, Zhang J. RNF20 promotes the polyubiquitination and proteasome-dependent degradation of AP-2α protein. Acta Biochim Biophys Sin (Shanghai) 2014; 46:136-40. [PMID: 24374663 DOI: 10.1093/abbs/gmt136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transcription factor activator protein 2α (AP-2α) is a negative regulator of adipogenesis by repressing the transcription of CCAAT/enhancer binding protein (C/EBPα) gene. During adipogenesis, AP-2α is degraded, leading to transcriptional up-regulation of C/EBPα. However, the mechanism for AP-2α degradation is not clear. Here, using immunoprecipitation assay and mass spectrometry, we identified ring finger protein 20 (RNF20) as an AP-2α-interacting protein in 3T3-L1 preadipocytes. RNF20 has been proved to be an E3 ubiquitin ligase for both histone H2B and tumor suppressor ErbB3-binding protein 1 (Ebp1). In this study, we demonstrated that RNF20 co-localized and interacted with AP-2α, and promoted its polyubiquitination and proteasome-dependent degradation. Over-expression of RNF20 inhibited the activity of AP-2α and rescued the C/EBPα expression which was inhibited by AP-2α. These results suggested that RNF20 may play roles in adipocyte differentiation by stimulating ubiquitin-proteasome-dependent degradation of AP-2α.
Collapse
Affiliation(s)
- Peng Ren
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Science, Hunan Normal University, Changsha 410081, China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zarelli VE, Dawid IB. The BTB-containing protein Kctd15 is SUMOylated in vivo. PLoS One 2013; 8:e75016. [PMID: 24086424 PMCID: PMC3782465 DOI: 10.1371/journal.pone.0075016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 08/10/2013] [Indexed: 12/18/2022] Open
Abstract
Potassium Channel Tetramerization Domain containing 15 (Kctd15) has a role in regulating the neural crest (NC) domain in the embryo. Kctd15 inhibits NC induction by antagonizing Wnt signaling and by interaction with the transcription factor AP-2α activation domain blocking its activity. Here we demonstrate that Kctd15 is SUMOylated by SUMO1 and SUMO2/3. Kctd15 contains a classical SUMO interacting motif, ψKxE, at the C-terminal end, and variants of the motif within the molecule. Kctd15 SUMOylation occurs exclusively in the C-terminal motif. Inability to be SUMOylated did not affect Kctd15's subcellular localization, or its ability to repress AP-2 transcriptional activity and to inhibit NC formation in zebrafish embryos. In contrast, a fusion of Kctd15 and SUMO had little effectiveness in AP-2 inhibition and in blocking of NC formation. These data suggest that the non-SUMOylated form of Kctd15 functions in NC development.
Collapse
Affiliation(s)
- Valeria E. Zarelli
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Igor B. Dawid
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
10
|
Avram MM, Avram AS, James WD. Subcutaneous fat in normal and diseased states. J Am Acad Dermatol 2007; 56:472-92. [PMID: 17317490 DOI: 10.1016/j.jaad.2006.06.022] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 05/10/2006] [Accepted: 06/19/2006] [Indexed: 12/15/2022]
Abstract
The quest for effective strategies to treat obesity has propelled fat research into an exploration of the molecular processes that drive adipocyte formation, and hence body fat mass. The development of obesity is dependent on the coordinated interplay of adipocyte hypertrophy (increased fat cell size), adipocyte hyperplasia (increased fat cell number), and angiogenesis. Evidence suggests that adipocyte hyperplasia, or adipogenesis, occurs throughout life, both in response to normal cell turnover as well as in response to the need for additional fat mass stores that arises when caloric intake exceeds nutritional requirements. Adipogenesis involves two major events-the recruitment and proliferation of adipocyte precursor cells, called preadipocytes, followed by the subsequent conversion of preadipocytes, or differentiation, into mature fat cells. In vitro studies using experimental and primary preadipocyte cell lines have uncovered the mechanisms that drive the adipogenic process, a tightly controlled sequence of events guided by the strict temporal regulation of multiple inhibitory and stimulatory signaling events involving regulators of cell-cycle functions and differentiation factors. This article reviews the current understanding of adipogenesis with emphasis on the various stages of adipocyte development; on key hormonal, nutritional, paracrine, and neuronal control signals; as well as on the components involved in cell-cell or cell-matrix interactions that are pivotal in regulating fat cell formation. Special consideration is given to clinical applications derived from adipogenesis research with impact on medical, surgical and cosmetic fields.
Collapse
Affiliation(s)
- Mathew M Avram
- Massachusetts General Hospital Dermatology Laser and Cosmetic Center, Boston, Massachusetts, USA
| | | | | |
Collapse
|
11
|
Huang Z, Xu H, Sandell L. Negative regulation of chondrocyte differentiation by transcription factor AP-2alpha. J Bone Miner Res 2004; 19:245-55. [PMID: 14969394 DOI: 10.1359/jbmr.2004.19.2.245] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2003] [Revised: 09/08/2003] [Accepted: 09/17/2003] [Indexed: 11/18/2022]
Abstract
UNLABELLED This study investigated the role of transcription factor AP-2alpha in chondrocyte differentiation in vitro. AP-2alpha mRNA declined during differentiation, and overexpression of AP-2alpha inhibited differentiation. The results demonstrated that AP-2alpha plays a negative role in chondrocyte differentiation. INTRODUCTION Transcription factor AP-2alpha has been detected in growth plate and articular chondrocytes and has been shown to regulate cartilage matrix gene expression in vitro. However, the precise functional role of AP-2alpha in chondrocyte differentiation is not known. In this study, we assessed the expression and the function of AP-2alpha in chondrocyte differentiation of ATDC5 cells. MATERIALS AND METHODS Chondrocyte differentiation of ATDC5 cells was induced with insulin or transforming growth factor beta (TGF-beta). Proteoglycan production was assessed by alcian blue staining, and expression levels of chondrocyte marker genes and AP-2 gene family were determined by quantitative real time reverse transcriptase-polymerase chain reaction (RT-PCR). Overexpression of AP-2alpha in ATDC5 cells was accomplished by retroviral infection. Infected cells were selected for G418 resistance and pooled for further analysis. RESULTS AND CONCLUSIONS Quantitative real time RT-PCR analysis showed that among the four members of the AP-2 gene family, AP-2alpha mRNA was the most abundant. AP-2alpha mRNA levels progressively declined during the differentiation induced by either insulin or TGF-beta treatment. Retroviral expression of AP-2alpha in ATDC5 cells prevented the formation of cartilage nodules, suppressed the proteoglycan production, and inhibited the expression of type II collagen, aggrecan, and type X collagen. Expression profile analysis of key transcription factors involved in chondrogenesis showed that overexpression of AP-2alpha maintained the expression of Sox9 but suppressed the expression of SoxS and Sox6. Taken together, we provide, for the first time, molecular and cellular evidence suggesting that AP-2alpha is a negative regulator of chondrocyte differentiation.
Collapse
Affiliation(s)
- Zhengmin Huang
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| | | | | |
Collapse
|