1
|
Sun L, Babushok DV. Secondary myelodysplastic syndrome and leukemia in acquired aplastic anemia and paroxysmal nocturnal hemoglobinuria. Blood 2020; 136:36-49. [PMID: 32430502 PMCID: PMC7332901 DOI: 10.1182/blood.2019000940] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/09/2019] [Indexed: 02/06/2023] Open
Abstract
Acquired aplastic anemia (AA) and paroxysmal nocturnal hemoglobinuria (PNH) are pathogenically related nonmalignant bone marrow failure disorders linked to T-cell-mediated autoimmunity; they are associated with an increased risk of secondary myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Approximately 15% to 20% of AA patients and 2% to 6% of PNH patients go on to develop secondary MDS/AML by 10 years of follow-up. Factors determining an individual patient's risk of malignant transformation remain poorly defined. Recent studies identified nearly ubiquitous clonal hematopoiesis (CH) in AA patients. Similarly, CH with additional, non-PIGA, somatic alterations occurs in the majority of patients with PNH. Factors associated with progression to secondary MDS/AML include longer duration of disease, increased telomere attrition, presence of adverse prognostic mutations, and multiple mutations, particularly when occurring early in the disease course and at a high allelic burden. Here, we will review the prevalence and characteristics of somatic alterations in AA and PNH and will explore their prognostic significance and mechanisms of clonal selection. We will then discuss the available data on post-AA and post-PNH progression to secondary MDS/AML and provide practical guidance for approaching patients with PNH and AA who have CH.
Collapse
MESH Headings
- Age of Onset
- Anemia, Aplastic/drug therapy
- Anemia, Aplastic/genetics
- Anemia, Aplastic/pathology
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Benzoates/adverse effects
- Benzoates/therapeutic use
- Bone Marrow/pathology
- Chromosome Aberrations
- Chromosomes, Human, Pair 7/genetics
- Clonal Evolution/drug effects
- Clone Cells/drug effects
- Clone Cells/pathology
- Disease Progression
- Granulocyte Colony-Stimulating Factor/adverse effects
- Granulocyte Colony-Stimulating Factor/therapeutic use
- Hemoglobinuria, Paroxysmal/drug therapy
- Hemoglobinuria, Paroxysmal/genetics
- Hemoglobinuria, Paroxysmal/pathology
- Humans
- Hydrazines/adverse effects
- Hydrazines/therapeutic use
- Leukemia, Myeloid, Acute/epidemiology
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Models, Biological
- Monosomy
- Mutation
- Myelodysplastic Syndromes/epidemiology
- Myelodysplastic Syndromes/etiology
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/pathology
- Oncogene Proteins, Fusion/genetics
- Pyrazoles/adverse effects
- Pyrazoles/therapeutic use
- Selection, Genetic
- Telomere Shortening
Collapse
Affiliation(s)
- Lova Sun
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA; and
| | - Daria V Babushok
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA; and
- Comprehensive Bone Marrow Failure Center, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
2
|
Lobry C, Bains A, Zamechek LB, Ibrahim S, Aifantis I, Araten DJ. Analysis of TET2 mutations in paroxysmal nocturnal hemoglobinuria (PNH). Exp Hematol Oncol 2019; 8:17. [PMID: 31453016 PMCID: PMC6702710 DOI: 10.1186/s40164-019-0142-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022] Open
Abstract
Background Large clonal populations of cells bearing PIG-A mutations are the sine qua non of PNH, but the PIG-A mutation itself is insufficient for clonal expansion. The association between PNH and aplastic anemia supports the immune escape model, but not all PNH patients demonstrate a history of aplasia; therefore, second genetic hits driving clonal expansion have been postulated. Based on the previous identification of JAK2 mutations in patients with a myeloproliferative/PNH overlap syndrome, we considered TET2 as a candidate gene in which mutations might be contributing to clonal expansion. Methods Here we sequenced the TET2 and JAK2 genes in 19 patients with large PNH clones. Results We found one patient with a novel somatic nonsense mutation in TET2 in multiple hematopoietic lineages, which was detectable upon repeat testing. This patient has had severe thromboses and has relatively higher peripheral blood counts compared with the other patients—but does not have other features of a myeloproliferative neoplasm. Conclusions We conclude that mutations in TET2 may contribute to clonal expansion in exceptional cases of PNH.
Collapse
Affiliation(s)
- Camille Lobry
- 1Institut National de la Santé et de la Recherche Medicale (INSERM) U1170, Institut Gustave Roussy, 94805 Villejuif, France
| | - Ashish Bains
- 2Pathology and Laboratory Medicine, Temple University, 3401 North Broad Street, Philadelphia, PA 19140 USA
| | - Leah B Zamechek
- 3Columbia University Medical Center, 1130 St. Nicholas Avenue, Room 901, New York City, USA
| | - Sherif Ibrahim
- Cairo Diagnostics, 244 Westchester Avenue, West Harrison, NY 10604 USA
| | - Iannis Aifantis
- 5Department of Pathology, NYU School of Medicine, 550 First Avenue, New York, NY 10016 USA
| | - David J Araten
- 6Division of Hematology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health and the NYU School of Medicine, 240 East 38th Street, 19th Floor, New York, NY 10016 USA.,7Division of Hematology, New York VA Medical Center, 423 East 23rd Street, New York, NY 10010 USA
| |
Collapse
|
3
|
Araten DJ, Zamechek L, Halverson G. No evidence of hypermutability in red cells from patients with paroxysmal nocturnal hemoglobinuria using the XK gene. Haematologica 2014; 99:e142-4. [PMID: 24816235 DOI: 10.3324/haematol.2013.099457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- David J Araten
- Assistant Professor, Department of Medicine, Division of Hematology, Department of Veterans Affairs New York Harbor Healthcare System, New York, NY The Division of Hematology, Department of Medicine, Laura and Isaac Perlmutter Cancer Center at NYU Langone, New York, NY
| | - Leah Zamechek
- The Division of Hematology, Department of Medicine, Laura and Isaac Perlmutter Cancer Center at NYU Langone, New York, NY
| | - Gregory Halverson
- Hoxworth Immunohematology Reference Lab, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
4
|
Araten DJ, Luzzatto L. The mutation rate in PIG-A is normal in patients with paroxysmal nocturnal hemoglobinuria (PNH). Blood 2006; 108:734-6. [PMID: 16543465 PMCID: PMC1895494 DOI: 10.1182/blood-2006-01-0256] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Accepted: 02/26/2006] [Indexed: 12/20/2022] Open
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is characterized by the presence in the patient's hematopoietic system of a large cell population with a mutation in the X-linked PIG-A gene. Although this abnormal cell population is often found to be monoclonal, it is not unusual that 2 or even several PIG-A mutant clones coexist in the same patient. Therefore, it has been suggested that the PIG-A gene may be hypermutable in PNH. By a method we have recently developed for measuring the intrinsic rate of somatic mutations (mu) in humans, in which PIG-A itself is used as a sentinel gene, we have found that in 5 patients with PNH, mu ranged from 1.24 x 10(-7) to 11.2 x 10(-7), against a normal range of 2.4 x 10(-7) to 29.6 x 10(-7) mutations per cell division. We conclude that genetic instability of the PIG-A gene is not a factor in the pathogenesis of PNH.
Collapse
Affiliation(s)
- David J Araten
- Division of Hematology, New York University School of Medicine and the New York Veterans Administration Medical Center, 10016, USA.
| | | |
Collapse
|
5
|
Luzzatto L. Paroxysmal nocturnal hemoglobinuria: an acquired X-linked genetic disease with somatic-cell mosaicism. Curr Opin Genet Dev 2006; 16:317-22. [PMID: 16650759 DOI: 10.1016/j.gde.2006.04.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2006] [Accepted: 04/18/2006] [Indexed: 12/30/2022]
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is a severe hemolytic anemia caused by an intrinsic abnormality of the red blood cells that makes them exceedingly susceptible to the lytic action of activated complement (C). This abnormality results from a mutation in the PIG-A gene on Xp22. Given that the mutation is not inherited but is somatically acquired by a hematopoietic stem cell, it creates two populations of blood cells: normal cells and PNH cells. The clinical expression of PNH depends on the relative and absolute expansion of the PNH cell population, which probably depends, in turn, on a paradoxical growth advantage conferred to it by the existence in the patients of an autoimmune process that exerts negative selection against the 'normal' hematopoietic stem cells.
Collapse
Affiliation(s)
- Lucio Luzzatto
- University of Genova Scientific Director Istituto Toscano Tumori, Via Taddeo Alderotti 26N, 50139 Firenze, Italy.
| |
Collapse
|
6
|
Chen G, Zeng W, Green S, Young NS. Frequent HPRT mutations in paroxysmal nocturnal haemoglobinuria reflect T cell clonal expansion, not genomic instability. Br J Haematol 2004; 125:383-91. [PMID: 15086421 DOI: 10.1111/j.1365-2141.2004.04912.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Paroxysmal nocturnal haemoglobinuria (PNH) results from acquired mutations in the PIG-A gene of an haematopoietic stem cell, leading to defective biosynthesis of glycosylphosphatidylinositol (GPI) anchors and deficient expression of GPI-anchored proteins on the surface of the cell's progeny. Some laboratory and clinical findings have suggested genomic instability to be intrinsic in PNH; this possibility has been supported by mutation analysis of hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene abnormalities. However, the HPRT assay examines lymphocytes in peripheral blood (PB), and T cells may be related to the pathophysiology of PNH. We analysed the molecular and functional features of HPRT mutants in PB mononuclear cells from eleven PNH patients. CD8 T cells predominated in these samples; approximately half of the CD8 cells lacked GPI-anchored protein expression, while only a small proportion of CD4 cells appeared to derive from the PNH clone. The HPRT mutant frequency (Mf) in T lymphocytes from PNH patients was significantly higher than in healthy controls. The majority of the mutant T lymphocyte clones were of CD4 phenotype, and they had phenotypically normal GPI-anchored protein expression. In PNH patients, the majority of HPRT mutant clones were contained within the Vbeta2 T cell receptor (TCR) subfamily, which was oligoclonal by complementarity-determining region three (CDR3) size analysis. Our results are more consistent with detection of uniform populations of expanded T cell clones, which presumably acquired HPRT mutations during antigen-driven cell proliferation, and not due to an increased Mf in PNH. HPRT mutant analysis does not support underlying genomic instability in PNH.
Collapse
Affiliation(s)
- Guibin Chen
- Haematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1652, USA
| | | | | | | |
Collapse
|
7
|
Shichishima T, Noji H. A new aspect of the molecular pathogenesis of paroxysmal nocturnal hemoglobinuria. ACTA ACUST UNITED AC 2004; 7:211-27. [PMID: 14972783 DOI: 10.1080/1024533021000024094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal hematologic disorder which is manifest by complement-mediated hemolysis, venous thrombosis, and bone marrow failure. Complement-mediated hemolysis in PNH is explained by the deficiency of glycosylphosphatidylinositol (GPI)-anchored proteins, CD55 and CD59 on erythrocyte surfaces. All the PNH patients had phosphatidylinositol glycan-class A (PIG-A) gene abnormalities in various cell types, indicating that PIG-A gene mutations cause the defects in GPI-anchored proteins that are essential for the pathogenesis of PNH. In addition, a PIG-A gene abnormality results in a PNH clone. Bone marrow failure causes cytopenias associated with a proliferative decrease of its hematopoietic stem cells and appears to be related to a pre-leukemic state. Although it is unclear how a PNH clone expands in bone marrow, it is considered that the most important hypothesis implicates negative selection of a PNH clone, but it does not explain the changes in the clinical features at the terminal stage of PNH. Recently, it has been suggested that an immune mechanism, in an HLA-restricted manner, plays an important role in the occurrence or selection of a PNH clone and GPI may be a target for cytotoxic-T lymphocytes. Also, it has been indicated that the Wilms' tumor gene (WT1) product is related to a PNH clone, but the significance of WT1 expression is not clear because of the functional diversity of the gene. To elucidate this problem, it is important to know the pathophysiology of bone marrow failure in detail and how bone marrow failure affects hematopoietic stem cells and immune mechanisms in bone marrow failure syndromes.
Collapse
Affiliation(s)
- Tsutomu Shichishima
- First Department of Internal Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima 960-1295, Japan
| | | |
Collapse
|
8
|
Shichishima T, Okamoto M, Ikeda K, Kaneshige T, Sugiyama H, Terasawa T, Osumi K, Maruyama Y. HLA class II haplotype and quantitation of WT1 RNA in Japanese patients with paroxysmal nocturnal hemoglobinuria. Blood 2002; 100:22-8. [PMID: 12070003 DOI: 10.1182/blood.v100.1.22] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It is unclear how a paroxysmal nocturnal hemoglobinuria (PNH) clone expands in bone marrow, although immune mechanisms involving cytotoxic T lymphocytes, autosomal proliferation, and apoptosis resistance have been hypothesized. To clarify aspects of immune mechanisms and proliferation of PNH cells, we investigated HLA-DRB1, -DQA1, and -DQB1 alleles by polymerase chain reaction (PCR)-based genotyping and expression of the Wilms' tumor gene, WT1, by real-time reverse transcriptase-PCR (RT-PCR) in 21 PNH and 21 aplastic anemia (AA) patients. HLA genotyping indicated that the frequency of DRB1*1501, DQA1*0102, and DQB1*0602 alleles in PNH patients and of DQB1*0602 allele in AA patients was significantly higher than in 916 Japanese controls, and that the HLA-DRB1*1501-DQA1*0102-DQB1*0602 haplotype, found in 13 of 21 PNH patients, 5 of 7 AA-PNH syndrome patients, and 7 of 21 AA patients showed significant differences compared with healthy individuals. RT-PCR analysis showed that the mean values of WT1 RNA were 3413, 712, and 334 copies/microg RNA in PNH, AA, and healthy individuals, respectively. The values for PNH patients were significantly higher than for AA patients and healthy volunteers and were correlated with the proportion of CD16b(-) granulocytes. The high frequency of HLA-DRB1*1501-DQA1*0102-DQB1*0602 haplotype in PNH, including AA-PNH syndrome, and AA patients suggests that linkage exists between the disorders and that immune mechanisms in an HLA-restricted manner play an important role in the pathogenesis of these disorders. In addition, high expression of WT1 RNA in PNH patients is related to a PNH clone, but it remains unclear whether this causes expansion of a PNH clone.
Collapse
Affiliation(s)
- Tsutomu Shichishima
- First Department of Internal Medicine, Fukushima Medical University, Fukushima, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The development of paroxysmal nocturnal haemoglobinuria (PNH) requires two coincident factors: somatic mutation of the PIG-A gene in one or more haemopoietic stem cells and an abnormal, hypoplastic bone marrow environment. When both of these conditions are met, the fledgling PNH clone may flourish. This review will discuss the pathophysiology of this disease, which has recently been elucidated in some detail.
Collapse
Affiliation(s)
- R J Johnson
- Department of Haematology, Birmingham Heartlands Hospital, Bordesley Green East, Birmingham B9 5SS, UK.
| | | |
Collapse
|
10
|
Horikawa K, Kawaguchi T, Ishihara S, Nagakura S, Hidaka M, Kagimoto T, Mitsuya H, Nakakuma H. Frequent detection of T cells with mutations of the hypoxanthine-guanine phosphoribosyl transferase gene in patients with paroxysmal nocturnal hemoglobinuria. Blood 2002; 99:24-9. [PMID: 11756148 DOI: 10.1182/blood.v99.1.24] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acquired mutations of the PIG-A gene result in the hemolysis characteristic of paroxysmal nocturnal hemoglobinuria (PNH). Although the etiology of the mutation(s) is unclear, mutable conditions have been suggested by the coexistence of multiple clones with different mutations of PIG-A and by the appearance of leukemic clones in patients with PNH. This study sought to test this hypothesis by examining the frequency of hypoxanthine-guanine phosphoribosyl transferase (HPRT) gene mutations, identified by both resistance to 6-thioguanine (6-TG) and gene analysis. T-cell colonies resistant to 6-TG formed in methylcellulose culture were found in 8 (67%) of 12 PNH patients and 3 (18%) of 17 age-matched healthy volunteers (P <.02, Fisher exact probability test). The incidence of resistant colonies ranged from 40 to 367 (mean 149, x 10(-7)) in the 8 patients and from 1 to 16 (mean 7, x 10(-7)) in the 3 healthy donors. Thus, the HRPT gene mutated more frequently in patients with PNH than in healthy controls (P <.02, Mann-Whitney test). Analysis of bone marrow cells supported these findings. Like the PIG-A mutations in PNH, the HPRT mutations were widely distributed in the coding regions and consisted primarily of base deletions. Unlike PNH cells, 6-TG-resistant cells expressed CD59, indicating that the HPRT mutations did not occur in PNH clones. No correlation was noted between HPRT mutation frequency and content of therapy received by the patients. It is concluded that in PNH patients, conditions exist that favor the occurrence of diverse somatic mutations in blood cells.
Collapse
Affiliation(s)
- Kentaro Horikawa
- Second Department of Internal Medicine, Kumamoto University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Lyakisheva A, Felda O, Ganser A, Schmidt RE, Schubert J. Paroxysmal nocturnal hemoglobinuria: Differential gene expression of EGR-1 and TAXREB107. Exp Hematol 2002; 30:18-25. [PMID: 11823033 DOI: 10.1016/s0301-472x(01)00763-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal defect of hematopoietic stem cells characterized by deficiency in GPI-anchored surface proteins. It is not yet known how GPI-deficient stem cells are able to expand within the bone marrow and contribute considerably to the hematopoiesis. In PNH, as well as in AA and MDS, genetic instability and increased mutation frequency have been detected. Therefore, a second event is very likely, such as additional mutations, leading to clonal expansion of GPI-deficient bone marrow stem cell in PNH. METHODS In order to elucidate the molecular basis of clonal expansion in PNH, we identified several genes differentially expressed in normal and GPI-deficient cells of PNH patients by combination of RNA fingerprinting and cDNA array hybridization. RESULTS Expression of two of these genes, EGR-1 and TAXREB107, has been further investigated. EGR-1 is upregulated in granulocytes of all PNH patients analyzed so far. In contrast, significant upregulation of TAXREB107 is present only in some of our PNH patients. Further analysis confirmed their overexpression in PNH and excluded a possible secondary event character of observed overexpression. Moreover, similar levels of expression in cases of other clonal diseases, such as MPS and MDS, has been identified. CONCLUSION Our data suggest that additional genetic alterations apart from PIG-A mutations could be present in PNH granulocytes. In addition, these genetic changes might contribute to clonal expansion of GPI-deficient cells in PNH.
Collapse
Affiliation(s)
- Anna Lyakisheva
- Dept. of Hematology/Oncology, Hannover Medical School, Hannover, Germany
| | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Peter Hillmen
- Haematological Malignancy Diagnostic Service, Institute of Pathology, Leeds General Infirmary, Leeds, UK
| | - Stephen Richards
- Haematological Malignancy Diagnostic Service, Institute of Pathology, Leeds General Infirmary, Leeds, UK
| |
Collapse
|
13
|
Ware RE, Pickens CV, DeCastro CM, Howard TA. Circulating PIG-A mutant T lymphocytes in healthy adults and patients with bone marrow failure syndromes. Exp Hematol 2001; 29:1403-9. [PMID: 11750098 DOI: 10.1016/s0301-472x(01)00746-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Paroxysmal nocturnal hemoglobinuria (PNH) is a clonal hematological disorder with acquired PIG-A gene mutations and absent surface expression of proteins utilizing glycosylphosphatidylinositol (GPI) anchors. PNH often follows aplastic anemia, suggesting PIG-A mutant cells have relative dominance over normal hematopoietic cells. Somatic PIG-A mutations could arise after aplasia, or healthy persons could have rare PIG-A mutant cells that expand under selection pressure. METHODS We developed an in vitro negative selection method to isolate GPI-deficient T lymphocytes using aerolysin, an Aeromonas toxin that binds GPI anchors and induces cell lysis. Peripheral blood mononuclear cells (PBMC) from normal adults and patients with PNH or other bone marrow failure syndromes were analyzed. RESULTS From healthy adults, 166 T lymphocyte clones with deficient GPI-linked surface protein expression (CD55, CD59) were isolated. The mean mutant frequency (M(f)) of aerolysin-resistant clones was 17.8 +/- 13.8 per 10(6) PBMC, range 5.0-59.6 per 10(6) cells. Clones had a Class A complementation defect and distinct PIG-A mutations. Patients with PNH had elevated aerolysin-resistant M(f) values averaging 19 x 10(-2), a 10,000-fold difference. Two patients with Fanconi anemia and two others with mild aplastic anemia had M(f) values less than 15 x 10(-6), but two with recovering aplastic anemia had M(f) values of 20 x 10(-4), representing an intermediate value between normal persons and PNH patients. CONCLUSION Identification of PIG-A mutant T lymphocytes in healthy adults suggests PNH could develop following intense negative selection of hematopoiesis, with clonal outgrowth of naturally occurring PIG-A mutant stem cells.
Collapse
Affiliation(s)
- R E Ware
- Division of Hematology/Oncology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
14
|
Franco De Carvalho R, Arruda VR, Saad ST, Costa FF. Detection of somatic mutations of the PIG-A gene in Brazilian patients with paroxysmal nocturnal hemoglobinuria. Braz J Med Biol Res 2001; 34:763-6. [PMID: 11378665 DOI: 10.1590/s0100-879x2001000600010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal syndrome characterized by intravascular hemolysis mediated by complement, thrombotic events and alterations in hematopoiesis. Basically, the molecular events which underlie the complexity of the syndrome consist of the absence of the glycosylphosphatidylinositol (GPI) anchor as a consequence of somatic mutations in the PIG-A gene, located on the X chromosome. The GPI group is responsible for the attachment of many proteins to the cytoplasmic membrane. Two of them, CD55 and CD59, have a major role in the inhibition of the action of complement on the cellular membrane of blood cells. The absence of GPI biosynthesis can lead to PNH. Since mutations in the PIG-A gene are always present in patients with PNH, the aim of this study was to characterize the mutations in the PIG-A gene in Brazilian patients. The analysis of the PIG-A gene was performed using DNA samples derived from bone marrow and peripheral blood. Conformation-sensitive gel electrophoresis was used for screening the mutation and sequencing methods were used to identify the mutations. Molecular analysis permitted the identification of three point mutations in three patients: one G-->A transition in the 5' portion of the second intron, one T-->A substitution in the second base of codon 430 (Leu430-->stop), and one deletion DeltaA in the third base of codon 63. This study represents the first description of mutations in the PIG-A gene in a Brazilian population.
Collapse
Affiliation(s)
- R Franco De Carvalho
- Centro de Hematologia e Hemoterapia - Hemocentro, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | | | | | | |
Collapse
|
15
|
Abstract
The characteristic, defining defect in paroxysmal nocturnal hemoglobinuria is the somatic mutation of the PIG-A gene (essential to the biosynthesis of the glycosylphosphatidylinositol moiety that affixes a number of proteins to the cellular surface) in hematopoietic cells. These cells thus lack the proteins usually held in place by this anchor. The absence of these proteins is the most reliable diagnostic criterion of the disease and is responsible for many of the clinical manifestations of PNH. The current hypothesis explaining the disorder suggests that there are two components: (1) hematopoietic stem cells with the characteristic defect are present in the marrow of many if not all normal individuals in very small numbers; (2) some aplastogenic influence suppresses the normal stem cells but does not suppress the defective stem cells, thus allowing the proportion of these cells to increase. Current research attempts to substantiate this hypothesis and design therapy consistent with the hypothesis. Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired stem cell disorder characterized by intravascular hemolysis, hypercoagulability, and relative bone marrow failure [1]. It is characterized by a somatic mutation in the gene encoding the alpha1-6-N-acetylglucosaminyltransferase necessary for the formation of the glycosylphosphatidylinositol (GPI) anchor that binds certain proteins to the membrane surface (Fig. 1) [2,3*]. Whereas many of the manifestations can be accounted for by the absence of these proteins on the cells of the hematopoietic system, it is not entirely clear whether this defect is sufficient to make the disease manifest. In this paper, the author reviews recent clinical observations and relates them to the underlying pathophysiology of the disease.
Collapse
Affiliation(s)
- W F Rosse
- Florence McAlister Professor of Medicine Emeritus, Department of Medicine, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
16
|
Abstract
Abstract
Hydroxyurea (HU) is an effective therapeutic agent for patients with myeloproliferative disorders (MPDs) or sickle cell disease (SCD). Short-term HU toxicities primarily include transient myelosuppression, but long-term HU risks have not been defined. The mutagenic and carcinogenic potential of HU is not established, although HU has been associated with an increased risk of leukemia in some patients with MPD. In this study, 2 assays were used to quantitate acquired somatic DNA mutations in peripheral blood mononuclear cells (PBMCs) after in vivo HU exposure. The HPRT assay measures hypoxanthine phosphoribosyl transferase (hprt) mutations, while the VDJ assay identifies “illegitimate” T-cell receptor Vγ-Jβ interlocus recombination events. PBMCs were analyzed from patients with MPD, adults and children with SCD, and normal controls. MPD patients with prolonged HU exposure had numbers of DNA mutations equivalent to patients with low HU exposure or controls. Similarly, adults with SCD had equivalent numbers of DNA mutations regardless of HU exposure. Children with SCD and 30-month HU exposure had equivalenthprt− mutations but significantly more VDJ mutations (1.82 ± 1.20 events per μg DNA) than children with 7-month HU exposure (1.58 ± 0.87 events) or no HU exposure (1.06 ± 0.45 events), P = .04 by analysis of variance. Taken together, these data suggest that the mutagenic and carcinogenic potential of in vivo HU therapy is low. Although increased numbers of illegitimate VDJ recombination events do not directly portend leukemia, young patients with SCD and HU exposure should be monitored serially for increases in DNA mutations.
Collapse
|
17
|
Abstract
Hydroxyurea (HU) is an effective therapeutic agent for patients with myeloproliferative disorders (MPDs) or sickle cell disease (SCD). Short-term HU toxicities primarily include transient myelosuppression, but long-term HU risks have not been defined. The mutagenic and carcinogenic potential of HU is not established, although HU has been associated with an increased risk of leukemia in some patients with MPD. In this study, 2 assays were used to quantitate acquired somatic DNA mutations in peripheral blood mononuclear cells (PBMCs) after in vivo HU exposure. The HPRT assay measures hypoxanthine phosphoribosyl transferase (hprt) mutations, while the VDJ assay identifies “illegitimate” T-cell receptor Vγ-Jβ interlocus recombination events. PBMCs were analyzed from patients with MPD, adults and children with SCD, and normal controls. MPD patients with prolonged HU exposure had numbers of DNA mutations equivalent to patients with low HU exposure or controls. Similarly, adults with SCD had equivalent numbers of DNA mutations regardless of HU exposure. Children with SCD and 30-month HU exposure had equivalenthprt− mutations but significantly more VDJ mutations (1.82 ± 1.20 events per μg DNA) than children with 7-month HU exposure (1.58 ± 0.87 events) or no HU exposure (1.06 ± 0.45 events), P = .04 by analysis of variance. Taken together, these data suggest that the mutagenic and carcinogenic potential of in vivo HU therapy is low. Although increased numbers of illegitimate VDJ recombination events do not directly portend leukemia, young patients with SCD and HU exposure should be monitored serially for increases in DNA mutations.
Collapse
|