1
|
The Dm-Myb Oncoprotein Contributes to Insulator Function and Stabilizes Repressive H3K27me3 PcG Domains. Cell Rep 2021; 30:3218-3228.e5. [PMID: 32160531 PMCID: PMC7172335 DOI: 10.1016/j.celrep.2020.02.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/30/2019] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
Abstract
Drosophila Myb (Dm-Myb) encodes a protein that plays a key role in regulation of mitotic phase genes. Here, we further refine its role in the context of a developing tissue as a potentiator of gene expression required for proper RNA polymerase II (RNA Pol II) function and efficient H3K4 methylation at promoters. In contrast to its role in gene activation, Myb is also required for repression of many genes, although no specific mechanism for this role has been proposed. We now reveal a critical role for Myb in contributing to insulator function, in part by promoting binding of insulator proteins BEAF-32 and CP190 and stabilizing H3K27me3 Polycomb-group (PcG) domains. In the absence of Myb, H3K27me3 is markedly reduced throughout the genome, leading to H3K4me3 spreading and gene derepression. Finally, Myb is enriched at boundaries that demarcate chromatin environments, including chromatin loop anchors. These results reveal functions of Myb that extend beyond transcriptional regulation. Myb has been considered a transcriptional activator of primarily M phase genes. Here, Santana et al. show that Myb also contributes to insulator function, in part by promoting binding of insulator factors, and is required to stabilize repressive domains in the genome.
Collapse
|
2
|
The Myb-related protein MYPOP is a novel intrinsic host restriction factor of oncogenic human papillomaviruses. Oncogene 2018; 37:6275-6284. [PMID: 30018400 PMCID: PMC6265261 DOI: 10.1038/s41388-018-0398-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 11/08/2022]
Abstract
The skin represents a physical and chemical barrier against invading pathogens, which is additionally supported by restriction factors that provide intrinsic cellular immunity. These factors detect viruses to block their replication cycle. Here, we uncover the Myb-related transcription factor, partner of profilin (MYPOP) as a novel antiviral protein. It is highly expressed in the epithelium and binds to the minor capsid protein L2 and the DNA of human papillomaviruses (HPV), which are the primary causative agents of cervical cancer and other tumors. The early promoter activity and early gene expression of the oncogenic HPV types 16 and 18 is potently silenced by MYPOP. Cellular MYPOP-depletion relieves the restriction of HPV16 infection, demonstrating that MYPOP acts as a restriction factor. Interestingly, we found that MYPOP protein levels are significantly reduced in diverse HPV-transformed cell lines and in HPV-induced cervical cancer. Decades ago it became clear that the early oncoproteins E6 and E7 cooperate to immortalize keratinocytes by promoting degradation of tumor suppressor proteins. Our findings suggest that E7 stimulates MYPOP degradation. Moreover, overexpression of MYPOP blocks colony formation of HPV and non-virally transformed keratinocytes, suggesting that MYPOP exhibits tumor suppressor properties.
Collapse
|
3
|
Prouse MB, Campbell MM. The interaction between MYB proteins and their target DNA binding sites. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:67-77. [DOI: 10.1016/j.bbagrm.2011.10.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 02/02/2023]
|
4
|
Scaria GS, Ramsay G, Katzen AL. Two components of the Myb complex, DMyb and Mip130, are specifically associated with euchromatin and degraded during prometaphase throughout development. Mech Dev 2008; 125:646-61. [PMID: 18424081 DOI: 10.1016/j.mod.2008.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 02/21/2008] [Accepted: 02/25/2008] [Indexed: 01/21/2023]
Abstract
The Drosophila Myb protein, DMyb, is a transcription factor important for cell proliferation and development. Unlike the mRNAs produced by mammalian myb genes, Drosophila myb transcripts do not fluctuate substantially during the cell cycle. A comprehensive analysis of the localization and degradation of the DMyb protein has now revealed that DMyb is present in nuclei during S phase of all mitotically active tissues throughout embryogenesis and larval development. However, DMyb and Mip130, another member of the Myb complex, are not uniformly distributed throughout the nucleus. Instead, both proteins, which colocalize, appear to be specifically excluded from heterochromatic regions of chromosomes. Furthermore, DMyb and Mip130 are unstable proteins that are degraded during prometaphase of mitosis. The timing of their degradation is reminiscent of Cyclin A, but at least for DMyb, the mechanism differs; although DMyb degradation is dependent on core APC/C components, it does not depend on the Fizzy or Fizzy-related adaptor proteins. DMyb levels are also high in actively endoreplicating polyploid cells, but there is no indication of cyclical degradation. We conclude that cell cycle specific degradation of DMyb and Mip130 is likely to be utilized as a key regulatory mechanism in down-regulating their levels and the activity of the Myb complex.
Collapse
Affiliation(s)
- George S Scaria
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 South Ashland Avenue, 2370 MBRB, Chicago IL 60607-7170, USA
| | | | | |
Collapse
|
5
|
Georlette D, Ahn S, MacAlpine DM, Cheung E, Lewis PW, Beall EL, Bell SP, Speed T, Manak JR, Botchan MR. Genomic profiling and expression studies reveal both positive and negative activities for the Drosophila Myb MuvB/dREAM complex in proliferating cells. Genes Dev 2007; 21:2880-96. [PMID: 17978103 DOI: 10.1101/gad.1600107] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Myb-MuvB (MMB)/dREAM is a nine-subunit complex first described in Drosophila as a repressor of transcription, dependent on E2F2 and the RBFs. Myb, an integral member of MMB, curiously plays no role in the silencing of the test genes previously analyzed. Moreover, Myb plays an activating role in DNA replication in Drosophila egg chamber follicle cells. The essential functions for Myb are executed as part of MMB. This duality of function lead to the hypothesis that MMB, which contains both known activator and repressor proteins, might function as part of a switching mechanism that is dependent on DNA sites and developmental context. Here, we used proliferating Drosophila Kc tissue culture cells to explore both the network of genes regulated by MMB (employing RNA interference and microarray expression analysis) and the genomic locations of MMB following chromatin immunoprecipitation (ChIP) and tiling array analysis. MMB occupied 3538 chromosomal sites and was promoter-proximal to 32% of Drosophila genes. MMB contains multiple DNA-binding factors, and the data highlighted the combinatorial way by which the complex was targeted and utilized for regulation. Interestingly, only a subset of chromatin-bound complexes repressed genes normally expressed in a wide range of developmental pathways. At many of these sites, E2F2 was critical for repression, whereas at other nonoverlapping sites, Myb was critical for repression. We also found sites where MMB was a positive regulator of transcript levels that included genes required for mitotic functions (G2/M), which may explain some of the chromosome instability phenotypes attributed to loss of Myb function in myb mutants.
Collapse
Affiliation(s)
- Daphne Georlette
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Drosophila melanogaster possesses a single gene, Dm myb, that is closely related to the vertebrate family of Myb genes, which encode transcription factors involved in regulatory decisions affecting cell proliferation, differentiation and apoptosis. In proliferating cells, the Dm myb gene product, DMyb, promotes both S-phase and M-phase, and acts to preserve diploidy by suppressing endoreduplication. The CBP and p300 proteins are transcriptional co-activators that interact with a multitude of transcription factors, including Myb. In transient transfection assays, transcriptional activation by DMyb is enhanced by co-expression of the Drosophila CBP protein, dCBP. Genetic interaction analysis reveals that these genes work together to promote mitosis, thereby demonstrating the physiological relevance of the biochemical interaction between the Myb and CBP proteins within a developing organism.
Collapse
Affiliation(s)
- Siau-Min Fung
- Department of Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607-7170, USA
| | | | | |
Collapse
|
7
|
Fitzpatrick CA, Sharkov NV, Ramsay G, Katzen AL. Drosophila myb exerts opposing effects on S phase, promoting proliferation and suppressing endoreduplication. Development 2002; 129:4497-507. [PMID: 12223407 DOI: 10.1242/dev.129.19.4497] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drosophila melanogaster possesses a single gene, Dm myb, that is closely related to the vertebrate family of Myb genes, which encode transcription factors that are involved in regulatory decisions affecting cell proliferation, differentiation and apoptosis. The vertebrate Myb genes have been specifically implicated in regulating the G1/S transition of the cell cycle. Dm myb is expressed in all proliferating tissues, but not at detectable levels in endoreduplicating cells. Analysis of loss-of-function mutations in Dm myb revealed a block at the G2/M transition and mitotic defects, but did not directly implicate Dm myb function in the G1/S transition. We have used the Gal4-UAS binary system of ectopic expression to further investigate the function of Dm myb. Our results demonstrate that depending upon the type of cell cycle, ectopic Dm myb activity can exert opposing effects on S phase: driving DNA replication and promoting proliferation in diploid cells, even when developmental signals normally dictate cell cycle arrest; but suppressing endoreduplication in endocycling cells, an effect that can be overcome by induction of E2F. We also show that a C-terminally truncated DMyb protein, which is similar to an oncogenic form of vertebrate Myb, has more potent effects than the full-length protein, especially in endoreduplicating tissues. This finding indicates that the C terminus acts as a negative regulatory domain, which can be differentially regulated in a tissue-specific manner. Our studies help to resolve previous discrepancies regarding myb gene function in Drosophila and vertebrates. We conclude that in proliferating cells, Dm myb has the dual function of promoting S phase and M phase, while preserving diploidy by suppressing endoreduplication.
Collapse
Affiliation(s)
- Carrie A Fitzpatrick
- Department of Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, IL 60607-7170, USA
| | | | | | | |
Collapse
|
8
|
Sharkov NV, Ramsay G, Katzen AL. The DNA replication-related element-binding factor (DREF) is a transcriptional regulator of the Drosophila myb gene. Gene 2002; 297:209-19. [PMID: 12384302 DOI: 10.1016/s0378-1119(02)00890-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Drosophila melanogaster possesses a single gene, Dm myb, that is closely related to the vertebrate proto-oncogene c-Myb, and its other family members (A-Myb and B-Myb), all of which encode transcription factors. Dm myb is expressed in all proliferating cells throughout development, and previous studies demonstrate that Dm myb promotes both S-phase and M-phase in proliferating cells, while preserving diploidy by suppressing endoreduplication. We have initiated a characterization of the mechanisms that regulate Dm myb expression, and we report here that the transcriptional activator DREF (the DNA replication-related element binding factor) activates Dm myb transcription via two binding sites located in the 5' flanking region; that the Dm myb promoter lacks a prototypical TATA box sequence and instead appears to use an initiator/downstream promoter element (Inr/DPE) type promoter; and that Dm myb expression is regulated at the translational as well as transcriptional level.
Collapse
Affiliation(s)
- Nikolai V Sharkov
- Department of Molecular Genetics (M/C 669), University of Illinois at Chicago, College of Medicine, 900 South Ashland Avenue, Room 2368, Chicago, IL 60607-7170, USA
| | | | | |
Collapse
|
9
|
Fung SM, Ramsay G, Katzen AL. Mutations inDrosophila myblead to centrosome amplification and genomic instability. Development 2002; 129:347-59. [PMID: 11807028 DOI: 10.1242/dev.129.2.347] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We have previously established that the single myb gene in Drosophila melanogaster, Dm myb, which is related to the proto-oncogene Myb, is required for the G2/M transition of the cell cycle and for suppression of endoreduplication in pupal wing cells. We now report that studies of the abdominal phenotype in loss-of-function Dm myb mutants reveal additional roles for Dm myb in the cell cycle, specifically in mitosis. Abdominal epidermal cells that are mutant for Dm myb proliferate more slowly than wild-type controls throughout pupation, with particularly sluggish progression through the early stages of mitosis. Abnormal mitoses associated with multiple functional centrosomes, unequal chromosome segregation, formation of micronuclei, and/or failure to complete cell division are common in the later cell cycles of mutant cells. Resulting nuclei are often aneuploid and/or polyploid. Similar defects have also been observed in loss-of-function mutations of the tumor suppressor genes p53, Brca1 and Brca2. These data demonstrate that in abdominal epidermal cells, Dm myb is required to sustain the appropriate rate of proliferation, to suppress formation of supernumerary centrosomes, and to maintain genomic integrity.
Collapse
Affiliation(s)
- Siau-Min Fung
- Department of Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, IL 60607-7170, USA
| | | | | |
Collapse
|