1
|
Kankova Z, Drozdova A, Hodova V, Zeman M. Effect of blue and red monochromatic light during incubation on the early post-embryonic development of immune responses in broiler chicken. Br Poult Sci 2022; 63:541-547. [PMID: 35152798 DOI: 10.1080/00071668.2022.2042485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
1. The light regime during incubation can influence embryonic and post-embryonic life and its effects can be mediated by rhythmic melatonin production in the embryonic pineal gland.2. This study explored whether the incubation of chick embryos under red or blue monochromatic light, which induces maximum and minimum melatonin production, respectively, can influence the development and reactivity of the immune system in chicks.3. In hatchlings, basal expression of immune genes (AvBD-1, PSEN-1, and IL-6) was evaluated in the duodenum using real-time PCR. The expression of these genes was measured weekly for three weeks after hatching, 3 h after intraperitoneal lipopolysaccharide (LPS) injection. At these times, the heterophile/lymphocyte ratio (He/Ly) was evaluated on blood smears, plasma immunoglobulin Y (IgY) concentrations by ELISA and IL-6 gene expression in the spleen by real-time PCR were determined.4. During development, the He/Ly ratio and plasma IgY concentration were not significantly influenced by the light quality during incubation. Red light increased gene expression of AvBD-1 in hatchlings and IL-6 in two-week-old chickens compared to birds incubated under blue light. The expression of IL-6 after LPS stimulation increased in an age-dependent manner, both in the duodenum and the spleen, reflecting the maturation of the immune system.5. The results suggested that red light may increase the local immune response in the gut immediately after hatching, but this effect was not apparent during later development.
Collapse
Affiliation(s)
- Zuzana Kankova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Slovakia; (A.D.), (V.H.), (M.Z.)
| | - Angelika Drozdova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Slovakia; (A.D.), (V.H.), (M.Z.)
| | - Vladimira Hodova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Slovakia; (A.D.), (V.H.), (M.Z.)
| | - Michal Zeman
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Slovakia; (A.D.), (V.H.), (M.Z.)
| |
Collapse
|
2
|
Villar-Vesga J, Henao-Restrepo J, Voshart DC, Aguillon D, Villegas A, Castaño D, Arias-Londoño JD, Zuhorn IS, Ribovski L, Barazzuol L, Cardona-Gómez GP, Posada-Duque R. Differential Profile of Systemic Extracellular Vesicles From Sporadic and Familial Alzheimer's Disease Leads to Neuroglial and Endothelial Cell Degeneration. Front Aging Neurosci 2020; 12:587989. [PMID: 33281599 PMCID: PMC7705379 DOI: 10.3389/fnagi.2020.587989] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023] Open
Abstract
Evidence suggests that extracellular vesicles (EVs) act as mediators and biomarkers of neurodegenerative diseases. Two distinct forms of Alzheimer disease (AD) are known: a late-onset sporadic form (SAD) and an early-onset familial form (FAD). Recently, neurovascular dysfunction and altered systemic immunological components have been linked to AD neurodegeneration. Therefore, we characterized systemic-EVs from postmortem SAD and FAD patients and evaluated their effects on neuroglial and endothelial cells. We found increase CLN-5 spots with vesicular morphology in the abluminal portion of vessels from SAD patients. Both forms of AD were associated with larger and more numerous systemic EVs. Specifically, SAD patients showed an increase in endothelial- and leukocyte-derived EVs containing mitochondria; in contrast, FAD patients showed an increase in platelet-derived EVs. We detected a differential protein composition for SAD- and FAD-EVs associated with the coagulation cascade, inflammation, and lipid-carbohydrate metabolism. Using mono- and cocultures (endothelium-astrocytes-neurons) and human cortical organoids, we showed that AD-EVs induced cytotoxicity. Both forms of AD featured decreased neuronal branches area and astrocytic hyperreactivity, but SAD-EVs led to greater endothelial detrimental effects than FAD-EVs. In addition, FAD- and SAD-EVs affected calcium dynamics in a cortical organoid model. Our findings indicate that the phenotype of systemic AD-EVs is differentially defined by the etiopathology of the disease (SAD or FAD), which results in a differential alteration of the NVU cells implied in neurodegeneration.
Collapse
Affiliation(s)
- Juan Villar-Vesga
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, Faculty of Medicine, Sede de Investigación Universitaria, University of Antioquia, Medellín, Colombia.,Institute of Biology, Faculty of Exact and Natural Sciences, University of Antioquia, Medellín, Colombia
| | - Julián Henao-Restrepo
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, Faculty of Medicine, Sede de Investigación Universitaria, University of Antioquia, Medellín, Colombia.,Institute of Biology, Faculty of Exact and Natural Sciences, University of Antioquia, Medellín, Colombia
| | - Daniëlle C Voshart
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Section of Molecular Cell Biology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - David Aguillon
- Neurobank, Neuroscience Group of Antioquia, Faculty of Medicine, Sede de Investigación Universitaria, University of Antioquia, Medellín, Colombia
| | - Andrés Villegas
- Neurobank, Neuroscience Group of Antioquia, Faculty of Medicine, Sede de Investigación Universitaria, University of Antioquia, Medellín, Colombia
| | - Diana Castaño
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | | | - Inge S Zuhorn
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Laís Ribovski
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lara Barazzuol
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Section of Molecular Cell Biology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Gloria P Cardona-Gómez
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, Faculty of Medicine, Sede de Investigación Universitaria, University of Antioquia, Medellín, Colombia
| | - Rafael Posada-Duque
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, Faculty of Medicine, Sede de Investigación Universitaria, University of Antioquia, Medellín, Colombia.,Institute of Biology, Faculty of Exact and Natural Sciences, University of Antioquia, Medellín, Colombia
| |
Collapse
|
3
|
The Ontogeny of a Neutrophil: Mechanisms of Granulopoiesis and Homeostasis. Microbiol Mol Biol Rev 2018; 82:82/1/e00057-17. [PMID: 29436479 DOI: 10.1128/mmbr.00057-17] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Comprising the majority of leukocytes in humans, neutrophils are the first immune cells to respond to inflammatory or infectious etiologies and are crucial participants in the proper functioning of both innate and adaptive immune responses. From their initial appearance in the liver, thymus, and spleen at around the eighth week of human gestation to their generation in large numbers in the bone marrow at the end of term gestation, the differentiation of the pluripotent hematopoietic stem cell into a mature, segmented neutrophil is a highly controlled process where the transcriptional regulators C/EBP-α and C/EBP-ε play a vital role. Recent advances in neutrophil biology have clarified the life cycle of these cells and revealed striking differences between neonatal and adult neutrophils based on fetal maturation and environmental factors. Here we detail neutrophil ontogeny, granulopoiesis, and neutrophil homeostasis and highlight important differences between neonatal and adult neutrophil populations.
Collapse
|
4
|
Carboni L, Lattanzio F, Candeletti S, Porcellini E, Raschi E, Licastro F, Romualdi P. Peripheral leukocyte expression of the potential biomarker proteins Bdnf, Sirt1, and Psen1 is not regulated by promoter methylation in Alzheimer's disease patients. Neurosci Lett 2015; 605:44-8. [PMID: 26275347 DOI: 10.1016/j.neulet.2015.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/31/2015] [Accepted: 08/07/2015] [Indexed: 01/16/2023]
Abstract
The identification of Alzheimer's disease (AD) biomarkers is crucial to support drug discovery. Within putative biomarkers, peripheral Bdnf levels correlate with cognitive decline and AD, although conflicting findings are reported. Sirtuin 1 (Sirt1) serum levels are lower in AD patients and Presenilin 1 (Psen1) is expressed by blood cells. DNA methylation is altered in AD patients, suggesting that epigenetic mechanisms play a role in AD pathophysiology. The objective of this study was to investigate promoter methylation levels of potential biomarkers in AD cases and controls. Peripheral blood DNA methylation levels were analysed by methylation-specific primer real-time PCR. Bdnf promoter methylation levels did not differ between AD patients and controls. Similarly, Sirt1 promoter revealed minimal levels of methylation which did not display significant differences between groups. No significant difference was revealed between AD patients and controls also in Psen1 methylation, showing a large variability of values among subjects. Although peripheral Bdnf expression is associated with differential promoter methylation in psychiatric and neurological disorders, our results suggest that different mechanisms take place in AD. The finding that the control of Sirt1 protein levels in blood is not exerted through the repression of mRNA expression by promoter hypermethylation is in agreement with previous data. In contrast, other studies reported that Psen1 methylation may be increased or decreased in AD patients, suggesting that additional studies are required. In conclusion, this study shows that peripheral levels of the potential AD biomarker proteins Bdnf, Sirt1, and Psen1 are not regulated by different promoter methylation.
Collapse
Affiliation(s)
- Lucia Carboni
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum University of Bologna, Bologna, Italy.
| | - Francesca Lattanzio
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Elisa Porcellini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Elena Raschi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Federico Licastro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Jimenez-Del-Rio M, Velez-Pardo C. Alzheimer’s Disease, Drosophila melanogaster and Polyphenols. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 863:21-53. [DOI: 10.1007/978-3-319-18365-7_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Jamil K, Jayaraman A, Rao R, Raju S. In silico evidence of signaling pathways of notch mediated networks in leukemia. Comput Struct Biotechnol J 2012; 1:e201207005. [PMID: 24688641 PMCID: PMC3962152 DOI: 10.5936/csbj.201207005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 11/04/2012] [Accepted: 11/07/2012] [Indexed: 11/22/2022] Open
Abstract
Notch signaling plays a critical role in cell fate determination and maintenance of progenitors in many developmental systems. Notch receptors have been shown to be expressed on hematopoietic progenitor cells as well as to various degrees in peripheral blood T and B lymphocytes, monocytes, and neutrophils. Our aim was to understand the protein interaction network, using Notch1 protein name as query in STRING database and we generated a model to assess the significance of Notch1 associated proteins in Acute Lymphoblastic Leukemia (ALL). We further analyzed the expression levels of the genes encoding hub proteins, using Oncomine database, to determine their significance in leukemogenesis. Of the forty two hub genes, we observed that sixteen genes were underexpressed and eleven genes were overexpressed in T-cell Acute Lymphoblastic samples in comparison to their expression levels in normal cells. Of these, we found three novel genes which have not been reported earlier- KAT2B, PSEN1 (underexpressed) and CDH2 (overexpressed).These three identified genes may provide new insights into the abnormal hematopoietic process observed in Leukemia as these genes are involved in Notch signaling and cell adhesion processes. It is evident that experimental validation of the protein interactors in leukemic cells could help in the identification of new diagnostic markers for leukemia.
Collapse
Affiliation(s)
- Kaiser Jamil
- Centre for Biotechnology and Bioinformatics, School of Life sciences, Jawaharlal Nehru Institute of Advanced Studies (JNIAS), 6th Floor, Budha Bhawan, M.G. Road, Secunderabad 500003, Andhra Pradesh, India
| | - Archana Jayaraman
- Centre for Biotechnology and Bioinformatics, School of Life sciences, Jawaharlal Nehru Institute of Advanced Studies (JNIAS), 6th Floor, Budha Bhawan, M.G. Road, Secunderabad 500003, Andhra Pradesh, India
| | - Raghunatha Rao
- Oncology Department, Nizams Institute of Medical Sciences ( NIMS), Panjagutta, Hyderabad 500082, Andhra Pradesh, India
| | - Suryanarayana Raju
- Oncology Department, Nizams Institute of Medical Sciences ( NIMS), Panjagutta, Hyderabad 500082, Andhra Pradesh, India
| |
Collapse
|
7
|
Abstract
More than one century ago "a peculiar disorder of the cerebral cortex" was noticed in a middle-aged patient who had been affected by dementia in the last years of his life. The postmortem hallmarks of his brain were protein plaques, neurofibrillary tangles, and atherosclerotic changes: the neuropathologist who found these alterations and gave his name to the disease that underlied them was Alois Alzheimer (Alzheimer et al., Clin Anat 1995;8:429-431). Following its discovery, the disease has been studied with a vigor that went parallel to the increase of its social importance. The amount of information amassed in the literature is impressive, but knowledge on the mechanism underlying its onset and its progression is still very limited. Numerous hypotheses on the molecular pathogenesis of the Alzheimer's disease (AD) have been proposed and two have gradually gained wide consensus: (i) the amyloid cascade hypothesis, first proposed on the basis of the toxicity evoked by the deposition of amyloid β (Aβ) aggregates; (ii) the Ca(2+) hypothesis, which focuses on the correlation between the dysfunction of Ca(2+) homeostasis and the neurodegeneration process. This succinct review will discuss the essential aspects of the role of Ca(2+) homeostasis dysregulation in the onset and development of AD.
Collapse
|
8
|
van de Hoef DL, Hughes J, Livne-Bar I, Garza D, Konsolaki M, Boulianne GL. Identifying genes that interact with Drosophila presenilin and amyloid precursor protein. Genesis 2009; 47:246-60. [PMID: 19241393 DOI: 10.1002/dvg.20485] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The gamma-secretase complex is involved in cleaving transmembrane proteins such as Notch and one of the genes targeted in Alzheimer's disease known as amyloid precursor protein (APP). Presenilins function within the catalytic core of gamma-secretase, and mutated forms of presenilins were identified as causative factors in familial Alzheimer's disease. Recent studies show that in addition to Notch and APP, numerous signal transduction pathways are modulated by presenilins, including intracellular calcium signaling. Thus, presenilins appear to have diverse roles. To further understand presenilin function, we searched for Presenilin-interacting genes in Drosophila by performing a genetic modifier screen for enhancers and suppressors of Presenilin-dependent Notch-related phenotypes. We identified 177 modifiers, including known members of the Notch pathway and genes involved in intracellular calcium homeostasis. We further demonstrate that 53 of these modifiers genetically interacted with APP. Characterization of these genes may provide valuable insights into Presenilin function in development and disease.
Collapse
Affiliation(s)
- Diana L van de Hoef
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Mambole A, Baruch D, Nusbaum P, Bigot S, Suzuki M, Lesavre P, Fukuda M, Halbwachs-Mecarelli L. The cleavage of neutrophil leukosialin (CD43) by cathepsin G releases its extracellular domain and triggers its intramembrane proteolysis by presenilin/gamma-secretase. J Biol Chem 2008; 283:23627-35. [PMID: 18586676 DOI: 10.1074/jbc.m710286200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The highly negatively charged membrane sialoglycoprotein leukosialin, CD43, is shed during neutrophil activation. This is generally thought to enhance cell adhesion. We here describe two novel consequences of this shedding, during neutrophil activation by phorbol esters or by chemoattractants after TNF-alpha priming. CD43 proteolysis was investigated by Western blotting, using a polyclonal antibody to CD43 intracellular domain. Our data emphasize the importance of a juxtamembranous cleavage of about 50% of membrane CD43 molecules by cathepsin G. Indeed, it is inhibited by alpha1-antichymotrypsin and cathepsin G inhibitor I and is reproduced by exogenous purified cathepsin G. The resulting membrane-anchored C-terminal fragment, CD43-CTF, becomes susceptible to presenilin/gamma-secretase, which releases CD43 intracytoplasmic domain: preincubation with three different gamma-secretase inhibitors, before PMN treatment by agonists or by purified cathepsin G, results in the accumulation of CD43-CTF. Because CD43 binds E-selectin, we also investigated the effect of the soluble extracellular domain CD43s, released by cathepsin G juxtamembranous cleavage, on neutrophil adhesion to endothelial cells. A recombinant CD43s-Fc fusion protein inhibited neutrophil E selectindependent adhesion to endothelial cells under flow conditions, while it had no effect on neutrophil static adhesion. We thus propose that, in addition to its potential pro-adhesive role, CD43 proteolysis results in: (i) the release, by cathepsin G, of CD43 extracellular domain, able to inhibit the adhesion of flowing neutrophils on endothelial cells and thus to participate to the natural control of inflammation; (ii) the release and/or the clearance, by presenilin/gamma-secretase, of CD43 intracellular domain, thereby regulating CD43-mediated signaling.
Collapse
Affiliation(s)
- Agnès Mambole
- INSERM U845, the Université René Descartes, Hôpital Necker, 161 Rue de Sèvres, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Maynard DM, Heijnen HFG, Horne MK, White JG, Gahl WA. Proteomic analysis of platelet alpha-granules using mass spectrometry. J Thromb Haemost 2007; 5:1945-55. [PMID: 17723134 DOI: 10.1111/j.1538-7836.2007.02690.x] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Platelets have three major types of secretory organelles: lysosomes, dense granules, and alpha-granules. alpha-Granules contain several adhesive proteins involved in hemostasis, as well as glycoproteins involved in inflammation, wound healing, and cell-matrix interactions. This article represents the first effort to define the platelet alpha-granule proteome using mass spectrometry (MS). METHODS We prepared a subcellular fraction enriched in intact alpha-granules from human platelets using sucrose gradient ultracentrifugation. alpha-Granule proteins were separated and identified using sodium dodecylsulfate polyacrylamide gel electrophoresis and liquid chromatography-tandem MS. RESULTS In the sucrose fraction enriched in alpha-granules, we identified 284 non-redundant proteins, 44 of which appear to be new alpha-granule proteins, on the basis of a literature review. Immunoelectron microscopy confirmed the presence of Scamp2, APLP2, ESAM and LAMA5 in platelet alpha-granules for the first time. We identified 65% of the same proteins that were detected in the platelet releasate (J. A. Coppinger et al. [Blood 2004;103: 2096-104]) as well as additional soluble and membrane proteins. Our method provides a suitable tool for analyzing the granule proteome of patients with storage pool deficiencies.
Collapse
Affiliation(s)
- D M Maynard
- Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892-1851, USA.
| | | | | | | | | |
Collapse
|
11
|
Mhyre TR, Loy R, Tariot PN, Profenno LA, Maguire-Zeiss KA, Zhang D, Coleman PD, Federoff HJ. Proteomic analysis of peripheral leukocytes in Alzheimer's disease patients treated with divalproex sodium. Neurobiol Aging 2007; 29:1631-43. [PMID: 17521776 PMCID: PMC2621111 DOI: 10.1016/j.neurobiolaging.2007.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 03/28/2007] [Accepted: 04/13/2007] [Indexed: 02/06/2023]
Abstract
The molecular profiling of peripheral tissues, including circulating leukocytes, may hold promise in the discovery of biomarkers for diagnosing and treating neurodegenerative diseases, including Alzheimer's disease (AD). As a proof-of-concept, we performed a proteomics study on peripheral leukocytes from patients with AD both before and during treatment with divalproex sodium. Using two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry, we identified 10 differentially expressed proteins: two up-regulated proteins, 14-3-3 protein epsilon and peroxiredoxin 2; and eight down-regulated proteins, actin-interacting protein, mitogen activated protein kinase 1, beta actin, annexin A1, glyceraldehyde 3-phosphate dehydrogenase, transforming protein RhoA, acidic leucine-rich nuclear phosphoprotein 32 family member B, and a currently unidentified protein. A subset was validated on both the transcript and protein levels in normal human peripheral blood mononuclear cell cultures treated with valproic acid. These proteins comprise a number of functional classes that may be important to the biology of AD and to the therapeutic action of valproate. These data also suggest the potential of using peripheral leukocytes to monitor pharmaceutical action for neurodegenerative diseases.
Collapse
Affiliation(s)
- Timothy R. Mhyre
- Center for Aging and Developmental Biology, Aab Institute for Biomedical Research, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Rebekah Loy
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Pierre N. Tariot
- Center for Aging and Developmental Biology, Aab Institute for Biomedical Research, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Banner Alzheimer's Institute, 901 East Willetta Street, Phoenix, AZ 85006, USA
| | - Louis A. Profenno
- Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Kathleen A. Maguire-Zeiss
- Center for Aging and Developmental Biology, Aab Institute for Biomedical Research, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Dabao Zhang
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Paul D. Coleman
- Center for Aging and Developmental Biology, Aab Institute for Biomedical Research, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Howard J. Federoff
- Center for Aging and Developmental Biology, Aab Institute for Biomedical Research, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Corresponding author: Before March 31, 2007: Tel: +1 585 273 4851; Fax: +1 585 276 1947; E-mail address: . Beginning April 1, 2007: Office of the Executive Vice President and Executive Dean, Georgetown University Medical Center, 4000 Reservoir Road, NW, 120 Building D, Washington, DC 20007; Tel: +1 202 687 4600; Fax: +1 202 687 1100; E-mail address:
| |
Collapse
|
12
|
Park HY, Park JI, Baek DW, Lee SY, Lee MJ, Jin JO, Kim JW, Hong YS, Lee YH, Kwak JY. Modulation of neutrophil apoptosis by β-amyloid proteins. Int Immunopharmacol 2006; 6:1061-9. [PMID: 16714209 DOI: 10.1016/j.intimp.2006.01.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2005] [Revised: 07/06/2005] [Accepted: 01/20/2006] [Indexed: 12/25/2022]
Abstract
This study examined the effect of amyloid beta peptide (Abeta) and the secretase inhibitors of amyloid precursor proteins (APP) on the spontaneous apoptosis of neutrophils. Abeta(1-40) decreased the apoptotic rate of neutrophils. The delayed apoptosis by Abeta was not blocked by pertussis toxin and N-formyl peptide receptor-like 1 antagonistic peptide, WRWWWW. The inhibitors of phoshoinositide 3-kinase (LY294002), phospholipase C (U73122), or Ca++-dependent protein kinase C (Go6976) abrogated the anti-apoptotic effect of Abeta on neutrophils. Moreover, the Abeta-induced delay of apoptosis was inhibited by a calcium chelator, BAPTA/AM. The amount of the APP protein was reduced in the cultured neutrophils and the APP level in the Abeta or pancaspase-treated neutrophils was lower than that in the cultured neutrophils. However, the reduction in APP level was recovered after treating them with the secretase inhibitors or anti-Fas antibody. The exogenous addition of cell permeable beta- and gamma-secretase inhibitors resulted in an increase in the rate of the apoptosis. The regulation of neutrophil apoptosis by the addition of Abeta and secretase inhibitors occurred via the caspase -8, -9, -3, and mitochondrial-dependent pathways. This suggests that the intracellular beta-amyloid proteins play a role as regulating factor of neutrophil survival and that Abeta-induced delay of apoptosis is mediated by other receptors rather than a seven-transmembrane G protein-coupled receptor(s).
Collapse
Affiliation(s)
- Hae-Young Park
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 602-714, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Langui D, Girardot N, El Hachimi KH, Allinquant B, Blanchard V, Pradier L, Duyckaerts C. Subcellular topography of neuronal Abeta peptide in APPxPS1 transgenic mice. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:1465-77. [PMID: 15509518 PMCID: PMC1618656 DOI: 10.1016/s0002-9440(10)63405-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In transgenic mice expressing human mutant beta-amyloid precursor protein (APP) and mutant presenilin-1 (PS1), Abeta antibodies labeled granules, about 1 microm in diameter, in the perikaryon of neurons clustered in the isocortex, hippocampus, amygdala, thalamus, and brainstem. The granules were present before the onset of Abeta deposits; their number increased up to 9 months and decreased in 15-month-old animals. They were immunostained by antibodies against Abeta 40, Abeta 42, and APP C-terminal region. In double immunofluorescence experiments, the intracellular Abeta co-localized with lysosome markers and less frequently with MG160, a Golgi marker. Abeta accumulation correlated with an increased volume of lysosomes and Golgi apparatus, while the volume of endoplasmic reticulum and early endosomes did not change. Some granules were immunolabeled with an antibody against flotillin-1, a raft marker. At electron microscopy, Abeta, APP-C terminal, cathepsin D, and flotillin-1 epitopes were found in the lumen of multivesicular bodies. This study shows that Abeta peptide and APP C-terminal region accumulate in multivesicular bodies containing lysosomal enzymes, while APP N-terminus is excluded from them. Multivesicular bodies could secondarily liberate their content in the extracellular space as suggested by the association of cathepsin D with Abeta peptide in the extracellular space.
Collapse
Affiliation(s)
- Dominique Langui
- Laboratoire de Neuropathologie Raymond Escourolle, Groupe hospitalier Pitié-Salpêtrière, 47, boulevard de l'Hôpital, 75013 Paris, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Evin G, Zhu A, Holsinger RMD, Masters CL, Li QX. Proteolytic processing of the Alzheimer's disease amyloid precursor protein in brain and platelets. J Neurosci Res 2003; 74:386-92. [PMID: 14598315 DOI: 10.1002/jnr.10745] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Proteolytic processing of the amyloid precursor protein by beta -and gamma-secretases results in the production of Alzheimer's disease (AD) Abeta amyloid peptides. Modulation of secretase activity is being investigated as a potential therapeutic approach. Recent studies with human brain have revealed that the beta-secretase protein, BACE, is increased in cortex of AD patients. Analysis of betaCTF (or C99), the amyloid precursor protein (APP) product of BACE cleavage that is the direct precursor to Abeta, shows it is also elevated in AD, underlying the importance of beta-secretase cleavage in AD pathogenesis. The C-terminal product of gamma-secretase cleavage of APP, epsilonCTF (or AICD), is enriched in human brain cortical nuclear fractions, a subcellular distribution appropriate for a putative involvement of APP cytosolic domain in signal transduction. Analysis of AD cortex samples, particularly that of a carrier of a familial APP mutation, suggests that processing of APP transmembrane domain generates an alternative CTF product. All these particularities observed in the AD brain demonstrate that APP processing is altered in AD. The transgenic mouse model Tg2576 seems to be a promising laboratory tool to test potential modulators of Abeta formation. Indeed, C-terminal products of alpha-, beta-, and gamma-secretase cleavage are readily detectable in the brain of these transgenic mice. Finally, the finding of the same secretase products in platelets and neurons make platelets a potentially useful and easily accessible clinical tool to monitor effects of novel therapies based on inhibition of beta- or gamma-secretase.
Collapse
Affiliation(s)
- Geneviève Evin
- Department of Pathology, University of Melbourne, Parkville, Australia.
| | | | | | | | | |
Collapse
|
15
|
Abstract
The neutrophil is a major effector cell of innate immunity. Exocytosis of granules and secretory vesicles plays a pivotal role in most neutrophil functions from early activation to the destruction of phagocytosed microorganisms. Neutrophil granules contain a multitude of antimicrobial and potentially cytotoxic substances that are delivered to the phagosome or to the exterior of the cell following degranulation. This review summarises current knowledge of granule biology and highlights the effects of neutrophil degranulation in the acute inflammatory response.
Collapse
Affiliation(s)
- Mikkel Faurschou
- The Granulocyte Research Laboratory, Department of Haematology, Rigshospitalet 4042, University of Copenhagen, 9 Blegdamsvej, DK-2100 Copenhagen OE, Denmark
| | | |
Collapse
|
16
|
Pasternak SH, Bagshaw RD, Guiral M, Zhang S, Ackerley CA, Pak BJ, Callahan JW, Mahuran DJ. Presenilin-1, nicastrin, amyloid precursor protein, and gamma-secretase activity are co-localized in the lysosomal membrane. J Biol Chem 2003; 278:26687-94. [PMID: 12736250 DOI: 10.1074/jbc.m304009200] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Alzheimer's disease (AD) is caused by the cerebral deposition of beta-amyloid (Abeta), a 38-43-amino acid peptide derived by proteolytic cleavage of the amyloid precursor protein (APP). Initial studies indicated that final cleavage of APP by the gamma-secretase (a complex containing presenilin and nicastrin) to produce Abeta occurred in the endosomal/lysosomal system. However, other studies showing a predominant endoplasmic reticulum localization of the gamma-secretase proteins and a neutral pH optimum of in vitro gamma-secretase assays have challenged this conclusion. We have recently identified nicastrin as a major lysosomal membrane protein. In the present work, we use Western blotting and immunogold electron microscopy to demonstrate that significant amounts of mature nicastrin, presenilin-1, and APP are co-localized with lysosomal associated membrane protein-1 (cAMP-1) in the outer membranes of lysosomes. Furthermore, we demonstrate that these membranes contain an acidic gamma-secretase activity, which is immunoprecipitable with an antibody to nicastrin. These experiments establish APP, nicastrin, and presenilin-1 as resident lysosomal membrane proteins and indicate that gamma-secretase is a lysosomal protease. These data reassert the importance of the lysosomal/endosomal system in the generation of Abeta and suggest a role for lysosomes in the pathophysiology of AD.
Collapse
Affiliation(s)
- Stephen H Pasternak
- Research Institute, The Hospital for Sick Children, University of Toronto, Toronto M5G 1X8, Canada
| | | | | | | | | | | | | | | |
Collapse
|