1
|
Sousa RAL, Yehia A, Abulseoud OA. Attenuation of ferroptosis as a potential therapeutic target for neuropsychiatric manifestations of post-COVID syndrome. Front Neurosci 2023; 17:1237153. [PMID: 37554293 PMCID: PMC10405289 DOI: 10.3389/fnins.2023.1237153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
Coronavirus disease-19 (COVID-19), caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), is associated with the persistence of pre-existing or the emergence of new neurological and psychiatric manifestations as a part of a multi-system affection known collectively as "post-COVID syndrome." Cognitive decline is the most prominent feature among these manifestations. The underlying neurobiological mechanisms remain under intense investigation. Ferroptosis is a form of cell death that results from the excessive accumulation of intracellular reactive iron, which mediates lipid peroxidation. The accumulation of lipid-based reactive oxygen species (ROS) and the impairment of glutathione peroxidase 4 (GPX4) activity trigger ferroptosis. The COVID-19-associated cytokine storm enhances the levels of circulating pro-inflammatory cytokines and causes immune-cell hyper-activation that is tightly linked to iron dysregulation. Severe COVID-19 presents with iron overload as one of the main features of its pathogenesis. Iron overload promotes a state of inflammation and immune dysfunction. This is well demonstrated by the strong association between COVID-19 severity and high levels of ferritin, which is a well-known inflammatory and iron overload biomarker. The dysregulation of iron, the high levels of lipid peroxidation biomarkers, and the inactivation of GPX4 in COVID-19 patients make a strong case for ferroptosis as a potential mechanism behind post-COVID neuropsychiatric deficits. Therefore, here we review the characteristics of iron and the attenuation of ferroptosis as a potential therapeutic target for neuropsychiatric post-COVID syndrome.
Collapse
Affiliation(s)
- Ricardo A. L. Sousa
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Asmaa Yehia
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Osama A. Abulseoud
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, United States
| |
Collapse
|
2
|
He Y, Kong Y, Yin R, Yang H, Zhang J, Wang H, Gao Y. Remarkable Plasticity of Bone Iron Homeostasis in Hibernating Daurian Ground Squirrels ( Spermophilus dauricus) May Be Involved in Bone Maintenance. Int J Mol Sci 2022; 23:ijms232415858. [PMID: 36555500 PMCID: PMC9779590 DOI: 10.3390/ijms232415858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Iron overload is an independent risk factor for disuse osteoporosis. Hibernating animals are natural models of anti-disuse osteoporosis; however, whether iron metabolism is involved in bone adaptation and maintenance during hibernation is unclear. To investigate this question, Daurian ground squirrels (Spermophilus dauricus) (n = 5-6/group) were used to study changes in bone iron metabolism and its possible role in anti-disuse osteoporosis during hibernation. Iron content in the femur and liver first decreased in the torpor group (vs. summer group, -66.8% and -25.8%, respectively), then recovered in the post-hibernation group, suggesting remarkable plasticity of bone iron content. The expression of ferritin in the femur and hepcidin in the liver also initially decreased in the torpor group (vs. summer group, -28.5% and -38.8%, respectively), then increased in the inter-bout arousal (vs. torpor group, 126.2% and 58.4%, respectively) and post-hibernation groups (vs. torpor group, 153.1% and 27.1%, respectively). In conclusion, bone iron metabolism in hibernating Daurian ground squirrels showed remarkable plasticity, which may be a potential mechanism to avoid disuse bone loss during extended periods of inactivity. However, the specific location of iron during low-iron hibernation and the source of iron in post-hibernation recovery need to be further explored.
Collapse
Affiliation(s)
- Yue He
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
| | - Yong Kong
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
| | - Rongrong Yin
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
| | - Huajian Yang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
| | - Jie Zhang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
| | - Huiping Wang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
| | - Yunfang Gao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
- Correspondence:
| |
Collapse
|
3
|
Hepatic and renal cellular cytotoxic effects of heparin-coated superparamagnetic Iron oxide nanoparticles. Biomater Res 2021; 25:36. [PMID: 34736539 PMCID: PMC8567628 DOI: 10.1186/s40824-021-00241-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022] Open
Abstract
Background Superparamagnetic iron oxide (SPIO) nanoparticles have been widely used in several biomedical engineering in vivo. Although various surface modifications have been made to these non-biodegradable nanoparticles to make them more biocompatible, their toxic potential still remains a major concern. Method In this study, we newly developed unfractionated heparin (UFH)-coated and low molecular weight heparin (LMWH)-coated SPIO nanoparticles through surface modification engineering, which was compared with commercially available dextran-coated SPIO nanoparticles. Their toxicity such as cytotoxicity, single cell gel electrophoresis (SCGE) comet assay, intracellular reactive oxygen species (ROS) content and cellular apoptosis was evaluated to hepatic HepG2 and renal HK-2 cells. Results When UFH-, LMWH- or dextran-coated SPIO nanoparticles were applied, they did not affect the viability of HepG2 cell. However, HK-2 cells were more sensitive to dextran-coated SPIO nanoparticles than others. In genotoxicity assay using SCGE comet, DNA tail moment values in the groups treated with dextran- and LMWH-coated SPIO nanoparticles significantly increased. However, UFH-coated SPIO nanoparticles was only significantly lowing DNA tail moment value. In addition, UFH-coated SPIO nanoparticles had lower cytotoxicity in HepG2 and HK-2 cells compared to dextran-coated SPIO nanoparticles, especially in terms of apoptosis and intracellular ROS production. Conclusions Collectively, it is possible that UFH- coated SPIO nanoparticles can be used as alternative negative contrast agents.
Collapse
|
4
|
Yin R, Zhang J, Xu S, Kong Y, Wang H, Gao Y. Resistance to disuse-induced iron overload in Daurian ground squirrels (Spermophilus dauricus) during extended hibernation inactivity. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110650. [PMID: 34298179 DOI: 10.1016/j.cbpb.2021.110650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 11/30/2022]
Abstract
Iron overload occurs in disuse-induced osteoporosis. Hibernators are a natural animal model of resistance to disuse osteoporosis. We hypothesized that hibernators avoid iron overload to resist disuse-induced osteoporosis. Here, the role of iron metabolism in resistance to disuse osteoporosis was investigated by studying differences in iron content and iron metabolism in the femurs and livers of Daurian ground squirrels (Spermophilus dauricus) between the summer active and torpid states. Results showed that the femurs were generally well-maintained during torpor, with no significant differences observed in most bone microstructural parameters, except for a significantly lower (by 40%) trabecular bone connection density. Femur and liver iron concentrations were significantly lower during torpor (by 59% and 49%, respectively). Based on histological staining, livers were iron-negative and femurs showed a reduction in iron-positive area (by 83%) during torpor; The number of osteoblasts and osteoclasts showed no significant differences between the two groups. Most iron metabolism/homeostasis proteins expression levels in the femur and liver showed no significant differences between the two groups, with their stable expression likely preventing iron overload during inactivity. Higher femoral transferrin receptor 1 (TfR1) expression (by 108%) and lower liver ferritin expression (by 45%) were found in torpid squirrels. Lower liver ferritin may be related to the lower iron content, with the elevation in femoral TfR1 potentially related to restoration of bone iron levels. In conclusion, despite long periods of inactivity, iron levels in the femur and liver of squirrels were lower, bone formation and resorption were balanced and no iron overload was observed, as is found under disuse conditions in non-hibernators. Therefore, avoiding iron overload may be a potential mechanism for hibernators to avoid disuse-induced bone loss.
Collapse
Affiliation(s)
- Rongrong Yin
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, China
| | - Jie Zhang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, China
| | - Shenhui Xu
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, China
| | - Yong Kong
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, China
| | - Huiping Wang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, China.
| | - Yunfang Gao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, China.
| |
Collapse
|
5
|
Xue X, Ren S, Yang X, Masoudi A, Hu Y, Wang X, Li H, Zhang X, Wang M, Wang H, Liu J. Protein regulation strategies of the mouse spleen in response to Babesia microti infection. Parasit Vectors 2021; 14:61. [PMID: 33468223 PMCID: PMC7814643 DOI: 10.1186/s13071-020-04574-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/29/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Babesia is a protozoan parasite that infects red blood cells in some vertebrates. Some species of Babesia can induce zoonoses and cause considerable harm. As the largest immune organ in mammals, the spleen plays an important role in defending against Babesia infection. When infected with Babesia, the spleen is seriously injured but still actively initiates immunomodulatory responses. METHODS To explore the molecular mechanisms underlying the immune regulation and self-repair of the spleen in response to infection, this study used data-independent acquisition (DIA) quantitative proteomics to analyse changes in expression levels of global proteins and in phosphorylation modification in spleen tissue after Babesia microti infection in mice. RESULTS After mice were infected with B. microti, their spleens were seriously damaged. Using bioinformatics methods to analyse dynamic changes in a large number of proteins, we found that the spleen still initiated immune responses to combat the infection, with immune-related proteins playing an important role, including cathepsin D (CTSD), interferon-induced protein 44 (IFI44), interleukin-2 enhancer-binding factor 2 (ILF2), interleukin enhancer-binding factor 3 (ILF3) and signal transducer and activator of transcription 5A (STAT5A). In addition, some proteins related to iron metabolism were also involved in the repair of the spleen after B. microti infection, including serotransferrin, lactoferrin, transferrin receptor protein 1 (TfR1) and glutamate-cysteine ligase (GCL). At the same time, the expression and phosphorylation of proteins related to the growth and development of the spleen also changed, including protein kinase C-δ (PKC-δ), mitogen-activated protein kinase (MAPK) 3/1, growth factor receptor-bound protein 2 (Grb2) and P21-activated kinase 2 (PAK2). CONCLUSIONS Immune-related proteins, iron metabolism-related proteins and growth and development-related proteins play an important role in the regulation of spleen injury and maintenance of homeostasis. This study provides an important basis for the diagnosis and treatment of babesiosis.
Collapse
Affiliation(s)
- Xiaomin Xue
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Shuguang Ren
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, People's Republic of China
| | - Xiaohong Yang
- Department of Pathogenic Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Abolfazl Masoudi
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Yuhong Hu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China.,Instrumental Analysis Center, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Xiaoshuang Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Hongxia Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Xiaojing Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Minjing Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Hui Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China.
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China.
| |
Collapse
|
6
|
Finke H, Winkelbeiner N, Lossow K, Hertel B, Wandt VK, Schwarz M, Pohl G, Kopp JF, Ebert F, Kipp AP, Schwerdtle T. Effects of a Cumulative, Suboptimal Supply of Multiple Trace Elements in Mice: Trace Element Status, Genomic Stability, Inflammation, and Epigenetics. Mol Nutr Food Res 2020; 64:e2000325. [PMID: 32609929 DOI: 10.1002/mnfr.202000325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/05/2020] [Indexed: 12/15/2022]
Abstract
SCOPE Trace element (TE) deficiencies often occur accumulated, as nutritional intake is inadequate for several TEs, concurrently. Therefore, the impact of a suboptimal supply of iron, zinc, copper, iodine, and selenium on the TE status, health parameters, epigenetics, and genomic stability in mice are studied. METHODS AND RESULTS Male mice receive reduced or adequate amounts of TEs for 9 weeks. The TE status is analyzed mass-spectrometrically in serum and different tissues. Furthermore, gene and protein expression of TE biomarkers are assessed with focus on liver. Iron concentrations are most sensitive toward a reduced supply indicated by increased serum transferrin levels and altered hepatic expression of iron-related genes. Reduced TE supply results in smaller weight gain but higher spleen and heart weights. Additionally, inflammatory mediators in serum and liver are increased together with hepatic genomic instability. However, global DNA (hydroxy)methylation is unaffected by the TE modulation. CONCLUSION Despite homeostatic regulation of most TEs in response to a low intake, this condition still has substantial effects on health parameters. It appears that the liver and immune system react particularly sensitive toward changes in TE intake. The reduced Fe status might be the primary driver for the observed effects.
Collapse
Affiliation(s)
- Hannah Finke
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany
| | - Nicola Winkelbeiner
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany.,TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena, Germany
| | - Kristina Lossow
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich-Schiller University Jena, Dornburger Straße 24, Jena, 07743, Germany.,German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany.,TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena, Germany
| | - Barbara Hertel
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany
| | - Viktoria K Wandt
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany.,TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena, Germany
| | - Maria Schwarz
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich-Schiller University Jena, Dornburger Straße 24, Jena, 07743, Germany.,TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena, Germany
| | - Gabriele Pohl
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany
| | - Johannes F Kopp
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany.,TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena, Germany
| | - Franziska Ebert
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany.,TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena, Germany
| | - Anna P Kipp
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich-Schiller University Jena, Dornburger Straße 24, Jena, 07743, Germany.,TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena, Germany
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany.,TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena, Germany.,German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, Berlin, 10589, Germany
| |
Collapse
|
7
|
Guinea Pig Transferrin Receptor 1 Mediates Cellular Entry of Junín Virus and Other Pathogenic New World Arenaviruses. J Virol 2020; 94:JVI.01278-19. [PMID: 31748396 DOI: 10.1128/jvi.01278-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Several clade B New World arenaviruses (NWAs) can cause severe and often fatal hemorrhagic fever, for which preventive and therapeutic measures are severely limited. These NWAs use human transferrin receptor 1 (hTfR1) as a host cell receptor for virus entry. The most prevalent of the pathogenic NWAs is Junín virus (JUNV), the etiological agent of Argentine hemorrhagic fever. Small animal models of JUNV infection are limited because most laboratory rodent species are refractory to disease. Only guinea pigs are known to develop disease following JUNV infection, but the underlying mechanisms are not well characterized. In the present study, we demonstrate marked susceptibility of Hartley guinea pigs to uniformly lethal disease when challenged with as few as 4 PFU of the Romero strain of JUNV. In vitro, we show that infection of primary guinea pig macrophages results in greater JUNV replication compared to infection of hamster or mouse macrophages. We provide evidence that the guinea pig TfR1 (gpTfR1) is the principal receptor for JUNV, while hamster and mouse orthologs fail to support viral entry/infection of pseudotyped murine leukemia viruses expressing pathogenic NWA glycoproteins or JUNV. Together, our results indicate that gpTfR1 serves as the primary receptor for pathogenic NWAs, enhancing viral infection in guinea pigs.IMPORTANCE JUNV is one of five known NWAs that cause viral hemorrhagic fever in humans. Countermeasures against JUNV infection are limited to immunization with the Candid#1 vaccine and immune plasma, which are available only in Argentina. The gold standard small animal model for JUNV infection is the guinea pig. Here, we demonstrate high sensitivity of this species to severe JUNV infection and identify gpTfR1 as the primary receptor. Use of hTfR1 for host cell entry is a feature shared by pathogenic NWAs. Our results show that expression of gpTfR1 or hTfR1 comparably enhances JUNV virus entry/infectivity. Our findings shed light on JUNV infection in guinea pigs as a model for human disease and suggest that similar pathophysiological mechanisms related to iron sequestration during infection and regulation of TfR1 expression may be shared between humans and guinea pigs. A better understanding of the underlying disease process will guide development of new therapeutic interventions.
Collapse
|
8
|
Aliakbari M, Mohammadian E, Esmaeili A, Pahlevanneshan Z. Differential effect of polyvinylpyrrolidone-coated superparamagnetic iron oxide nanoparticles on BT-474 human breast cancer cell viability. Toxicol In Vitro 2018; 54:114-122. [PMID: 30266435 DOI: 10.1016/j.tiv.2018.09.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022]
Abstract
Polyvinylpyrrolidone superparamagnetic iron oxide nanoparticles (PVP-SPIONs) have unique properties. Due to these characteristics, PVP-SPIONs have been used in several medical applications such as magnetic resonance imaging (MRI) contrast agent or drug delivery system. However, a more comprehensive understanding of the environmental safety of PVP-SPIONs is vital for consumption of these nanomaterials. In this study, we describe the effects of PVP-SPIONs on cell viability of the BT-474 human breast cancer cells. Cell viability of the BT-474 cells treated with PVP-SPIONs (10-800 μg/ml) was assessed by MTT assay. MRC-5 cell line was used as a control. Quantitative real-time PCR was performed to investigate the mRNA expression levels of apoptotic (caspase 3) and anti-apoptotic (BCL2) genes Confluent BT-474 monolayers exposed to PVP-SPIONs showed biphasic effects on cell proliferation. PVP-SPIONs at 10-100 μg /ml promote proliferation of BT-474 cells but not the MRC-5 cells. At higher dosage, PVP-SPIONs have toxicity on BT-474 cells. The results of real-time PCR was in line with MTT assay. The increase of cell proliferation at low PVP-SPIONs concentrations is different from what would be expected for these nanoparticles. Our results suggest that more attentions are needed to ensure the safer use of SPION in nanomedicine.
Collapse
Affiliation(s)
- Maryam Aliakbari
- Cell, Molecular Biology and Biochemistry Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Elham Mohammadian
- Cell, Molecular Biology and Biochemistry Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Abolghasem Esmaeili
- Cell, Molecular Biology and Biochemistry Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.
| | - Zari Pahlevanneshan
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan, Iran
| |
Collapse
|
9
|
Cao H, Schroeder B, Chen J, Schott MB, McNiven MA. The Endocytic Fate of the Transferrin Receptor Is Regulated by c-Abl Kinase. J Biol Chem 2016; 291:16424-37. [PMID: 27226592 PMCID: PMC4974358 DOI: 10.1074/jbc.m116.724997] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 12/19/2022] Open
Abstract
Clathrin-mediated endocytosis of transferrin (Tf) and its cognate receptor (TfR1) is a central pathway supporting the uptake of trophic iron. It has generally been assumed that this is a constitutive process. However, we have reported that the non-receptor tyrosine kinase, Src, is activated by Tf to facilitate the internalization of the Tf-TfR1 ligand-receptor complex. As an extension of these findings, we have tested whether subsequent trafficking steps might be regulated by additional kinase-dependent cascades, and we observed a significant endocytic block by inhibiting c-Abl kinase by a variety of methods. Importantly, Tf internalization was reduced significantly in all of these cell models and could be restored by re-expression of WT c-Abl. Surprisingly, this attenuated Tf-TfR1 endocytosis was due to a substantial drop in both the surface and total cellular receptor levels. Additional studies with the LDL receptor showed a similar effect. Surprisingly, immunofluorescence microscopy of imatinib-treated cells revealed a marked colocalization of internalized TfR1 with late endosomes/lysosomes, whereas attenuating the lysosome function with several inhibitors reduced this receptor loss. Importantly, inhibition of c-Abl resulted in a striking redistribution of the chaperone Hsc70 from a diffuse cytosolic localization to an association with the TfR1 at the late endosome-lysosome. Pharmacological inhibition of Hsc70 ATPase activity in cultured cells by the drug VER155008 prevents this chaperone-receptor interaction, resulting in an accumulation of the TfR1 in the early endosome. Thus, inhibition of c-Abl minimizes receptor recycling pathways and results in chaperone-dependent trafficking of the TfR1 to the lysosome for degradation. These findings implicate a novel role for c-Abl and Hsc70 as an unexpected regulator of Hsc70-mediated transport of trophic receptor cargo between the early and late endosomal compartments.
Collapse
Affiliation(s)
- Hong Cao
- From the Department of Biochemistry and Molecular Biology, Center for Basic Research in Digestive Diseases, and
| | - Barbara Schroeder
- Department of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Jing Chen
- From the Department of Biochemistry and Molecular Biology, Center for Basic Research in Digestive Diseases, and
| | - Micah B Schott
- From the Department of Biochemistry and Molecular Biology, Center for Basic Research in Digestive Diseases, and
| | - Mark A McNiven
- From the Department of Biochemistry and Molecular Biology, Center for Basic Research in Digestive Diseases, and
| |
Collapse
|
10
|
Kim JE, Shin JY, Cho MH. Magnetic nanoparticles: an update of application for drug delivery and possible toxic effects. Arch Toxicol 2011; 86:685-700. [PMID: 22076106 DOI: 10.1007/s00204-011-0773-3] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 10/24/2011] [Indexed: 01/18/2023]
Abstract
Magnetic nanoparticles (MNPs) represent a subclass within the overall category of nanomaterials and are widely used in many applications, particularly in the biomedical sciences such as targeted delivery of drugs or genes, in magnetic resonance imaging, and in hyperthermia (treating tumors with heat). Although the potential benefits of MNPs are considerable, there is a distinct need to identify any potential toxicity associated with these MNPs. The potential of MNPs in drug delivery stems from the intrinsic properties of the magnetic core combined with their drug loading capability and the biomedical properties of MNPs generated by different surface coatings. These surface modifications alter the particokinetics and toxicity of MNPs by changing protein-MNP or cell-MNP interactions. This review contains current advances in MNPs for drug delivery and their possible organ toxicities associated with disturbance in body iron homeostasis. The importance of protein-MNP interactions and various safety considerations relating to MNP exposure are also addressed.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | | | | |
Collapse
|
11
|
Singh N, Jenkins GJ, Asadi R, Doak SH. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). NANO REVIEWS 2010; 1:NANO-1-5358. [PMID: 22110864 PMCID: PMC3215220 DOI: 10.3402/nano.v1i0.5358] [Citation(s) in RCA: 637] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 07/02/2010] [Accepted: 07/09/2010] [Indexed: 01/03/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) are being widely used for various biomedical applications, for example, magnetic resonance imaging, targeted delivery of drugs or genes, and in hyperthermia. Although, the potential benefits of SPION are considerable, there is a distinct need to identify any potential cellular damage associated with these nanoparticles. Besides focussing on cytotoxicity, the most commonly used determinant of toxicity as a result of exposure to SPION, this review also mentions the importance of studying the subtle cellular alterations in the form of DNA damage and oxidative stress. We review current studies and discuss how SPION, with or without different surface coating, may cause cellular perturbations including modulation of actin cytoskeleton, alteration in gene expression profiles, disturbance in iron homeostasis and altered cellular responses such as activation of signalling pathways and impairment of cell cycle regulation. The importance of protein-SPION interaction and various safety considerations relating to SPION exposure are also addressed.
Collapse
Affiliation(s)
- Neenu Singh
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea, Wales, UK
- Neenu Singh Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK. Tel: +44 1792 295056. Fax: +44 1792 602147.
| | - Gareth J.S. Jenkins
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea, Wales, UK
| | - Romisa Asadi
- Cardiff School of Biosciences, Biomedical Sciences Building, Museum Avenue, Cardiff, Wales, UK
| | - Shareen H. Doak
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea, Wales, UK
| |
Collapse
|
12
|
Anderson GJ, Vulpe CD. Mammalian iron transport. Cell Mol Life Sci 2009; 66:3241-61. [PMID: 19484405 PMCID: PMC11115736 DOI: 10.1007/s00018-009-0051-1] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Revised: 04/21/2009] [Accepted: 05/12/2009] [Indexed: 02/07/2023]
Abstract
Iron is essential for basic cellular processes but is toxic when present in excess. Consequently, iron transport into and out of cells is tightly regulated. Most iron is delivered to cells bound to plasma transferrin via a process that involves transferrin receptor 1, divalent metal-ion transporter 1 and several other proteins. Non-transferrin-bound iron can also be taken up efficiently by cells, although the mechanism is poorly understood. Cells can divest themselves of iron via the iron export protein ferroportin in conjunction with an iron oxidase. The linking of an oxidoreductase to a membrane permease is a common theme in membrane iron transport. At the systemic level, iron transport is regulated by the liver-derived peptide hepcidin which acts on ferroportin to control iron release to the plasma.
Collapse
Affiliation(s)
- Gregory Jon Anderson
- Iron Metabolism Laboratory, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, QLD, Australia.
| | | |
Collapse
|
13
|
Shi Y, Ghosh MC, Tong WH, Rouault TA. Human ISD11 is essential for both iron-sulfur cluster assembly and maintenance of normal cellular iron homeostasis. Hum Mol Genet 2009; 18:3014-25. [PMID: 19454487 DOI: 10.1093/hmg/ddp239] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The LYR family consists of proteins of diverse functions that contain the conserved tripeptide 'LYR' near the N-terminus, and it includes Isd11, which was previously observed to have an important role in iron-sulfur (Fe-S) cluster biogenesis in Saccharomyces cerevisiae. Here, we have cloned and characterized human ISD11 and shown that human ISD11 forms a stable complex in vivo with the human cysteine desulfurase (ISCS), which generates the inorganic sulfur needed for Fe-S protein biogenesis. Similar to ISCS, we have found that ISD11 localizes to the mitochondrial compartment, as expected, but also to the nucleus of mammalian cells. Using RNA-interference techniques, we have shown that suppression of human ISD11 inactivated mitochondrial and cytosolic aconitases. In addition, ISD11 suppression activated iron-responsive element-binding activity of iron regulatory protein 1, increased protein levels of iron regulatory protein 2, and resulted in abnormal punctate ferric iron accumulations in cells. These results indicate that ISD11 is important in the biogenesis of Fe-S clusters in mammalian cells, and its loss disrupts normal mitochondrial and cytosolic iron homeostasis.
Collapse
Affiliation(s)
- Yanbo Shi
- National Institute of Child Health and Human Development, Molecular Medicine Program, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
14
|
Tao J, Liu YQ, Li Y, Peng JL, Li L, Liu J, Shen X, Shen GX, Tu YT. Hypoxia: dual effect on the expression of transferrin receptor in human melanoma A375 cell line. Exp Dermatol 2008; 16:899-904. [PMID: 17927572 DOI: 10.1111/j.1600-0625.2007.00601.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Over-expression of transferrin receptor (TfR) is a common feature of human malignancies. Therapeutic strategies designed to interfere with tumor iron metabolism have targeted TfR. In previous studies, our laboratory successfully constructed the human-mouse chimeric antibody against TfR and it displayed a tumor-specificity distribution, and has a strong anti-tumor effect. We also found that there were still some limitations to anti-tumor effect in vivo. Oxygen and iron have a very tight relationship, and hypoxia is considered a fundamentally important characteristic of the tumor microenvironment. To exploit the target molecule TfR more rationally and effectively, we were prompted to explore TfR expression under hypoxia. OBJECTIVE To examine the expressing alteration of TfR of human melanoma A375 cell line under hypoxia at various time points (0, 12, 24, 36, 48 and 60 h). DESIGN The expressing alteration of TfR of A375 cell line under hypoxia at various time points (0, 12, 24, 36, 48 and 60 h) was assayed by flow cytometry, real-time RT-PCR and Western blot. RESULTS Hypoxia has dual effect on the expression of TfR in human melanoma A375 cell line. CONCLUSIONS These findings may have important implications for more rational, individualized gene-based therapy using TfR as target receptor in melanoma.
Collapse
Affiliation(s)
- Juan Tao
- Department of Dermatology, Affiliated Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Connor JR, Wang XS, Patton SM, Menzies SL, Troncoso JC, Earley CJ, Allen RP. Decreased transferrin receptor expression by neuromelanin cells in restless legs syndrome. Neurology 2004; 62:1563-7. [PMID: 15136682 DOI: 10.1212/01.wnl.0000123251.60485.ac] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Restless legs syndrome (RLS) is a sensory-movement disorder affecting 5 to 10% of the population. Its etiology is unknown, but MRI analyses and immunohistochemical studies on autopsy tissue suggest the substantia nigra (SN) of patients with RLS has subnormal amounts of iron. METHODS Neuromelanin cells from the SN of four RLS and four control brains were isolated by laser capture microdissection, and a profile of iron-management protein expression was obtained by immunoblot analysis. Binding assays for iron regulatory protein activity were performed on cell homogenates. RESULTS Ferritin, divalent metal transporter 1, ferroportin, and transferrin receptor (TfR) were decreased in RLS neuromelanin cells compared with control. Transferrin was increased in RLS neuromelanin cells. This protein profile in RLS neuromelanin cells is consistent with iron deficiency with the exception that TfR expression was decreased rather than increased. The concentration and activity of the iron regulatory proteins (IRP1 and IRP2) were analyzed to determine whether there was a functional deficit in the post-transcriptional regulatory mechanism for TfR expression. Total IRP activity, IRP1 activity, and IRP1 protein levels were decreased in RLS, but total IRP2 protein levels were not decreased in RLS. CONCLUSION Restless legs syndrome may result from a defect in iron regulatory protein 1 in neuromelanin cells that promotes destabilization of the transferrin receptor mRNA, leading to cellular iron deficiency.
Collapse
Affiliation(s)
- J R Connor
- Department of Neural and Behavior Sciences, G.M. Leader Family Laboratory for AD Research, Penn Penn State College of Medicine, Hershey, PA 17033, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Levenson CW, Tassabehji NM. Iron and ageing: an introduction to iron regulatory mechanisms. Ageing Res Rev 2004; 3:251-63. [PMID: 15231236 DOI: 10.1016/j.arr.2004.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Accepted: 03/29/2004] [Indexed: 01/21/2023]
Abstract
While there have been significant advances made in our understanding of the cellular and molecular mechanisms that regulate iron absorption, transport, storage, and utilization, the effect of ageing on these mechanisms and the role of iron in the ageing process is not fully understood. Thus, this review will provide an overview of the iron regulatory mechanisms that may be a factor in the ageing process. Additional reviews in this volume represent an attempt to explore the very latest information on the regulation of iron with a particular emphasis on age-related pathology including mitochondrial function, Parkinson's disease, Alzheimer's disease, stroke, and cardiovascular disease.
Collapse
Affiliation(s)
- Cathy W Levenson
- Program in Neuroscience and Department of Nutrition, Food and Exercise Sciences, 237 Biomedical Research Facility, Florida State University, Tallahassee, FL 32306-4340, USA.
| | | |
Collapse
|