1
|
Laky K, Evans S, Perez-Diez A, Fowlkes BJ. Notch signaling regulates antigen sensitivity of naive CD4+ T cells by tuning co-stimulation. Immunity 2015; 42:80-94. [PMID: 25607460 PMCID: PMC4314725 DOI: 10.1016/j.immuni.2014.12.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/24/2014] [Indexed: 10/24/2022]
Abstract
Adaptive immune responses begin when naive CD4(+) T cells engage peptide+major histocompatibility complex class II and co-stimulatory molecules on antigen-presenting cells (APCs). Notch signaling can influence effector functions in differentiated CD4(+) T helper and T regulatory cells. Whether and how ligand-induced Notch signaling influences the initial priming of CD4(+) T cells has not been addressed. We have found that Delta Like Ligand 4 (DLL4)-induced Notch signaling potentiates phosphatidylinositol 3-OH kinase (PI3K)-dependent signaling downstream of the T cell receptor+CD28, allowing naive CD4(+) T cells to respond to lower doses of antigen. In vitro, DLL4-deficient APCs were less efficient stimulators of CD4(+) T cell activation, metabolism, proliferation, and cytokine secretion. With deletion of DLL4 from CD11c(+) APCs in vivo, these deficits translated to an impaired ability to mount an effective CD4(+)-dependent anti-tumor response. These data implicate Notch signaling as an important regulator of adaptive immune responses.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- CD28 Antigens/metabolism
- CD4-Positive T-Lymphocytes/immunology
- Carcinoma/immunology
- Cell Proliferation
- Cells, Cultured
- Cytokines/metabolism
- Female
- Intracellular Signaling Peptides and Proteins/metabolism
- Lymphocyte Activation/genetics
- Male
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Neoplasm Transplantation
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Receptor Cross-Talk
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Notch/genetics
- Receptors, Notch/immunology
- Receptors, Notch/metabolism
- Signal Transduction/genetics
- Tumor Burden/genetics
Collapse
Affiliation(s)
- Karen Laky
- T Cell Development Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Sharron Evans
- T Cell Development Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ainhoa Perez-Diez
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - B J Fowlkes
- T Cell Development Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
CD28 exerts protective and detrimental effects in a pulmonary model of paracoccidioidomycosis. Infect Immun 2010; 78:4922-35. [PMID: 20713624 DOI: 10.1128/iai.00297-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
T-cell immunity has been claimed as the main immunoprotective mechanism against Paracoccidioides brasiliensis infection, the most important fungal infection in Latin America. As the initial events that control T-cell activation in paracoccidioidomycosis (PCM) are not well established, we decided to investigate the role of CD28, an important costimulatory molecule for the activation of effector and regulatory T cells, in the immunity against this pulmonary pathogen. Using CD28-deficient (CD28(-/-)) and normal wild-type (WT) C57BL/6 mice, we were able to demonstrate that CD28 costimulation determines in pulmonary paracoccidioidomycosis an early immunoprotection but a late deleterious effect associated with impaired immunity and uncontrolled fungal growth. Up to week 10 postinfection, CD28(-/-) mice presented increased pulmonary and hepatic fungal loads allied with diminished production of antibodies and pro- and anti-inflammatory cytokines besides impaired activation and migration of effector and regulatory T (Treg) cells to the lungs. Unexpectedly, CD28-sufficient mice progressively lost the control of fungal growth, resulting in an increased mortality associated with persistent presence of Treg cells, deactivation of inflammatory macrophages and T cells, prevalent presence of anti-inflammatory cytokines, elevated fungal burdens, and extensive hepatic lesions. As a whole, our findings suggest that CD28 is required for the early protective T-cell responses to P. brasiliensis infection, but it also induces the expansion of regulatory circuits that lately impair adaptive immunity, allowing uncontrolled fungal growth and overwhelming infection, which leads to precocious mortality of mice.
Collapse
|
3
|
Abstract
The modulation of co-stimulatory pathways represents a novel therapeutic strategy to regulate autoimmune diseases. Auto-reactive CD4+ T cells play a critical role in initiating the immune response leading to inflammation and autoimmune diseases. Blocking co-stimulatory signals prevents T-cell activation, thus diminishing autoimmune responses and possibly preventing the progression of autoimmune disease. Blockade of several co-stimulatory pathways has been investigated in animal models and has led to clinical trials testing specific blocking agents in humans. In this review we will describe the role of co-stimulatory pathways, primarily the CD28-B7 pathway, in autoimmune diseases, and we will present in vivo and in vitro studies supporting the efficacy of co-stimulation blockade in animal models of autoimmune disease. Finally, we will discuss the clinical therapeutic efficacy of blocking monoclonal antibodies in preventing or reducing auto-antigen driven T-cell activation in humans with particular attention to the CD28/B7 pathway. Inhibiting co-stimulatory molecule interactions by using monoclonal antibodies seems to be an original approach to regulate autoimmune diseases in humans.
Collapse
Affiliation(s)
- Vissia Viglietta
- Clinical Immunology Laboratory, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
4
|
Odobasic D, Kitching AR, Tipping PG, Holdsworth SR. CD80 and CD86 costimulatory molecules regulate crescentic glomerulonephritis by different mechanisms. Kidney Int 2005; 68:584-94. [PMID: 16014035 DOI: 10.1111/j.1523-1755.2005.00436.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND CD80 and CD86 costimulatory molecules have been shown to affect the induction of Th1-mediated crescentic antiglomerular basement membrane (GBM) antibody-initiated glomerulonephritis (GN). The aim of the current studies was to define the mechanisms by which CD80 and CD86 regulate the development of this disease. METHODS Anti-GBM GN was induced in CD80-/-, CD86-/-, and CD80/86-/- mice, as well as in C57BL/6 controls. Renal injury and immune responses were assessed after 21 days. To examine whether costimulation by OX40-ligand compensates for the absence of CD80 and CD86 in inducing GN, OX40-ligand was blocked in wild-type and CD80/86-/- mice. RESULTS Crescentic GN and glomerular accumulation of CD4+ T cells and macrophages were attenuated in CD80-/- mice, correlating with significantly enhanced apoptosis and decreased proliferation of spleen CD4+ T cells. GN was exacerbated in CD86-/- mice, which was associated with attenuated IL-4 and enhanced IFN-gamma levels. In contrast, CD80/86-/- mice developed crescentic GN similar to that in controls. Inhibition of OX40-ligand exacerbated GN in wild-type mice by enhancing IFN-gamma production, and attenuated disease in CD80/86-/- mice by reducing glomerular CD4+ T-cell and macrophage accumulation. CONCLUSION CD80 is pathogenic in crescentic GN by enhancing survival and proliferation of CD4+ T cells, whereas CD86 is protective by enhancing Th2 and attenuating Th1 responses. Furthermore, in the presence of CD80 and CD86, OX40-ligand attenuates, whereas in their absence it enhances GN, suggesting that, in the absence of CD80 and CD86, the OX40/OX40-ligand pathway is an alternative costimulatory pathway in inducing crescentic GN.
Collapse
Affiliation(s)
- Dragana Odobasic
- Centre for Inflammatory Diseases, Monash University, Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
5
|
Jelley-Gibbs DM, Dibble JP, Filipson S, Haynes L, Kemp RA, Swain SL. Repeated stimulation of CD4 effector T cells can limit their protective function. ACTA ACUST UNITED AC 2005; 201:1101-12. [PMID: 15795235 PMCID: PMC2213138 DOI: 10.1084/jem.20041852] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic infections often result in CD8 T-cell deletion or functional nonresponsiveness. However, to date no definitive studies have attempted to determine the impact of repeated T cell receptor stimulation on CD4 effector T cell generation. We have determined that when antigen presentation is limited to 2 d, optimum in vitro CD4 effector generation is achieved. Alternatively, repeated stimulation results in decreased CD4 effector expansion, decreased cytokine production, and altered migration. Similarly, functionally impaired effectors develop in vivo when antigen-pulsed antigen-presenting cells are replenished every 24 h during a primary immune response. CD4 effectors that are generated with repeated stimulation provide no protection during influenza infection, and have an impaired ability to provide cognate help to B cells. These results suggest that duration of antigen presentation dictates CD4 effector function, and repeated T cell receptor stimulation in vitro and in vivo that exceeds an optimal threshold results in effectors with impaired function.
Collapse
|
6
|
Biburger M, Weth R, Wels WS. A Novel Bispecific Tetravalent Antibody Fusion Protein to Target Costimulatory Activity for T-cell Activation to Tumor Cells Overexpressing ErbB2/HER2. J Mol Biol 2005; 346:1299-311. [PMID: 15713482 DOI: 10.1016/j.jmb.2004.12.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 12/21/2004] [Accepted: 12/22/2004] [Indexed: 11/20/2022]
Abstract
Persistent activation of T-lymphocytes requires two signals: one is initiated by T-cell receptor binding to antigenic peptide presented by MHC molecules. In addition, binding of the B7 family members CD80 or CD86 on professional antigen presenting cells to CD28 on T cells is considered to provide an important costimulatory signal. Activation without costimulation induces T-cell unresponsiveness or anergy. To selectively localize costimulatory activity to the surface of tumor cells and enhance activation of tumor-specific T cells, we have developed a novel molecular design for bispecific costimulatory proteins with antibody-like structure. Within a single polypeptide chain we have assembled the IgV-like, CD28-binding domain of human CD86 (CD86(111)) together with hinge, CH2 and CH3 domains of human IgG1, and the scFv(FRP5) antibody fragment which recognizes the ErbB2 (HER2) protooncogene present at high levels on the surface of many human tumor cells. Upon expression in the yeast Pichia pastoris, the resulting CD86(111)-IgG-scFv(FRP5) protein could be purified as a homodimeric, tetravalent molecule from culture supernatants using single-step affinity chromatography. Bispecific binding of the molecule to ErbB2 on the surface of tumor cells and to the B7 counter receptor CTLA-4 was demonstrated by FACS analysis. Potent costimulatory activity of chimeric CD86(111)-IgG-scFv(FRP5) was confirmed by its ability to stimulate the proliferation of primary human lymphocytes pre-activated by low concentrations of anti-CD3 antibody. Our results suggest that such multivalent soluble proteins which combine specific targeting to tumor cells with costimulatory activity may become useful tools to elicit and/or improve T-cell mediated, tumor-specific immune responses.
Collapse
Affiliation(s)
- Markus Biburger
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Paul-Ehrlich-Strasse 42-44, 60596 Frankfurt am Main, Germany
| | | | | |
Collapse
|
7
|
Ye X, Zhu T, Bastacky S, McHale T, Li J, Xiao X. Prevention and reversal of lupus in NZB/NZW mice by costimulatory blockade with adeno-associated virus-mediated gene transfer. ACTA ACUST UNITED AC 2005; 52:3975-86. [PMID: 16329128 DOI: 10.1002/art.21417] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To investigate the potency of costimulatory blockade with adeno-associated virus (AAV)-mediated gene transfer in the prevention and reversal of lupus in a murine model. METHODS AAV vectors expressing CTLA-4Ig or CD40Ig were injected into NZB/NZW mice. Serum levels of transgene expression and autoantibody titers were determined by enzyme-linked immunosorbent assay. The therapeutic effects on proteinuria, renal pathologic features, and survival rate were evaluated. Splenic T cell phenotypes were analyzed by flow cytometry. The humoral immune response to a foreign antigen was also examined in treated mice. RESULTS A single injection of AAV serotype 8 (AAV8)-CTLA-4Ig in neonatal NZB/NZW mice before the onset of lupus effectively delayed and inhibited autoantibody production, proteinuria, and kidney damage and prolonged their lifespan. In addition, coinjection of AAV8-CTLA-4Ig and AAV8-CD40Ig vectors into neonatal mice achieved a synergistic effect and the best efficacy. The preventive effects were attributed to suppression of CD4+ T cell activation and the transition from naive to memory T cells. Moreover, coinjection of these 2 vectors in adult mice reversed the existing autoantibody levels, suppressed the development of proteinuria, and prolonged their lifespan. The therapeutic effects were found to be dependent on the vector dose. In addition, AAV-mediated long-term gene expression did not severely suppress the host humoral response to foreign antigen. CONCLUSION Our findings show that delivery of costimulatory inhibitor transgenes by AAV vectors could prevent and reverse lupus in this murine model, suggesting the potential of AAV-mediated gene transfer as an alternative treatment for lupus.
Collapse
Affiliation(s)
- Xiaojing Ye
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 12561, USA
| | | | | | | | | | | |
Collapse
|
8
|
Cawthon AG, Kroger CJ, Alexander-Miller MA. High avidity CD8+ T cells generated from CD28-deficient or wildtype mice exhibit a differential dependence on lipid raft integrity for activation. Cell Immunol 2004; 227:148-55. [PMID: 15135297 DOI: 10.1016/j.cellimm.2004.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Accepted: 03/10/2004] [Indexed: 11/19/2022]
Abstract
CD28 has been shown to play an important role in T cell activation. Among the downstream events associated with CD28 engagement is the reorganization of the cytoskeleton resulting in lipid raft aggregation. In our previous studies we investigated the involvement of lipid rafts in the activation of high avidity CD8+ T lymphocytes, which recognize cells bearing very low levels of peptide antigen, versus low avidity cells, which require high levels of peptide antigen. In these studies we found that high avidity cells were much more sensitive to lipid raft disruption compared to low avidity cells. Given the important role for CD28 in lipid raft reorganization and our previous finding that high avidity cells are extremely dependent on lipid raft integrity, we hypothesized that high avidity cells could not be generated in the absence of CD28. Surprisingly, we have found that the absence of CD28 does not alter the ability to generate high or low avidity CD8+ T cells. In fact high and low avidity lines generated in parallel from CD28-deficient and WT mice exhibited very similar requirements for peptide antigen. We next compared the effect of lipid raft disruption on the activation of high versus low avidity cells from CD28-deficient and WT mice. While high avidity cells generated from WT mice exhibited the expected dependence on lipid raft integrity, high avidity cells from CD28-deficient mice were not affected. These data suggest that the lines generated from the CD28-deficient mice have developed alternative strategies to promote high sensitivity to peptide antigen.
Collapse
Affiliation(s)
- Andrew G Cawthon
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
9
|
Chung JB, Wells AD, Adler S, Jacob A, Turka LA, Monroe JG. Incomplete activation of CD4 T cells by antigen-presenting transitional immature B cells: implications for peripheral B and T cell responsiveness. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1758-67. [PMID: 12902475 DOI: 10.4049/jimmunol.171.4.1758] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
B cells leave the bone marrow as transitional B cells. Transitional B cells represent a target of negative selection and peripheral tolerance, both of which are abrogated in vitro by mediators of T cell help. In vitro, transitional and mature B cells differ in their responses to B cell receptor ligation. Whereas mature B cells up-regulate the T cell costimulatory molecule CD86 (B7.2) and are activated, transitional B cells do not and undergo apoptosis. The ability of transitional B cells to process and present Ag to CD4 T cells and to elicit protective signals in the absence of CD86 up-regulation was investigated. We report that transitional B cells can process and present Ag as peptide:MHC class II complexes. However, their ability to activate T cells and elicit help signals from CD4-expressing Th cells was compromised compared with mature B cells, unless exogenous T cell costimulation was provided. A stringent requirement for CD28 costimulation was not evident in interactions between transitional B cells and preactivated CD4-expressing T cells, indicating that T cells involved in vivo in an ongoing immune response might rescue Ag-specific transitional B cells from negative selection. These data suggest that during an immune response, immature B cells may be able to sustain the responses of preactivated CD4(+) T cells, while being unable to initiate activation of naive T cells. Furthermore, the ability of preactivated, but not naive T cells to provide survival signals to B cell receptor-engaged transitional immature B cells argues that these B cells may be directed toward activation rather than negative selection when encountering Ag in the context of a pre-existing immune response.
Collapse
Affiliation(s)
- James B Chung
- Division of Rheumatology, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Both the recognition of MHC/antigen complex by the T-cell receptor and engagement of costimulatory molecules are necessary for efficient T-cell activation. CD28 has been widely recognized as the major costimulation pathway for naive T-cell activation, and the CD28/B7 pathway plays a central role in immune responses against pathogens, autoimmune diseases, and graft rejection. In this review, we will summarize evidence that CD28 is also prominent in the regulation of immune responses and the maintenance of peripheral tolerance. Indeed, CD28 engagement increases the expression of the down-modulatory molecule CTLA-4, induces the differentiation of Th2 cells that have a protective function in autoimmunity, and has an obligatory role in the homeostasis of regulatory T cells. Therefore, CD28/B7 interactions induce a balance of costimulatory and regulatory signals that have opposite outcomes on immune responses. This new perspective on CD28 function suggests that caution should be taken in the development of immunotherapies targeting costimulatory pathways.
Collapse
Affiliation(s)
- Hélène Bour-Jordan
- UCSF Diabetes Center, University of California, San Francisco 94143, USA
| | | |
Collapse
|
11
|
Salomon B, Bluestone JA. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol 2001; 19:225-52. [PMID: 11244036 DOI: 10.1146/annurev.immunol.19.1.225] [Citation(s) in RCA: 791] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent advances in the understanding of T cell activation have led to new therapeutic approaches in the treatment of immunological disorders. One attractive target of intervention has been the blockade of T cell costimulatory pathways, which result in more selective effects on only those T cells that have encountered specific antigen. In fact, in some instances, costimulatory pathway antagonists can induce antigen-specific tolerance that prevents the progression of autoimmune diseases and organ graft rejection. In this review, we summarize the current understanding of these complex costimulatory pathways including the individual roles of the CD28, CTLA-4, B7-1 (CD80), and B7-2 (CD86) molecules. We present evidence that suggests that multiple mechanisms contribute to CD28/B7-mediated T cell costimulation in disease settings that include expansion of activated pathogenic T cells, differentiation of Th1/Th2 cells, and the migration of T cells into target tissues. Additionally, the negative regulatory role of CTLA-4 in autoimmune diseases and graft rejection supports a dynamic but complex process of immune regulation that is prominent in the control of self-reactivity. This is most apparent in regulation of the CD4(+)CD25(+)CTLA-4(+) immunoregulatory T cells that control multiple autoimmune diseases. The implications of these complexities and the potential for use of these therapies in clinical immune intervention are discussed.
Collapse
MESH Headings
- Abatacept
- Animals
- Antigens, CD/immunology
- Antigens, Differentiation/immunology
- Antigens, Differentiation/therapeutic use
- Autoimmune Diseases/immunology
- Autoimmunity/immunology
- B7-1 Antigen/immunology
- B7-2 Antigen
- CD28 Antigens/immunology
- CTLA-4 Antigen
- Cell Differentiation
- Clinical Trials as Topic
- Clinical Trials, Phase I as Topic
- Clinical Trials, Phase II as Topic
- Diabetes Mellitus, Type 1/immunology
- Disease Models, Animal
- Graft Enhancement, Immunologic
- Graft Survival/immunology
- Humans
- Immunoconjugates
- Lupus Erythematosus, Systemic/immunology
- Lymphocyte Activation/immunology
- Macromolecular Substances
- Membrane Glycoproteins/immunology
- Mice
- Mice, Inbred NOD
- Mice, Transgenic
- Self Tolerance/immunology
- T-Lymphocyte Subsets/immunology
- Th1 Cells/immunology
- Th2 Cells/immunology
- Transplantation Immunology/immunology
Collapse
Affiliation(s)
- B Salomon
- The Committee on Immunology, Ben May Institute for Cancer Research and Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
12
|
Evans DE, Munks MW, Purkerson JM, Parker DC. Resting B lymphocytes as APC for naive T lymphocytes: dependence on CD40 ligand/CD40. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:688-97. [PMID: 10623811 DOI: 10.4049/jimmunol.164.2.688] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Although resting B cells as APC are tolerogenic for naive T cells in vivo, we show here that they can provide all the costimulatory signals necessary for naive T cell proliferation in vivo and in vitro. In the absence of an activating signal through the B cell Ag receptor, T cell proliferation after Ag recognition on resting B cells depends on CD40 expression on the B cells, implying that naive T cells use the membrane-bound cytokine, CD40 ligand (CD154), to induce the costimulatory signals that they need. Induction of B7-1 (CD80) and increased or sustained expression of CD44H, ICAM-1 (CD54), and B7-2 (CD86) are dependent on the interaction of CD40 ligand with CD40. Transient expression (12 h) of B7-2 is T cell- and peptide Ag-dependent, but CD40-independent. Only sustained (>/=24 h) expression of B7-2 and perhaps increased expression of ICAM-1 could be shown to be functionally important in this system. T cells cultured with CD40-deficient B cells and peptide remain about as responsive as fresh naive cells upon secondary culture with whole splenic APC. Therefore, B cells, and perhaps other APC, may be tolerogenic not because they fail to provide sufficient costimulation for T cell proliferation, but because they are deficient in some later functions necessary for a productive T cell response.
Collapse
Affiliation(s)
- D E Evans
- Department of Molecular Microbiology, Oregon Health Sciences University, Portland, OR 97201, USA
| | | | | | | |
Collapse
|
13
|
Manickasingham SP, Anderton SM, Burkhart C, Wraith DC. Qualitative and Quantitative Effects of CD28/B7-Mediated Costimulation on Naive T Cells In Vitro. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.8.3827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The CD28/B7 system provides costimulatory signals necessary for optimal T cell activation. We have examined the effects of blocking B7.1 and/or B7.2 in an in vitro system using TCR transgenic T cells specific for myelin basic protein. Activation of naive T cells was found to be B7.2 dependent and not dependent on the presence of B7.1 molecules. However, increasing the strength of signal through the TCR using peptide analogues with higher affinity for MHC compensated for blockade of B7.2 molecules, suggesting that signal 1 alone can be sufficient for the activation of naive T cells. The role of B7 molecules in the differentiation of T cells was further investigated by restimulating T cells with fresh APC and peptide in B7-sufficient conditions. A down-regulation of IL-2 and IFN-γ production by T cells primed in the presence of anti-B7.2 mAb was partially overcome when high affinity peptide analogues were used to restimulate T cells. In contrast, a significant down-regulation of the differentiation of cells producing Th-2 cytokines was observed in the presence of anti-B7 Abs. Differentiation of IL-4-secreting cells was influenced by both B7.1 and B7.2, while IL-5 secretion was totally dependent on B7.2. These results suggest that B7-mediated costimulation is essential for the development of Th-2-associated cytokines, the absence of which cannot be overcome by increasing the strength of the signal through the TCR.
Collapse
Affiliation(s)
- Shivanthi P. Manickasingham
- Department of Pathology and Microbiology, University of Bristol School of Medical Sciences, Bristol, United Kingdom
| | - Stephen M. Anderton
- Department of Pathology and Microbiology, University of Bristol School of Medical Sciences, Bristol, United Kingdom
| | - Christoph Burkhart
- Department of Pathology and Microbiology, University of Bristol School of Medical Sciences, Bristol, United Kingdom
| | - David C. Wraith
- Department of Pathology and Microbiology, University of Bristol School of Medical Sciences, Bristol, United Kingdom
| |
Collapse
|
14
|
Abstract
Recent progress in experimental models and human genetic linkage studies have provided new insight into the pathogenesis of autoimmunity. Both antigen-specific and antigen-nonspecific signals are crucial in the development of autoimmune disease. Interestingly, several of the single gene loci that have been identified as potential causes of autoimmune disease encode molecules that regulate antigen-nonspecific modulation of immunity. The focus of this review is the role of the opposing signals transduced by the CD28 and cytotoxic T-lymphocyte antigen-4 receptors that bind the B7 costimulatory ligands. Recent studies suggest that CD28 signals activate T cells, whereas cytotoxic T-lymphocyte antigen-4 signals deactivate T cells. importantly, both signals contribute to the induction of autoimmunity and offer novel targets for future therapeutic strategies to treat autoimmune disease.
Collapse
Affiliation(s)
- D L Perkins
- Renal Division, Laboratory of Immunogenetics and Transplantation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|