1
|
Xie W, Zhao W, Zou Z, Kong L, Yang L. Oral multivalent epitope vaccine, based on UreB, HpaA, CAT, and LTB, for prevention and treatment of Helicobacter pylori infection in C57BL / 6 mice. Helicobacter 2021; 26:e12807. [PMID: 33847026 DOI: 10.1111/hel.12807] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND As the resistance of Helicobacter pylori to traditional triple therapy is gradually revealed, an increasing number of people are focusing on vaccine treatments for H. pylori infection. Epitope vaccines are a promising strategy for the treatment of H. pylori infection, and multivalent vaccines will be more effective than monovalent vaccines. MATERIALS AND METHODS In this study, we designed a multivalent vaccine named LHUC, which consists of the adjuvant LTB as well as three Th cell epitopes (HpaA154-171 , UreB237-251, and UreB546-561 ) and five B-cell epitopes (UreB349-363 , UreB327-334 , CAT394-405 , CAT387-397, and HpaA132-141 ) from UreB, HpaA, and catalase. In BALB/c mice, the specificity and immunogenicity of the fusion peptide LHUC and the neutralization of H. pylori urease and catalase by the specific IgG elicited by LHUC were evaluated. The preventive and therapeutic effects of LHUC were evaluated in C57BL/6 mice infected with H. pylori. RESULTS The results showed that compared with LTB and PBS, LHUC induced specific IgG and IgA antibody production in mice, and IgG antibodies significantly inhibited the H. pylori urease and catalase activities in vitro. Additionally, by detecting the levels of IFN-γ, IL-4, and IL-17 in lymphocyte supernatants, we proved that LHUC could activate Th1, Th2, and Th17 mixed T-cell immune responses in vivo. Finally, a C57BL/6 mouse model of gastric infection with H. pylori was established. The results showed that compared with the effects of LTB and PBS, the prevention and treatment effects of oral inoculation with LHUC significantly inhibited bacterial colonization. CONCLUSIONS In conclusion, LHUC, a multivalent vaccine based on multiple H. pylori antigens, is a promising and safe vaccine that can effectively reduce the colonization of H. pylori in the stomach.
Collapse
Affiliation(s)
- Wenwei Xie
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Wenfeng Zhao
- Department of Biochemistry, China Pharmaceutical university, Nanjing, China
| | - Ziling Zou
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Lingyi Kong
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Lei Yang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
2
|
Cen Q, Gao T, Ren Y, Lu X, Lei H. Immune evaluation of a Saccharomyces cerevisiae-based oral vaccine against Helicobacter pylori in mice. Helicobacter 2021; 26:e12772. [PMID: 33219579 DOI: 10.1111/hel.12772] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is a common human pathogenic bacterium that is associated with gastric diseases. The current leading clinical therapy is combination antibiotics, but this treatment has safety issues, especially the induction of drug resistance. Therefore, developing a safe and effective vaccine against H. pylori is one of the best alternatives. OBJECTIVE To develop Saccharomyces cerevisiae (S. cerevisiae)-based oral vaccines and then demonstrate the feasibility of this platform for preventing H. pylori infection in the absence of a mucosal adjuvant. MATERIALS AND METHODS Saccharomyces cerevisiae (S. cerevisiae)-based oral vaccines, including EBY100/pYD1-UreB and EBY100/pYD1-VacA, were generated and analyzed by Western blot, Immunofluorescence analysis, flow cytometric assay, and indirect enzyme-link immunosorbent assay (ELISA). Further, antibody responses induced by oral administration of EBY100/pYD1-UreB, EBY100/pYD1-VacA, or EBY100/pYD1-UreB + EBY100/pYD1-VacA were measured in a mouse model. Lastly, the vaccinated mice were infected with H. pylori SS1, and colonization in the stomach were evaluated. RESULTS Saccharomyces cerevisiae-based H. pylori oral vaccines were successfully constructed. Mice orally administered with EBY100/pYD1-UreB, EBY100/pYD1-VacA, or EBY100/pYD1-UreB + EBY100/pYD1-VacA exhibited a significant humoral immune response as well as a mucosal immune response. Importantly, S. cerevisiae-based oral vaccines could effectively reduce bacterial loads with statistical significance after H. pylori infection. CONCLUSIONS Our study shows that S. cerevisiae-based platforms can serve as an alternative approach for the future development of promising bacterial oral vaccine candidates.
Collapse
Affiliation(s)
- Qianhong Cen
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Tong Gao
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Yi Ren
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Xin Lu
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Han Lei
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
3
|
Arshad U, Sarkar S, Alipour Talesh G, Sutton P. A lack of role for antibodies in regulating Helicobacter pylori colonization and associated gastritis. Helicobacter 2020; 25:e12681. [PMID: 32088936 DOI: 10.1111/hel.12681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Helicobacter pylori occupy a unique niche, located within the mucus layer lining the stomach, and attached to the apical surface of the gastric epithelium. As such, antibodies would be expected to play a major role in regulating infection and/or pathogenesis. However, experiments using antibody-deficient mice to study gastric helicobacter infection have yielded inconsistent results, although some pointed toward antibodies increasing colonization levels and decreasing gastritis severity. The variability in these studies is possibly due to their use of nonmatched wild-type controls. This current study presents the first evaluation of the role of antibodies in H pylori infection by comparing antibody-deficient mice with matched wild-type siblings. METHODS Matched wild-type and antibody-deficient μMT mice were generated by heterozygous crossings. In two separate experiments, appropriately genotyped sibling littermates were infected with H pylori for 4 months and then sera and stomachs were collected. RESULTS There was no difference in H pylori colonization levels between infected μMT mice and sibling wild-type controls. Similarly, there was no significant difference in the severity of gastritis between these groups of mice, although there was a trend toward less severe gastritis in μMT mice which was supported by a significantly lower IFNγ (Th1) gastric cytokine response. CONCLUSIONS Comparing matched antibody-deficient and antibody-competent mice indicates that an antibody response does not influence H pylori colonization levels. Contrary to previous studies, these results suggest antibodies might have a minor pro-inflammatory effect by promoting gastric Th1 cytokines, although this did not translate to a significant effect on gastritis severity.
Collapse
Affiliation(s)
- Umar Arshad
- Mucosal Immunology, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Vic., Australia
| | - Sohinee Sarkar
- Mucosal Immunology, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Vic., Australia
| | - Ghazal Alipour Talesh
- Mucosal Immunology, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Vic., Australia.,Department of Paediatrics, University of Melbourne, Parkville, Vic., Australia
| | - Philip Sutton
- Mucosal Immunology, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Vic., Australia.,Department of Paediatrics, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
4
|
Sun Y, Huang T, Hammarström L, Zhao Y. The Immunoglobulins: New Insights, Implications, and Applications. Annu Rev Anim Biosci 2019; 8:145-169. [PMID: 31846352 DOI: 10.1146/annurev-animal-021419-083720] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immunoglobulins (Igs), as one of the hallmarks of adaptive immunity, first arose approximately 500 million years ago with the emergence of jawed vertebrates. Two events stand out in the evolutionary history of Igs from cartilaginous fish to mammals: (a) the diversification of Ig heavy chain (IgH) genes, resulting in Ig isotypes or subclasses associated with novel functions, and (b) the diversification of genetic and structural strategies, leading to the creation of the antibody repertoire we know today. This review first gives an overview of the IgH isotypes identified in jawed vertebrates to date and then highlights the implications or applications of five new recent discoveries arising from comparative studies of Igs derived from different vertebrate species.
Collapse
Affiliation(s)
- Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong, People's Republic of China;
| | - Tian Huang
- Henan Engineering Laboratory for Mammary Bioreactor, School of Life Sciences, Henan University, Kaifeng 475004, Henan, People's Republic of China;
| | - Lennart Hammarström
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet at Karolinska Hospital Huddinge, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden;
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China;
| |
Collapse
|
5
|
Longet S, Abautret-Daly A, Davitt CJH, McEntee CP, Aversa V, Rosa M, Coulter IS, Holmgren J, Raghavan S, Lavelle EC. An oral alpha-galactosylceramide adjuvanted Helicobacter pylori vaccine induces protective IL-1R- and IL-17R-dependent Th1 responses. NPJ Vaccines 2019; 4:45. [PMID: 31666991 PMCID: PMC6814776 DOI: 10.1038/s41541-019-0139-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori causes chronic gastric infection that can lead to peptic ulcers and is an identified risk factor for gastric cancer development. Although much effort has been put into the development of a Helicobacter pylori vaccine over the last three decades, none has yet reached clinical application. Specific challenges pertaining to effective H. pylori vaccine development include the lack of proven vaccine-effective antigens and safe mucosal adjuvants to enhance local immune responses as well as the lack of accepted correlates of protection. Herein, we demonstrate that prophylactic intragastric immunisation with a whole-cell killed H. pylori antigen administered together with the non-toxic oral adjuvant α-galactosylceramide (α-GalCer) induced effective immune protection against H. pylori infection in mice, which was of similar magnitude as when using the “gold standard” cholera toxin as adjuvant. We further describe that this α-GalCer-adjuvanted vaccine formulation elicited strong intestinal and systemic Th1 responses as well as significant antigen-specific mucosal and systemic antibody responses. Finally, we report that the protective intestinal Th1 responses induced by α-GalCer are dependent on CD1d, IL-1R as well as IL-17R signalling. In summary, our results show that α-GalCer is a promising adjuvant for inclusion in an oral vaccine against H. pylori infection. Infection by Helicobacter pylori is highly prevalent in humans and can lead to chronic inflammation and gastric cancer, but to date no effective vaccine has been approved for clinical use owing to the lack of appropriate antigens and of safe mucosal adjuvants that can produce protective and durable immunity to the bacterium. Sukanya Raghavan, Ed Lavelle and colleagues now show that prophylactic intragastric administration of an inactivated whole-cell H. pylori preparation, together with the oral adjuvant α-galactosylceramide, reduced H. pylori infection in mice by eliciting a protective mucosal and systemic TH1 response. The immunisation triggered antigen-specific antibodies and interferon-γ that prevented effective colonisation of H. pylori after challenge in a process dependent on the CD1d, IL-1 receptor and IL-17 receptor pathways. The reported enhanced immune response to this orally adjuvanted vaccine formulation paves the way for further studies of its safety and efficacy.
Collapse
Affiliation(s)
- Stephanie Longet
- 1Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 R590 Ireland
| | - Aine Abautret-Daly
- 1Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 R590 Ireland
| | - Christopher J H Davitt
- 1Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 R590 Ireland
| | - Craig P McEntee
- 1Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 R590 Ireland
| | - Vincenzo Aversa
- 2Sublimity Therapeutics Limited, Dublin City University, Alpha Innovation Campus, Old Finglas Road, Dublin, D11 KXN4 Ireland
| | - Monica Rosa
- 2Sublimity Therapeutics Limited, Dublin City University, Alpha Innovation Campus, Old Finglas Road, Dublin, D11 KXN4 Ireland
| | - Ivan S Coulter
- 2Sublimity Therapeutics Limited, Dublin City University, Alpha Innovation Campus, Old Finglas Road, Dublin, D11 KXN4 Ireland
| | - Jan Holmgren
- 3University of Gothenburg Vaccine Research Institute, Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Box 435, 405 30 Gothenburg, Sweden
| | - Sukanya Raghavan
- 3University of Gothenburg Vaccine Research Institute, Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Box 435, 405 30 Gothenburg, Sweden
| | - Ed C Lavelle
- 1Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 R590 Ireland.,4Centre for Research on Adaptive Nanostructures and Nanodevices & Advanced Materials Bio-Engineering Research Centre, Trinity College Dublin, Dublin 2, D02 PN40 Ireland
| |
Collapse
|
6
|
Ikuse T, Blanchard TG, Czinn SJ. Inflammation, Immunity, and Vaccine Development for the Gastric Pathogen Helicobacter pylori. Curr Top Microbiol Immunol 2019; 421:1-19. [PMID: 31123883 DOI: 10.1007/978-3-030-15138-6_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It has been over 30 years since a link was established between H. pylori infection of the gastric mucosa and the development of chronic gastric diseases. Research in rodent models supported by data from human tissue demonstrated that the host immune response to H. pylori is limited by host regulatory T cells. Immunization has been shown to induce a potent Th1- and Th17-mediated immune response capable of eradicating or at least significantly reducing the bacterial load of H. pylori in the stomach in small animal models. These results have not translated well to humans. Clinical trials employing many of the strategies used in rodents for oral immunization including the use of a mucosal adjuvant such as Escherichia coli LT or delivery by attenuated enteric bacteria have failed to limit H. pylori infection and have highlighted the potential toxicity of exotoxin-based mucosal adjuvants. A recent study, however, utilizing a recombinant fusion protein of H. pylori urease and the subunit B of E. coli LT, was performed on over 4000 children. Efficacy of over 70% was demonstrated against naturally acquired infection compared to control volunteers one year post-immunization. Efficacy was reduced, but still above 50% at three years. This study provided new insight into the strategies for developing an improved vaccine for widespread use in countries with high infection rates and where gastric cancer (GC) remains one of the most common causes of death due to cancer.
Collapse
Affiliation(s)
- Tamaki Ikuse
- Department of Pediatric and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Thomas G Blanchard
- Department of Pediatrics, University of Maryland School of Medicine, 13-015 Bressler Research Building, 655 West Baltimore Street, Baltimore, MD, 21201, USA.
| | - Steven J Czinn
- Department of Pediatrics, University of Maryland School of Medicine, 13-015 Bressler Research Building, 655 West Baltimore Street, Baltimore, MD, 21201, USA
| |
Collapse
|
7
|
Reyes VE, Peniche AG. Helicobacter pylori Deregulates T and B Cell Signaling to Trigger Immune Evasion. Curr Top Microbiol Immunol 2019; 421:229-265. [PMID: 31123892 DOI: 10.1007/978-3-030-15138-6_10] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori is a prevalent human pathogen that successfully establishes chronic infection, which leads to clinically significant gastric diseases including chronic gastritis, peptic ulcer disease (PUD), and gastric cancer (GC). H. pylori is able to produce a persistent infection due in large part to its ability to hijack the host immune response. The host adaptive immune response is activated to strategically and specifically attack pathogens and normally clears them from the infected host. Since B and T lymphocytes are central mediators of adaptive immunity, in this chapter we review their development and the fundamental mechanisms regulating their activation in order to understand how some of the normal processes are subverted by H. pylori. In this review, we place particular emphasis on the CD4+ T cell responses, their subtypes, and regulatory mechanisms because of the expanding literature in this area related to H. pylori. T lymphocyte differentiation and function are finely orchestrated through a series of cell-cell interactions, which include immune checkpoint receptors. Among the immune checkpoint receptor family, there are some with inhibitory properties that are exploited by tumor cells to facilitate their immune evasion. Gastric epithelial cells (GECs), which act as antigen-presenting cells (APCs) in the gastric mucosa, are induced by H. pylori to express immune checkpoint receptors known to sway T lymphocyte function and thus circumvent effective T effector lymphocyte responses. This chapter reviews these and other mechanisms used by H. pylori to interfere with host immunity in order to persist.
Collapse
Affiliation(s)
- Victor E Reyes
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| | - Alex G Peniche
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
8
|
Liu W, Tan Z, Liu H, Zeng Z, Luo S, Yang H, Zheng L, Xi T, Xing Y. Nongenetically modified Lactococcus lactis-adjuvanted vaccination enhanced innate immunity against Helicobacter pylori. Helicobacter 2017; 22. [PMID: 28805287 DOI: 10.1111/hel.12426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Gram-positive enhancer matrix particles (GEM) produced by Lactococcus lactis can enhance vaccine-induced immune response. However, the mechanism under which this adjuvant mounts the efficacy of orally administered vaccines remains unexplored. MATERIALS AND METHODS We used a prophylactic mice model to investigate the mechanism of GEM-adjuvanted vaccination. Helicobacter pylori urease-specific antibody response was monitored and detected in murine serum by ELISA. Urease-specific splenic cytokine profile was examined. Gastric inflammatory responses were measured on day 43 or 71 by quantitative real-time PCR, flow cytometry and histology. RESULTS We found that GEM enhanced the efficiency of oral H. pylori vaccine by promoting innate immunity. The vaccine CUE-GEM composed of GEM particles and recombinant antigen CTB-UE provided protection of immunized mice against H. pylori insult. The protective response was associated with induction of postimmunization gastritis and local Th1/Th17 cell-medicated immune response. We showed that innate inflammatory responses including neutrophil chemokines CXCL1-2, neutrophils, and antimicrobial proteins S100A8 and MUC1 were significantly elevated. Within all infected mice, S100A8 and MUC1 levels were negatively correlated with H. pylori burden. Strikingly, mice receiving GEM also show reduction of colonization, possibly through natural host response pathways to recruit CD4+ T cells and promote S100A8 expression. CONCLUSIONS These findings suggest that GEM-based vaccine may impact Th1/Th17 immunity to orchestrate innate immune response against H. pylori infection.
Collapse
Affiliation(s)
- Wei Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Zhoulin Tan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Hai Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Zhiqin Zeng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Shuanghui Luo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Huimin Yang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Tao Xi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
9
|
Blanchard TG, Czinn SJ. Identification of Helicobacter pylori and the evolution of an efficacious childhood vaccine to protect against gastritis and peptic ulcer disease. Pediatr Res 2017; 81:170-176. [PMID: 27701380 DOI: 10.1038/pr.2016.199] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/19/2016] [Indexed: 12/12/2022]
Abstract
Establishment of Helicobacter pylori infection as an etiologic agent of peptic ulcer disease and other gastric pathologies marked a revolution in gastroenterology which spurred an enormous interest in gastric physiology and immunology research. The association was soon also demonstrated in children as well. Application of antimicrobial therapies have proven remarkably efficacious in eradicating H. pylori and curing pediatric patients of duodenal ulcers as well as gastritis, negating a lifetime of ineffective therapy and life-threatening disease. Countries with high H. pylori prevalence and where H. pylori associated gastric cancer remains a primary cause of death due to cancer however would benefit from childhood vaccination. Studies in rodents and humans utilizing oral vaccination with bacterial exotoxin adjuvants demonstrated potential for limiting H. pylori colonization in the stomach. Almost 25 y of vaccine research recently culminated in a phase III clinical trial of over 4,000 children aged 6-15 y old to test an oral vaccine consisting of the H. pylori urease B subunit genetically fused to the E. coli heat labile toxin. Vaccination was demonstrated to have an efficacy of over 70%. Vaccination may now serve as an effective strategy to significantly reduce H. pylori associated disease in children throughout the world.
Collapse
Affiliation(s)
- Thomas G Blanchard
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Steven J Czinn
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Therapeutic efficacy of oral immunization with a non-genetically modified Lactococcus lactis-based vaccine CUE-GEM induces local immunity against Helicobacter pylori infection. Appl Microbiol Biotechnol 2016; 100:6219-6229. [DOI: 10.1007/s00253-016-7333-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/04/2016] [Accepted: 01/17/2016] [Indexed: 12/11/2022]
|
11
|
Sokic-Milutinovic A, Alempijevic T, Milosavljevic T. Role of Helicobacter pylori infection in gastric carcinogenesis: Current knowledge and future directions. World J Gastroenterol 2015; 21:11654-11672. [PMID: 26556993 PMCID: PMC4631967 DOI: 10.3748/wjg.v21.i41.11654] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/16/2015] [Accepted: 09/22/2015] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) plays a role in the pathogenesis of gastric cancer. The outcome of the infection depends on environmental factors and bacterial and host characteristics. Gastric carcinogenesis is a multistep process that is reversible in the early phase of mucosal damage, but the exact point of no return has not been identified. Therefore, two main therapeutic strategies could reduce gastric cancer incidence: (1) eradication of the already present infection; and (2) immunization (prior to or during the course of the infection). The success of a gastric cancer prevention strategy depends on timing because the prevention strategy must be introduced before the point of no return in gastric carcinogenesis. Although the exact point of no return has not been identified, infection should be eradicated before severe atrophy of the gastric mucosa develops. Eradication therapy rates remain suboptimal due to increasing H. pylori resistance to antibiotics and patient noncompliance. Vaccination against H. pylori would reduce the cost of eradication therapies and lower gastric cancer incidence. A vaccine against H. pylori is still a research challenge. An effective vaccine should have an adequate route of delivery, appropriate bacterial antigens and effective and safe adjuvants. Future research should focus on the development of rescue eradication therapy protocols until an efficacious vaccine against the bacterium becomes available.
Collapse
|
12
|
Blanchard TG, Czinn SJ. Current Status and Prospects for a Helicobacter pylori Vaccine. Gastroenterol Clin North Am 2015; 44:677-89. [PMID: 26314677 DOI: 10.1016/j.gtc.2015.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Helicobacter pylori infection contributes to a variety of gastric diseases. H pylori-associated gastric cancer is diagnosed in advanced stages, and a vaccine against H pylori is desirable in parts of the world where gastric cancer remains a common form of cancer. Some of the strategies of vaccine development used in animals have been tested in several phase 3 clinical trials; these trials have been largely unsuccessful, although H pylori-specific immune responses have been induced. New insights into promoting immunity and overcoming the immunosuppressive nature of H pylori infection are required to improve the efficacy of an H pylori vaccine.
Collapse
Affiliation(s)
- Thomas G Blanchard
- Department of Pediatrics, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA.
| | - Steven J Czinn
- Department of Pediatrics, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| |
Collapse
|
13
|
|
14
|
Sun P, Wang JQ, Zhang YT, Zhao SG. Evaluating the immune responses of mice to subcutaneous immunization with Helicobacter pylori urease B subunit. J Anim Sci Biotechnol 2014; 5:14. [PMID: 24558967 PMCID: PMC3976096 DOI: 10.1186/2049-1891-5-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 02/03/2014] [Indexed: 01/06/2023] Open
Abstract
Background Helicobacter pylori, a gram-negative bacterial pathogen that expresses a strong urease activity, is associated with the development of gastroduodenal disease. Urease B subunit, one of the two structural subunits of urease, was expressed in E. coli BL21 (DE3) strain. The objective of this study was to evaluate the effects of Helicobacter pylori urease B subunit on the immune responses in mice by subcutaneous immunization. Methods The mice were immunized and boosted with Helicobacter pylori urease B subunit antigen subcutaneously three times with 2-wk intervals between the immunizations and boosters. The mice in the control group were immunized with PBS. The adjuvant group received PBS containing complete/incomplete freund’s adjuvant identical to antigen group without Helicobacter pylori urease B subunit antigen. Four weeks after the final booster, all the mice were sacrificed. Blood was collected on d 0, 14, 28 and 56 before immunization, booster and sacrifice, respectively. Immediately after sacrifice, gastric liquid and spleen were collected for antibody and cytokine analyses. Results Urease B subunit increased the concentrations of serum and gastric anti-urease B antigen specific IgG, and the levels of interleukin-4 and interferon-γ in splenocytes of the mice (P < 0.05). Conclusions This study demonstrated that recombinant urease B subunit can induce systemic and local immune responses in mice by subcutaneous immunization, which might be used as the effective component of vaccine against Helicobacter pylori.
Collapse
Affiliation(s)
| | - Jia-Qi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No,2 Yuanmingyuan West Road, Beijing 100193, P, R, China.
| | | | | |
Collapse
|
15
|
Ng GZ, Chionh YT, Sutton P. Vaccine-mediated protection against Helicobacter pylori is not associated with increased salivary cytokine or mucin expression. Helicobacter 2014; 19:48-54. [PMID: 24165046 DOI: 10.1111/hel.12099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The development of an effective vaccine against Helicobacter pylori is impeded by the inability to reliably produce sterilizing immunity and our lack of knowledge regarding mechanisms of protective immunity against this pathogen. It has previously been described that salivary glands are essential for vaccine-mediated protection against H. pylori, but the mechanism responsible for this effect has not been identified. In this study we tested the hypothesis that vaccines reduce H. pylori colonization by inducing an immune-mediated change in salivary gland mucin secretion. MATERIALS AND METHODS Sublingual and submandibular salivary glands were removed from untreated mice, from mice infected with H. pylori and from mice vaccinated against H. pylori then challenged with live bacteria. Cytokine levels in these salivary glands were quantified by ELISA, and salivary mucins were quantified by real-time PCR. Salivary antibody responses were determined by Western blot. RESULTS Vaccine-mediated protection against H. pylori did not produce any evidence of a positive increase in either salivary cytokine or mucin levels. In fact, many cytokines were significantly reduced in the vaccinated/challenged mice, including IL-17A, IL-10, IL-1ß, as well as the mucin Muc10. These decreases were associated with an increase in total protein content within the salivary glands of vaccinated mice which appeared to be the result of increased IgA production. While this study showed that vaccination increased salivary IgA levels, previous studies have demonstrated that antibodies do not play a critical role in protection against H. pylori that is induced by current vaccine formulations and regimes. CONCLUSIONS The effector mechanism of protective immunity induced by vaccination of mice did not involve immune changes within the salivary glands, nor increased production of salivary mucins.
Collapse
Affiliation(s)
- Garrett Z Ng
- Centre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Parkville, Vic., 3010, Australia; Mucosal Immunology, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Parkville, Vic., 3052, Australia
| | | | | |
Collapse
|
16
|
Nedrud JG, Bagheri N, Schön K, Xin W, Bergroth H, Eliasson DG, Lycke NY. Subcomponent vaccine based on CTA1-DD adjuvant with incorporated UreB class II peptides stimulates protective Helicobacter pylori immunity. PLoS One 2013; 8:e83321. [PMID: 24391754 PMCID: PMC3877028 DOI: 10.1371/journal.pone.0083321] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 11/01/2013] [Indexed: 11/29/2022] Open
Abstract
A mucosal vaccine against Helicobacter pylori infection could help prevent gastric cancers and peptic ulcers. While previous attempts to develop such a vaccine have largely failed because of the requirement for safe and effective adjuvants or large amounts of well defined antigens, we have taken a unique approach to combining our strong mucosal CTA1-DD adjuvant with selected peptides from urease B (UreB). The protective efficacy of the selected peptides together with cholera toxin (CT) was first confirmed. However, CT is a strong adjuvant that unfortunately is precluded from clinical use because of its toxicity. To circumvent this problem we have developed a derivative of CT, the CTA1-DD adjuvant, that has been found safe in non-human primates and equally effective compared to CT when used intranasally. We genetically fused the selected peptides into the CTA1-DD plasmid and found after intranasal immunizations of Balb/c mice using purified CTA1-DD with 3 copies of an H. pylori urease T cell epitope (CTA1-UreB3T-DD) that significant protection was stimulated against a live challenge infection. Protection was, however, weaker than with the gold standard, bacterial lysate+CT, but considering that we only used a single epitope in nanomolar amounts the results convey optimism. Protection was associated with enhanced Th1 and Th17 immunity, but immunizations in IL-17A-deficient mice revealed that IL-17 may not be essential for protection. Taken together, we have provided evidence for the rational design of an effective mucosal subcomponent vaccine against H. pylori infection based on well selected protective epitopes from relevant antigens incorporated into the CTA1-DD adjuvant platform.
Collapse
Affiliation(s)
- John G. Nedrud
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Nayer Bagheri
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Karin Schön
- Mucosal Immunobiology and Vaccine Research Center (MIVAC) and the Department of Microbiolgy and Immunology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Wei Xin
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Hilda Bergroth
- Mucosal Immunobiology and Vaccine Research Center (MIVAC) and the Department of Microbiolgy and Immunology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Dubravka Grdic Eliasson
- Mucosal Immunobiology and Vaccine Research Center (MIVAC) and the Department of Microbiolgy and Immunology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Nils Y. Lycke
- Mucosal Immunobiology and Vaccine Research Center (MIVAC) and the Department of Microbiolgy and Immunology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
17
|
Zawahir S, Czinn SJ, Nedrud JG, Blanchard TG. Vaccinating against Helicobacter pylori in the developing world. Gut Microbes 2013; 4:568-76. [PMID: 24253617 PMCID: PMC3928166 DOI: 10.4161/gmic.27093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Helicobacter pylori infects more than half the world's population and in developing nations the incidence can be over 90%. The morbidity and mortality associated with H. pylori-associated diseases including ulcers and gastric cancer therefore, disproportionately impact the developing world. Mice have been used extensively to demonstrate the feasibility of developing a vaccine for H. pylori infection, and for testing antigens, routes of immunization, dose, and adjuvants. These successes however, have not translated well in clinical trials. Although there are examples where immune responses have been activated, there are few instances of achieving a reduced bacterial load. In vivo and in vitro analyses in both mice and humans demonstrates that the host responds to H. pylori infection through the activation of immunoregulatory mechanisms designed to suppress the anti-H. pylori response. Improved vaccine efficacy therefore, will require the inclusion of factors that over-ride or re-program these immunoregulatory rersponse mechanisms.
Collapse
Affiliation(s)
- Shamila Zawahir
- Department of Pediatrics; University of Maryland School of Medicine; Baltimore, MD USA
| | - Steven J Czinn
- Department of Pediatrics; University of Maryland School of Medicine; Baltimore, MD USA
| | - John G Nedrud
- Department of Pathology; Case Western Reserve University School of Medicine; Cleveland, OH USA
| | - Thomas G Blanchard
- Department of Pediatrics; University of Maryland School of Medicine; Baltimore, MD USA,Correspondence to: Thomas G Blanchard,
| |
Collapse
|
18
|
Sutton P, Chionh YT. Why can't we make an effective vaccine against Helicobacter pylori? Expert Rev Vaccines 2013; 12:433-41. [PMID: 23560923 DOI: 10.1586/erv.13.20] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Helicobacter pylori is a major human pathogen that colonizes the stomach and is the lead etiological agent for several pathologies. An effective vaccine against these bacteria would be invaluable for protecting against gastric adenocarcinoma. However, the development of such a vaccine has stalled and the field has progressed little in the last decade. In this review, the authors provide an opinion on key problems that are preventing the development of a H. pylori vaccine. Primarily, this involves the inability to produce a completely protective immune response. The knock-on effects of this include a loss of industry investment. Overcoming these problems will likely involve defeating the immune-evasion defenses of H. pylori, in particular the mechanism(s) by which it evades antibody-mediated attack.
Collapse
Affiliation(s)
- Philip Sutton
- Centre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Parkville, VIC 3010, Australia.
| | | |
Collapse
|
19
|
Zhu ZH, Tang XD, Wang FY, Guo P. Immune factors affecting eradication of Helicobacter pylori: Implications for immunotherapy. Shijie Huaren Xiaohua Zazhi 2013; 21:2674-2678. [DOI: 10.11569/wcjd.v21.i26.2674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this paper, we discuss immune factors affecting eradication of Helicobacter pylori (H. pylori) and analyze their implications for immunotherapy. By reviewing related literature and comparing with conventional pure acid suppression, we analyze factors related to the eradication of H. pylori from an immunological point of view and put forward new hypotheses concerning the development of oral H. pylori vaccines.
Collapse
|
20
|
Contribution of secretory antibodies to intestinal mucosal immunity against Helicobacter pylori. Infect Immun 2013; 81:3880-93. [PMID: 23918779 DOI: 10.1128/iai.01424-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The natural immune response to Helicobacter pylori neither clears infection nor prevents reinfection. However, the ability of secretory antibodies to influence the course of H. pylori infection has not been determined. We compared the natural progression of H. pylori infection in wild-type C57BL/6 mice with that in mice lacking the polymeric immunoglobulin receptor (pIgR) that is essential for the secretion of polymeric antibody across mucosal surfaces. H. pylori SS1-infected wild-type and pIgR knockout (KO) mice were sampled longitudinally for gastrointestinal bacterial load, antibody response, and histological changes. The gastric bacterial loads of wild-type and pIgR KO mice remained constant and comparable at up to 3 months postinfection (mpi) despite SS1-reactive secretory IgA in the intestinal contents of wild-type mice at that time. Conversely, abundant duodenal colonization of pIgR KO animals contrasted with the near-total eradication of H. pylori from the intestine of wild-type animals by 3 mpi. H. pylori was cultured only from the duodenum of those animals in which colonization in the distal gastric antrum was of sufficient density for immunohistological detection. By 6 mpi, the gastric load of H. pylori in wild-type mice was significantly lower than in pIgR KO animals. While there was no corresponding difference between the two mouse strains in gastric pathology results at 6 mpi, reductions in gastric bacterial load correlated with increased gastric inflammation together with an intestinal secretory antibody response in wild-type mice. Together, these results suggest that naturally produced secretory antibodies can modulate the progress of H. pylori infection, particularly in the duodenum.
Collapse
|
21
|
Choudhari SP, Pendleton KP, Ramsey JD, Blanchard TG, Picking WD. A systematic approach toward stabilization of CagL, a protein antigen from Helicobacter pylori that is a candidate subunit vaccine. J Pharm Sci 2013; 102:2508-19. [PMID: 23794457 PMCID: PMC3903303 DOI: 10.1002/jps.23643] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 12/14/2022]
Abstract
An important consideration in the development of subunit vaccines is the loss of activity caused by physical instability of the protein. Such instability often results from suboptimal solution conditions related to pH and temperature. Excipients can help to stabilize vaccines, but it is important to screen and identify excipients that adequately contribute to stabilization of a given formulation. CagL is a protein present in strains of Helicobacter pylori (H. pylori) that possess type IV secretion systems. It contributes to bacterial adherence via α5β1 integrin, thereby making it an attractive subunit vaccine candidate. We characterized the stability of CagL in different pH and temperature conditions using a variety of spectroscopic techniques. Stability was assessed in terms of transition temperature with the accumulated data, and then incorporated into an empirical phase diagram (EPD) that provided an overview of CagL physical stability. These analyses indicated maximum CagL stability at pH 4-6 up to 40°C in the absence of excipient. Using this EPD analysis, aggregation assays were developed to screen a panel of excipients with some found to inhibit CagL aggregation. Candidate stabilizers were selected to confirm their enhanced stabilizing effect. These analyses will help in the formulation of a stable vaccine against H. pylori.
Collapse
Affiliation(s)
- Shyamal P. Choudhari
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK
| | - Kirk P. Pendleton
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK
| | - Joshua D. Ramsey
- Department of Chemical Engineering, Oklahoma State University, Stillwater, OK
| | - Thomas G. Blanchard
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD
| | - William D. Picking
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK
| |
Collapse
|
22
|
Li HB, Zhang JY, He YF, Chen L, Li B, Liu KY, Yang WC, Zhao Z, Zou QM, Wu C. Systemic immunization with an epitope-based vaccine elicits a Th1-biased response and provides protection against Helicobacter pylori in mice. Vaccine 2012; 31:120-6. [PMID: 23137845 DOI: 10.1016/j.vaccine.2012.10.091] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/09/2012] [Accepted: 10/25/2012] [Indexed: 12/12/2022]
Abstract
Vaccine-mediated Th1-biased CD4+ T cell responses have been shown to be crucial for protection against Helicobacter pylori (H. pylori). In this study, we investigated whether a vaccine composed of CD4+ T cell epitopes together with Th1 adjuvants could confer protection against H. pylori in a mouse model. We constructed an epitope-based vaccine, designated Epivac, which was composed of predicted immunodominant CD4+ T cell epitopes from H. pylori adhesin A (HpaA), urease B (UreB) and cytotoxin-associated gene A product (CagA). Together with four different Th1 adjuvants, Epivac was administered subcutaneously and the prophylactic potential was examined. Compared to non-immunized mice, immunization with Epivac alone or with a Th1 adjuvant significantly reduced H. pylori colonization, and better protection was observed when an adjuvant was used. Immunized mice exhibited a strong local and systemic Th1-biased immune response, which may contribute to the inhibition of H. pylori colonization. Though a significant specific antibody response was induced by the vaccine, no correlation was found between the intensity of the humoral response and the protective effect. Our results suggest that a vaccine containing CD4+ T cell epitopes is a promising candidate for protection against H. pylori infection.
Collapse
Affiliation(s)
- Hai-Bo Li
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Blutt SE, Miller AD, Salmon SL, Metzger DW, Conner ME. IgA is important for clearance and critical for protection from rotavirus infection. Mucosal Immunol 2012; 5:712-9. [PMID: 22739233 PMCID: PMC3461240 DOI: 10.1038/mi.2012.51] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Based on a lack of severe phenotype in human immunoglobulin A (IgA) deficiency syndromes, the role of IgA in controlling respiratory and gastrointestinal (GI) infections has not been clearly defined. C57BL/6 and BALB/c mice lacking IgA (IgA(-/-)) were developed and used to address this question. When exposed to a common GI virus, rotavirus, IgA(-/-) mice exhibited a substantial and significant delay in clearance of the initial infection compared with wild-type mice. IgA(-/-) mice excreted rotavirus in stool up to 3 weeks after the initial exposure compared with 10 days observed in wild-type mice. Importantly, IgA(-/-) mice failed to develop protective immunity against multiple repeat exposures to the virus. All IgA(-/-) mice excreted virus in the stool upon re-exposure to rotavirus, whereas wild-type mice were completely protected against re-infection. These findings clearly indicate a critical role for IgA in the establishment of immunity against a GI viral pathogen.
Collapse
Affiliation(s)
- Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030 USA
| | - Amber D. Miller
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030 USA
| | - Sharon L. Salmon
- Center for Immunology & Microbial Disease, Albany Medical College, Albany, NY 12208 USA
| | - Dennis W. Metzger
- Center for Immunology & Microbial Disease, Albany Medical College, Albany, NY 12208 USA
| | - Margaret E Conner
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030 USA
| |
Collapse
|
24
|
Vermoote M, Van Steendam K, Flahou B, Smet A, Pasmans F, Glibert P, Ducatelle R, Deforce D, Haesebrouck F. Immunization with the immunodominant Helicobacter suis urease subunit B induces partial protection against H. suis infection in a mouse model. Vet Res 2012; 43:72. [PMID: 23101660 PMCID: PMC3542004 DOI: 10.1186/1297-9716-43-72] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/15/2012] [Indexed: 12/14/2022] Open
Abstract
Helicobacter (H.) suis is a porcine and human gastric pathogen. Previous studies in mice showed that an H. suis infection does not result in protective immunity, whereas immunization with H. suis whole-cell lysate (lysate) protects against a subsequent experimental infection. Therefore, two-dimensional gel electrophoresis of H. suis proteins was performed followed by immunoblotting with pooled sera from H. suis- infected mice or mice immunized with lysate. Weak reactivity against H. suis proteins was observed in post-infection sera. Sera from lysate-immunized mice, however, showed immunoreactivity against a total of 19 protein spots which were identified using LC-MS/MS. The H. suis urease subunit B (UreB) showed most pronounced reactivity against sera from lysate-immunized mice and was not detected with sera from infected mice. None of the pooled sera detected H. suis neutrophil-activating protein A (NapA). The protective efficacy of intranasal vaccination of BALB/c mice with H. suis UreB and NapA, both recombinantly expressed in Escherichia coli (rUreB and rNapA, respectively), was compared with that of H. suis lysate. All vaccines contained choleratoxin as adjuvant. Immunization of mice with rUreB and lysate induced a significant reduction of H. suis colonization compared to non-vaccinated H. suis-infected controls, whereas rNapA had no significant protective effect. Probably, a combination of local Th1 and Th17 responses, complemented by antibody responses play a role in the protective immunity against H. suis infections.
Collapse
Affiliation(s)
- Miet Vermoote
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Stent A, Every AL, Ng GZ, Chionh YT, Ong LS, Edwards SJ, Sutton P. Helicobacter pylori thiolperoxidase as a protective antigen in single- and multi-component vaccines. Vaccine 2012; 30:7214-20. [PMID: 23084846 DOI: 10.1016/j.vaccine.2012.10.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/02/2012] [Accepted: 10/04/2012] [Indexed: 12/23/2022]
Abstract
Helicobacter pylori is an important pathogen of the human stomach, and the development of a protective vaccine has been an enticing goal for many years. The H. pylori antioxidant enzymes superoxide dismutase (SOD) and catalase (KatA) have been shown to be protective as vaccine antigens in mice, demonstrating that the organism's antioxidant enzyme system is a fruitful target for vaccine development. The research described here demonstrates that an additional antioxidant enzyme, thiolperoxidase (Tpx), is effective as a prophylactic vaccine antigen via both systemic and mucosal routes. The functional relationship between SOD, KatA and Tpx also provided an opportunity to investigate synergistic or additive effects when the three antigens were used in combination. Although the antigens still provided equivalent protection when administered in combination, no additional protection was observed. Moreover a decrease in antibody titres to the individual antigens was observed when delivered in combination via the nasal route, though not when injected subcutaneously. The findings of this paper demonstrate that the antioxidant system of H. pylori presents a particularly rich resource for vaccine development.
Collapse
Affiliation(s)
- Andrew Stent
- Centre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Parkville, VIC 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
26
|
Alkyl hydroperoxide reductase: a candidate Helicobacter pylori vaccine. Vaccine 2012; 30:3876-84. [PMID: 22512976 DOI: 10.1016/j.vaccine.2012.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 03/20/2012] [Accepted: 04/01/2012] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori (H. pylori) is the most important etiological agent of chronic active gastritis, peptic ulcer disease and gastric cancer. The aim of this study was to evaluate the efficacy of alkyl hydroperoxide reductase (AhpC) and mannosylated AhpC (mAhpC) as candidate vaccines in the C57BL/6J mouse model of H. pylori infection. Recombinant AhpC was cloned, over-expressed and purified in an unmodified form and was also engineered to incorporate N and C-terminal mannose residues when expressed in the yeast Pichia pastoris. Mice were immunized systemically and mucosally with AhpC and systemically with mAhpC prior to challenge with H. pylori. Serum IgG responses to AhpC were determined and quantitative culture was used to determine the efficacy of vaccination strategies. Systemic prophylactic immunization with AhpC/alum and mAhpC/alum conferred protection against infection in 55% and 77.3% of mice, respectively. Mucosal immunization with AhpC/cholera toxin did not protect against infection and elicited low levels of serum IgG in comparison with systemic immunization. These data support the use of AhpC as a potential vaccine candidate against H. pylori infection.
Collapse
|
27
|
Hitzler I, Oertli M, Becher B, Agger EM, Müller A. Dendritic cells prevent rather than promote immunity conferred by a helicobacter vaccine using a mycobacterial adjuvant. Gastroenterology 2011; 141:186-96, 196.e1. [PMID: 21569773 DOI: 10.1053/j.gastro.2011.04.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 02/27/2011] [Accepted: 04/08/2011] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Immunization against the gastric bacterium Helicobacter pylori could prevent many gastric cancers and other disorders. Most vaccination protocols used in preclinical models are not suitable for humans. New adjuvants and a better understanding of the correlates and requirements for vaccine-induced protection are needed to accelerate development of vaccines for H pylori. METHODS Vaccine-induced protection against H pylori infection and its local and systemic immunological correlates were assessed in animal models, using cholera toxin or CAF01 as adjuvants. The contribution of B cells, T-helper (Th)-cell subsets, and dendritic cells to H pylori-specific protection were analyzed in mice. RESULTS Parenteral administration of a whole-cell sonicate, combined with the mycobacterial cell-wall-derived adjuvant CAF01, protected against infection with H pylori and required cell-mediated, but not humoral, immunity. The vaccine-induced control of H pylori was accompanied by Th1 and Th17 responses in the gastric mucosa and in the gut-draining mesenteric lymph nodes; both Th subsets were required for protective immunity against H pylori. The numbers of memory CD4+ T cells and neutrophils in gastric tissue were identified as the best correlates of protection. Systemic depletion of dendritic cells or regulatory T cells during challenge infection significantly increased protection by overriding immunological tolerance mechanisms activated by live H pylori. CONCLUSIONS Parenteral immunization with a Helicobacter vaccine using a novel mycobacterial adjuvant induces protective immunity against H pylori that is mediated by Th1 and Th17 cells. Tolerance mechanisms mediated by dendritic cells and regulatory T cells impair H pylori clearance and must be overcome to improve immunity.
Collapse
Affiliation(s)
- Iris Hitzler
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
28
|
DeLyria ES, Nedrud JG, Ernst P, Alam MS, Redline RW, Ding H, Czinn SJ, Xu J, Blanchard T. Vaccine-induced immunity against Helicobacter pylori in the absence of IL-17A. Helicobacter 2011; 16:169-78. [PMID: 21585602 PMCID: PMC3107727 DOI: 10.1111/j.1523-5378.2011.00839.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is a gram negative bacterium that can cause diseases such as peptic ulcers and gastric cancer. IL-17A, a proinflammatory cytokine that can induce the production of CXC chemokines for neutrophil recruitment, has recently been shown to be elevated in both H. pylori-infected patients and mice. Furthermore, studies in mouse models of vaccination have reported levels significantly increased over infected, unimmunized mice and blocking of IL-17A during the challenge phase in immunized mice reduces protective immunity. Because many aspects of immunity had redundant or compensatory mechanisms, we investigated whether mice could be protectively immunized when IL-17A function is absent during the entire immune response using IL-17A and IL-17A receptor knockout (KO) mice immunized against H. pylori. MATERIALS AND METHODS Gastric biopsies were harvested from naïve, unimmunized/challenged, and immunized/challenged wild type (WT) and KO mice and analyzed for inflammation, neutrophil, and bacterial levels. Groups of IL-17A KO mice were also treated with anti-IFNγ or control antibodies. RESULTS Surprisingly, all groups of immunized KO mice reduced their bacterial loads comparably to WT mice. The gastric neutrophil counts did not vary significantly between IL-17A KO and WT mice, whereas IL-17RA KO mice had on average a four-fold decrease compared to WT. Additionally, we performed an immunization study with CXCR2 KO mice and observed significant gastric neutrophils and reduction in bacterial load. CONCLUSION These data suggest that there are compensatory mechanisms for protection against H. pylori and for neutrophil recruitment in the absence of an IL-17A-CXC chemokine pathway.
Collapse
Affiliation(s)
- Elizabeth S. DeLyria
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH
| | - John G. Nedrud
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH
| | - Peter Ernst
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Virginia, Charlottesville, VA
| | - M. Samiul Alam
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Virginia, Charlottesville, VA
| | - Raymond W. Redline
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH
| | - Hua Ding
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD
| | - Steven J. Czinn
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD
| | - Jinghua Xu
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD
| | - T.G. Blanchard
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD,Corresponding author: Thomas G. Blanchard, Dept of Pediatrics, Bressler Research Building, 13-043, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, Voice: (410) 706-1772, Fax: (410) 328-1072,
| |
Collapse
|
29
|
Abstract
Helicobacter pylori infection of the gastric mucosa remains a cause of significant morbidity and mortality almost 30 years after its discovery. H. pylori infection can lead to several gastric maladies, including gastric cancer, and although antimicrobial therapies for the infection exist, the cost of treatment for gastric cancer and the prognosis of individuals who present with this disease make vaccine development a cost effective alternative to bacterial eradication. Experimental mucosal and systemic H. pylori vaccines in mice significantly reduce bacterial load and sometimes provide sterilizing immunity. Clinical trials of oral vaccines consisting of H. pylori proteins with bacterial exotoxin adjuvants or live attenuated bacterial vectors expressing H. pylori proteins induce adaptive immune mechanisms but fail to consistently reduce bacterial load. Clinical trials and murine studies demonstrate that where H. pylori is killed, either spontaneously or following vaccination, the host demonstrated cellular immunity. Improved efficacy of vaccines may be achieved in new trials of vaccine formulations that include multiple antigens and use methods to optimize cellular immunity. Unfortunately, the industrial sponsors that served as the primary engine for much of the previous animal and human research have withdrawn their support. A renewed or expanded commitment from the biotechnology or pharmaceutical industry that could exploit recent advances in our understanding of the host immune response to H. pylori is necessary for the advancement of an H. pylori vaccine.
Collapse
|
30
|
Allison CC, Ferrero RL. Role of virulence factors and host cell signaling in the recognition of Helicobacter pylori and the generation of immune responses. Future Microbiol 2010; 5:1233-55. [PMID: 20722601 DOI: 10.2217/fmb.10.84] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori colonizes a large proportion of the world's population, with infection invariably leading to chronic, lifelong gastritis. While the infection often persists undiagnosed and without causing severe pathology, there are a number of host, bacterial and environmental factors that can influence whether infection provokes a mild inflammatory response or results in significant morbidity. Intriguingly, the most virulent H. pylori strains appear to deliberately induce the epithelial signaling cascades responsible for activating the innate immune system. While the reason for this remains unclear, the resulting adaptive immune responses are largely ineffective in clearing the bacterium once infection has become established and, as a result, inflammation likely causes more damage to the host itself.
Collapse
Affiliation(s)
- Cody C Allison
- Centre for Innate Immunity & Infectious Diseases, Monash Institute of Medical Research, Clayton, Australia.
| | | |
Collapse
|
31
|
Transcutaneous immunization with novel lipid-based adjuvants induces protection against gastric Helicobacter pylori infection. Vaccine 2009; 27:6983-90. [DOI: 10.1016/j.vaccine.2009.09.078] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 09/07/2009] [Accepted: 09/20/2009] [Indexed: 01/08/2023]
|
32
|
Partial protection against Helicobacter pylori in the absence of mast cells in mice. Infect Immun 2009; 77:5543-50. [PMID: 19822650 DOI: 10.1128/iai.00532-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The goal of this study is to evaluate the contribution of mast cells to Helicobacter pylori immunity in a model of vaccine-induced protection. Mast cell-deficient Kitl(Sl)/Kitl(Sl-d) and control mice were immunized with H. pylori sonicate plus cholera toxin and challenged with H. pylori, and the bacterial loads, inflammatory infiltrates, and cytokine responses were evaluated and compared at 1, 2, and 4 weeks postchallenge. In vitro stimulation assays were performed using bone marrow-derived mast cells, and recall assays were performed with spleen cells of immunized mast cell-deficient and wild-type mice. Bacterial clearance was observed by 2 weeks postchallenge in mast cell-deficient mice. The bacterial load was reduced by 4.0 log CFU in wild-type mice and by 1.5 log CFU in mast cell-deficient mice. Neutrophil numbers in the gastric mucosa of immune Kitl(Sl)/Kitl(Sl-d) mice were lower than those for immune wild-type mice (P < 0.05). Levels of gastric interleukin-17 (IL-17) and tumor necrosis factor alpha (TNF-alpha) were also significantly lower in immune Kitl(Sl)/Kitl(Sl-d) mice than in wild-type mice (P < 0.001). Immunized mast cell-deficient and wild-type mouse spleen cells produced IFN-gamma and IL-17 in response to H. pylori antigen stimulation. TNF-alpha and CXC chemokines were detected in mast cell supernatants after 24 h of stimulation with H. pylori antigen. The results indicate that mast cells are not essential for but do contribute to vaccine-induced immunity and that mast cells contribute to neutrophil recruitment and inflammation in response to H. pylori.
Collapse
|
33
|
M-cell targeting of whole killed bacteria induces protective immunity against gastrointestinal pathogens. Infect Immun 2009; 77:2962-70. [PMID: 19380476 DOI: 10.1128/iai.01522-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
As the majority of human pathogens infect via a mucosal surface, delivery of killed vaccines by mucosal routes could potentially improve protection against many such organisms. Our ability to develop effective killed mucosal vaccines is inhibited by a lack of adjuvants that are safe and effective in humans. The Ulex europaeus agglutinin I (UEA-I) lectin specifically binds M cells lining the murine gastrointestinal tract. We explored the potential for M-cell-targeted vaccination of whole, killed Helicobacter pylori, the main causative agent of peptic ulcer disease and gastric cancer, and Campylobacter jejuni, the most common cause of diarrhea. Oral delivery of UEA-I-agglutinated H. pylori or C. jejuni induced a significant increase in both serum and intestinal antibody levels. This elevated response (i) required the use of whole bacteria, as it did not occur with lysate; (ii) was not mediated by formation of particulate clumps, as agglutination with a lectin with a different glycan specificity had no effect; and (iii) was not due to lectin-mediated, nonspecific immunostimulatory activity, as UEA-I codelivery with nonagglutinated bacteria did not enhance the response. Vaccination with UEA-I-agglutinated, killed whole H. pylori induced a protective response against subsequent live challenge that was as effective as that induced by cholera toxin adjuvant. Moreover, vaccination against C. jejuni by this approach resulted in complete protection against challenge in almost all animals. We believe that this is the first demonstration that targeting of whole killed bacteria to mucosal M cells can induce protective immunity without the addition of an immunostimulatory adjuvant.
Collapse
|
34
|
Stuller KA, Ding H, Redline RW, Czinn SJ, Blanchard TG. CD25+ T cells induce Helicobacter pylori-specific CD25- T-cell anergy but are not required to maintain persistent hyporesponsiveness. Eur J Immunol 2009. [PMID: 19003932 DOI: 10.1002/eji.00838428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gastric pathogen Helicobacter pylori infects over half the world's population. The lifelong infection induces gastric inflammation but the host fails to generate protective immunity. To study the lack of protective H. pylori immunity, CD4(+)CD25(+) T(reg) cells were investigated for their ability to down-regulate H. pylori-specific CD4(+)CD25(-) cells in a murine model. CD25(-) lymphocytes from infected mice were hyporesponsive to antigenic stimulation in vitro even in the absence of CD25(+) T(reg) cells unless treated with high-dose IL-2. Transfer of CD45RB(hi) naïve CD25(-) cells from infected mice into rag1(-/-) mice challenged with H. pylori resulted in severe gastritis and reduced bacterial loads, whereas transfer of CD45RB(lo) memory CD25(-) cells from H. pylori-infected mice resulted in only mild gastritis and persistent infection. CD25(-) cells stimulated in the absence of CD25(+) cells in rag1(-/-) mice promoted bacterial clearance, but lost this ability when subsequently transferred to WT mice harboring CD25(+) cells. These results demonstrate that CD25(+) cells induce anergy in CD25(-) cells in response to H. pylori infection but are not required to maintain hyporesponsiveness. In addition, CD25(+) cells are able to suppress previously activated CD25(-) cells when responding to H. pylori challenge in vivo.
Collapse
|
35
|
Flahou B, Hellemans A, Meyns T, Duchateau L, Chiers K, Baele M, Pasmans F, Haesebrouck F, Ducatelle R. Protective immunization with homologous and heterologous antigens against Helicobacter suis challenge in a mouse model. Vaccine 2009; 27:1416-21. [PMID: 19136039 DOI: 10.1016/j.vaccine.2008.12.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 12/10/2008] [Accepted: 12/20/2008] [Indexed: 12/31/2022]
Abstract
Helicobacter (H.) suis colonizes the stomach of more than 60% of slaughter pigs and is also of zoonotic importance. Recently, this bacterium was isolated in vitro, enabling the use of pure cultures for research purposes. In this study, mice were immunized intranasally or subcutaneously with whole bacterial cell lysate of H. suis or the closely related species H. bizzozeronii and H. cynogastricus, and subsequently challenged with H. suis. Control groups consisted of non-immunized and non-challenged mice (negative control group), as well as of sham-immunized mice that were inoculated with H. suis (positive control group). Urease tests on stomach tissue samples at 7 weeks after challenge infection were negative in all negative control mice, all intranasally immunized mice except one, and in all and 3 out of 5 animals of the H. cynogastricus and H. suis subcutaneously immunized groups, respectively. H. suis DNA was detected by PCR in the stomach of all positive control animals and all subcutaneously immunized/challenged animals. All negative control animals and some intranasally immunized/challenged mice were PCR-negative. In conclusion, immunization using antigens derived from the same or closely related bacterial species suppressed gastric colonization with H. suis, but complete protection was only achieved in a minority of animals following intranasal immunization.
Collapse
Affiliation(s)
- Bram Flahou
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Harbour SN, Every AL, Edwards S, Sutton P. Systemic immunization with unadjuvanted whole Helicobacter pylori protects mice against heterologous challenge. Helicobacter 2008; 13:494-9. [PMID: 19166414 DOI: 10.1111/j.1523-5378.2008.00640.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Adjuvant-free vaccines have many benefits, including decreased cost and toxicity. We examined the protective effect of systemic vaccination with adjuvant-free formalin-fixed Helicobacter pylori or bacterial lysate and the ability of this vaccine to induce protection against heterologous challenge. MATERIALS AND METHODS Mice were vaccinated subcutaneously with H. pylori 11637 lysate or formalin-fixed bacteria, with or without ISCOMATRIX adjuvant, then orally challenged with H. pylori SS1. Serum was taken prior to challenge to examine specific antibody levels induced by the vaccinations, and protection was assessed by colony-forming assay. RESULTS Vaccination with H. pylori 11637 lysate or formalin-fixed bacteria delivered systemically induced significantly higher levels of Helicobacter-specific serum IgG than the control, unvaccinated group and orally vaccinated group. After heterologous challenge with H. pylori SS1, all vaccinated groups had significantly lower levels of colonization compared with unvaccinated, control mice, regardless of the addition of adjuvant or route of delivery. Protection induced by systemic vaccination with whole bacterial preparations, without the addition of adjuvants, was only associated with a mild cellular infiltration into the gastric mucosa, with no evidence of atrophy. CONCLUSIONS Subcutaneous vaccination using unadjuvanted formalin-fixed H. pylori has the potential to be a simple, cost-effective approach to the development of a Helicobacter vaccine. Importantly, this vaccine was able to induce protection against heterologous challenge, a factor that would be crucial in any human Helicobacter vaccine. Further studies are required to determine mechanisms of protection and to improve protective ability.
Collapse
Affiliation(s)
- Stacey N Harbour
- Centre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
37
|
Stuller KA, Ding H, Redline RW, Czinn SJ, Blanchard TG. CD25+ T cells induce Helicobacter pylori-specific CD25- T-cell anergy but are not required to maintain persistent hyporesponsiveness. Eur J Immunol 2008; 38:3426-35. [PMID: 19003932 PMCID: PMC2753502 DOI: 10.1002/eji.200838428] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The gastric pathogen Helicobacter pylori infects over half the world's population. The lifelong infection induces gastric inflammation but the host fails to generate protective immunity. To study the lack of protective H. pylori immunity, CD4(+)CD25(+) T(reg) cells were investigated for their ability to down-regulate H. pylori-specific CD4(+)CD25(-) cells in a murine model. CD25(-) lymphocytes from infected mice were hyporesponsive to antigenic stimulation in vitro even in the absence of CD25(+) T(reg) cells unless treated with high-dose IL-2. Transfer of CD45RB(hi) naïve CD25(-) cells from infected mice into rag1(-/-) mice challenged with H. pylori resulted in severe gastritis and reduced bacterial loads, whereas transfer of CD45RB(lo) memory CD25(-) cells from H. pylori-infected mice resulted in only mild gastritis and persistent infection. CD25(-) cells stimulated in the absence of CD25(+) cells in rag1(-/-) mice promoted bacterial clearance, but lost this ability when subsequently transferred to WT mice harboring CD25(+) cells. These results demonstrate that CD25(+) cells induce anergy in CD25(-) cells in response to H. pylori infection but are not required to maintain hyporesponsiveness. In addition, CD25(+) cells are able to suppress previously activated CD25(-) cells when responding to H. pylori challenge in vivo.
Collapse
|
38
|
Skene CD, Doidge C, Sutton P. Evaluation of ISCOMATRIX™ and ISCOM™ vaccines for immunisation against Helicobacter pylori. Vaccine 2008; 26:3880-4. [DOI: 10.1016/j.vaccine.2008.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 04/18/2008] [Accepted: 05/07/2008] [Indexed: 12/23/2022]
|
39
|
Zhang M, Berndt BE, Eaton KA, Rathinavelu S, Pierzchala A, Kao JY. Helicobacter pylori-pulsed dendritic cells induce H. pylori-specific immunity in mice. Helicobacter 2008; 13:200-8. [PMID: 18466395 PMCID: PMC2871674 DOI: 10.1111/j.1523-5378.2008.00606.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The growing concern over the emergence of antibiotic-resistant Helicobacter pylori infection is propelling the development of an efficacious vaccine to control this highly adaptive organism. AIM We studied the use of a dendritic cell (DC)-based vaccine against H. pylori infection in mice. METHODS The cellular immune responses to murine bone marrow-derived DCs pulsed with phosphate-buffered saline (PBS-DC) or live H. pylori SS1 (HP-DC) were assessed in vitro and in vivo. The protective immunity against H. pylori SS1 oral challenge was compared between HP-DC or PBS-DC immunized mice. The effect of regulatory T-cell (Treg) depletion by anti-CD25 antibody on HP-DC vaccine efficacy was also evaluated. RESULTS HP-DC induced a Th1-dominant response in vitro. In vivo, HP-DC immunized mice were characterized by a mixed Th1/Th2 peripheral immune response. However, in the stomach, HP-DC immunized mice expressed a higher level of IFN-gamma compared to PBS-DC immunized mice; no difference was found for interleukin-5 expressions in the stomach. A lower bacterial colonization post-H. pylori challenge was observed in HP-DC immunized mice compared to PBS-DC immunized mice with no significant difference in gastritis severity. H. pylori-specific Th1 response and protective immunity were further enhanced in vivo by depletion of Treg with anti-CD25 antibody. CONCLUSION DC-based anti-H. pylori vaccine induced H. pylori-specific helper T-cell responses capable of limiting bacterial colonization. Our data support the critical role of effector cellular immune response in the development of H. pylori vaccine.
Collapse
Affiliation(s)
- Min Zhang
- Department of Internal Medicine (Gastroenterology Division), University of Michigan, Ann Arbor, Michigan 48109
| | - Bradford E. Berndt
- Department of Internal Medicine (Gastroenterology Division), University of Michigan, Ann Arbor, Michigan 48109
| | - Kathryn A. Eaton
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109
| | - Sivaprakash Rathinavelu
- Department of Internal Medicine (Gastroenterology Division), University of Michigan, Ann Arbor, Michigan 48109
| | - Anna Pierzchala
- Department of Internal Medicine (Gastroenterology Division), University of Michigan, Ann Arbor, Michigan 48109
| | - John Y. Kao
- Department of Internal Medicine (Gastroenterology Division), University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
40
|
Lee J, Lee SY, Lee JH. [Production of Antibody against Helicobacter pylori HP0231.]. Korean J Lab Med 2007; 26:98-102. [PMID: 18156708 DOI: 10.3343/kjlm.2006.26.2.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Stool antigen detection kits for diagnosis of infection of Helicobacter pylori have been widely used for their convenience, but are mostly imported. Since Helicobacter pylori strains show a distinctive genetic diversity, it is important to find a protein that is a common antigen among various strains and shows a strong immunogenicity for the development of a stool antigen detection kit. HP0231 protein strongly reacts with the sera of patients suffering from gastritis and peptic ulcer. Therefore, HP0231 is an excellent candidate as a target gene for this study. METHODS Chromosomal DNA from H. pylori was isolated. HP0231 gene was amplified by PCR, cloned into pET28a(+) vector, and overexpressed using isopropyl-beta-D-thiogalactopyranoside in E. coli BL21 (DE3). HP0231 protein was purified by Ni-NTA affinity chromatography followed by electroelution after SDS-PAGE. Rabbits were immunized with the purified HP0231 protein for the production of antibodies. Rabbit anti-HP0231 antibody was partially purified and tested for the sensitivity and specificity using ELISA and Western Blot Analysis. RESULTS The sequence of the cloned HP0231 gene was identical with the gene sequence from Genbank (AA216016). HP0231 gene was overexpressed and HP0231 protein was purified. Rabbit anti-HP0231 antibody produced after immunization with the purified HP0231 protein reacted with the purified HP0231 protein, cell extracts from cultured H. pylori, and stomach biopsy tissue from patients, but not with cell extracts from cultured E. coli used as a negative control. After 1 million fold dilution, rabbit anti-HP0231 antibody still reacted with 1 microg of HP0231 protein. CONCLUSIONS Rabbit anti-HP0231 antibody was produced to detect HP0231 protein of H. pylori and will be tested for the development of a stool antigen detection kit for H. pylori.
Collapse
Affiliation(s)
- Jongwook Lee
- Department of Laboratory Medicine, College of Medicine, Konyang University, Daejeon, Korea.
| | | | | |
Collapse
|
41
|
Fukui T, Nishio A, Okazaki K, Kasahara K, Saga K, Tanaka J, Uza N, Ueno S, Kido M, Ohashi S, Asada M, Nakase H, Watanabe N, Chiba T. Cross-primed CD8+ cytotoxic T cells induce severe Helicobacter-associated gastritis in the absence of CD4+ T cells. Helicobacter 2007; 12:486-97. [PMID: 17760716 DOI: 10.1111/j.1523-5378.2007.00536.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Although previous studies have reported important roles of CD4(+) type 1-helper T cells and regulatory T cells in Helicobacter-associated gastritis, the significance of CD8(+) cytotoxic T cells remains unknown. To study the roles of CD8(+) T cells, we examined the immune response in the gastric mucosa of Helicobacter felis-infected major histocompatibility complex (MHC) class II-deficient (II(-/-)) mice, which lack CD4(+) T cells. MATERIALS AND METHODS Stomachs from H. felis-infected wild-type and infected MHC II(-/-) mice were examined histologically and immunohistochemically. Gastric acidity and serum levels of anti-H. felis antibodies were measured. The expression of pro-inflammatory and anti-inflammatory cytokine, Fas-ligand, perforin, and Foxp3 genes in the gastric mucosa was investigated. RESULTS H. felis-infected MHC II(-/-) mice developed severe gastritis, accompanied by marked infiltration of CD8(+) cells. At 1 and 2 months after inoculation, mucosal inflammation and atrophy were more severe in MHC II(-/-) mice, although gastritis had reached similar advanced stages at 3 months after inoculation. There was little infiltration of CD4(+) cells, and no Foxp3-positive cells were detected in the gastric mucosa of the infected MHC II(-/-) mice. The expression of the interleukin-1beta and Fas-ligand genes was up regulated, but that of Foxp3 was down regulated in the infected MHC II(-/-) mice. Serum levels of anti-H. felis antibodies were lower in the infected MHC II(-/-) mice, despite severe gastritis. CONCLUSIONS The present study suggests that cross-primed CD8(+) cytotoxic T cells can induce severe H.-associated gastritis in the absence of CD4(+) helper T cells and that Foxp3-positive cells may have an important role in the control of gastric inflammation.
Collapse
Affiliation(s)
- Toshiro Fukui
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wilson KT, Crabtree JE. Immunology of Helicobacter pylori: insights into the failure of the immune response and perspectives on vaccine studies. Gastroenterology 2007; 133:288-308. [PMID: 17631150 DOI: 10.1053/j.gastro.2007.05.008] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 05/02/2007] [Indexed: 02/08/2023]
Abstract
Helicobacter pylori infects the stomach of half of the human population worldwide and causes chronic active gastritis, which can lead to peptic ulcer disease, gastric adenocarcinoma, and mucosa-associated lymphoid tissue lymphoma. The host immune response to the infection is ineffective, because the bacterium persists and the inflammation continues for decades. Bacterial activation of epithelial cells, dendritic cells, monocytes, macrophages, and neutrophils leads to a T helper cell 1 type of adaptive response, but this remains inadequate. The host inflammatory response has a key functional role in disrupting acid homeostasis, which impacts directly on the colonization patterns of H pylori and thus the extent of gastritis. Many potential mechanisms for the failure of the host response have been postulated, and these include apoptosis of epithelial cells and macrophages, inadequate effector functions of macrophages and dendritic cells, VacA inhibition of T-cell function, and suppressive effects of regulatory T cells. Because of the extent of the disease burden, many strategies for prophylactic or therapeutic vaccines have been investigated. The goal of enhancing the host's ability to generate protective immunity has met with some success in animal models, but the efficacy of potential vaccines in humans remains to be demonstrated. Aspects of H pylori immunopathogenesis are reviewed and perspectives on the failure of the host immune response are discussed. Understanding the mechanisms of immune evasion could lead to new opportunities for enhancing eradication and prevention of infection and associated disease.
Collapse
Affiliation(s)
- Keith T Wilson
- Division of Gastroenterology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0252, USA
| | | |
Collapse
|
43
|
Sutton P, Doidge C, Pinczower G, Wilson J, Harbour S, Swierczak A, Lee A. Effectiveness of vaccinationwith recombinant HpaA fromHelicobacter pyloriis influenced by host genetic background. ACTA ACUST UNITED AC 2007; 50:213-9. [PMID: 17567282 DOI: 10.1111/j.1574-695x.2006.00206.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Several studies have explored the production and immunogenicity of HpaA as a potential protective antigen against Helicobacter pylori but little is known regarding its protective capabilities. We therefore evaluated the protective efficacy of recombinant HpaA (rHpaA) as a candidate vaccine antigen against H. pylori. To explore the impact of genetic diversity, inbred and outbred mice were prophylactically and therapeutically immunized with rHpaA adjuvanted with cholera toxin (CT). Prophylactic immunization induced a reduction in bacterial colonization in BALB/c and QS mice, but was ineffective in C57BL/6 mice, despite induction of antigen-specific antibodies. By contrast, therapeutic immunization was effective in all three strains of mice. Prophylactic immunization with CT-adjuvanted rHpaA was more effective when delivered via the nasal route than following intragastric delivery in BALB/c mice. However, HpaA-mediated protection was inferior to that induced by bacterial lysate. Hence, protective efficacy is inducible with vaccines containing HpaA, most relevantly shown in an outbred population of mice. The effectiveness of protection induced by HpaA antigen was influenced by host genetics and was less effective than lysate. HpaA therefore has potential for the development of effective immunization against H. pylori but this would probably entail the antigen to be one component of a multiantigenic vaccine.
Collapse
MESH Headings
- Adhesins, Bacterial/immunology
- Adjuvants, Immunologic
- Administration, Intranasal
- Animals
- Antibodies, Bacterial/blood
- Bacterial Vaccines/immunology
- Cholera Toxin/immunology
- Colony Count, Microbial
- Disease Models, Animal
- Enzyme-Linked Immunosorbent Assay
- Female
- Helicobacter Infections/genetics
- Helicobacter Infections/prevention & control
- Helicobacter Infections/therapy
- Helicobacter pylori/growth & development
- Helicobacter pylori/immunology
- Immunoglobulin G/blood
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Stomach/microbiology
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Philip Sutton
- Centre for Animal Biotechnology, University of Melbourne, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Helicobacter pylori, a Gram-negative flagellate bacterium that infects the stomach of more than half of the global population, is regarded as the leading cause of chronic gastritis, peptic ulcer disease, and even gastric adenocarcinoma in some individuals. Although the bacterium induces strong humoral and cellular immune responses, it can persist in the host for decades. It has several virulence factors, some of them having vaccine potential as judged by immunoproteomic analysis. A few vaccination studies involving a small number of infected or uninfected humans with various H. pylori formulations such as the recombinant urease, killed whole cells, and live Salmonella vectors presenting the subunit antigens have not provided satisfactory results. One trial that used the recombinant H. pylori urease coadministered with native Escherichia coli enterotoxin (LT) demonstrated a reduction of H. pylori load in infected participants. Although extensive studies in the mouse model have demonstrated the feasibility of both therapeutic and prophylactic immunizations, the mechanism of vaccine-induced protection is poorly understood as several factors such as immunoglobulin and various cytokines do not contribute to protection. Transcriptome analyses in mice have indicated the role of nonclassical immune factors in vaccine-induced protection. The role of regulatory T cells in the persistence of H. pylori infection has also been suggested. A recently developed experimental H. pylori infection model in humans may be used for testing several new adjuvants and vaccine delivery systems that have been currently obtained. The use of vaccines with appropriate immunogens, routes of immunization, and adjuvants along with a better understanding of the mechanism of immune protection may provide more favorable results.
Collapse
Affiliation(s)
- Shahjahan Kabir
- Academic Research and Information Management, Uppsala, Sweden.
| |
Collapse
|
45
|
Sheu SM, Sheu BS, Yang HB, Lei HY, Wu JJ. Anti-Lewis X antibody promotes Helicobacter pylori adhesion to gastric epithelial cells. Infect Immun 2007; 75:2661-7. [PMID: 17371866 PMCID: PMC1932895 DOI: 10.1128/iai.01689-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lewis X (Le(x)) antigen is expressed on the human gastric mucosa and the O-specific chain of lipopolysaccharides of Helicobacter pylori. This antigen can induce autoantibodies, which may be involved in bacterial colonization and thus deserve further investigation. Flow cytometry was used to examine the effects of anti-Le monoclonal antibodies (MAbs) on H. pylori adhesion. A babA2 mutant was also constructed to evaluate the effect of an anti-Le(x) MAb on adhesion. The bacterial agglutination and in situ adhesion assays were used to confirm the anti-Le(x) MAb effect on H. pylori adhesion. This study revealed that an anti-Le(x) MAb, but not an anti-Le(b) MAb or an anti-Le(y) MAb, could enhance the adhesion of H. pylori strains that expressed high levels of Le(x) antigen to AGS cells. The enhancement was not found on an H. pylori strain with a low level of Le(x) antigen. Anti-Le(x) MAb could increase the adhesion of both the wild-type strain and its isogenic babA2 mutant to AGS cells. When AGS cells were pretreated with anti-Le(x) MAb, the adhesion of the babA2 mutant also increased. Only anti-Le(x) MAb could promote bacterial agglutination, and the in situ adhesion assay further confirmed that adding anti-Le(x) MAb resulted in denser bacterial adhesion on the gastric epithelia collected from clinical patients. These results suggest anti-Le(x) MAb could specifically enhance the adhesion abilities of H. pylori strains through a mechanism by which anti-Le(x) MAb promotes bacterial aggregation and mediates bivalent interaction (antigen-antibody-antigen) between bacteria and host cells.
Collapse
Affiliation(s)
- Shew-Meei Sheu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No. 1 University Road, Tainan, Taiwan 701
| | | | | | | | | |
Collapse
|
46
|
Algood HMS, Cover TL. Helicobacter pylori persistence: an overview of interactions between H. pylori and host immune defenses. Clin Microbiol Rev 2006; 19:597-613. [PMID: 17041136 PMCID: PMC1592695 DOI: 10.1128/cmr.00006-06] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori is a gram-negative bacterium that persistently colonizes more than half of the global human population. In order to successfully colonize the human stomach, H. pylori must initially overcome multiple innate host defenses. Remarkably, H. pylori can persistently colonize the stomach for decades or an entire lifetime despite development of an acquired immune response. This review focuses on the immune response to H. pylori and the mechanisms by which H. pylori resists immune clearance. Three main sections of the review are devoted to (i) analysis of the immune response to H. pylori in humans, (ii) analysis of interactions of H. pylori with host immune defenses in animal models, and (iii) interactions of H. pylori with immune cells in vitro. The topics addressed in this review are important for understanding how H. pylori resists immune clearance and also are relevant for understanding the pathogenesis of diseases caused by H. pylori (peptic ulcer disease, gastric adenocarcinoma, and gastric lymphoma).
Collapse
Affiliation(s)
- Holly M Scott Algood
- Division of Infectious Diseases, A2200 Medical Center North, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
47
|
Drakes ML, Czinn SJ, Blanchard TG. Regulation of murine dendritic cell immune responses by Helicobacter felis antigen. Infect Immun 2006; 74:4624-33. [PMID: 16861650 PMCID: PMC1539598 DOI: 10.1128/iai.00289-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Helicobacter infections are present in approximately 50% of humans, causing severe illnesses such as gastritis and malignancies. Dendritic cells (DC) are critical antigen-presenting cells which link innate and adaptive immune responses. The mechanism of dendritic cell regulation in Helicobacter-induced gastritis is poorly understood. These studies characterized DC isolated from the lamina propria of Helicobacter-infected mice and analyzed innate and adaptive immune responses elicited by Helicobacter antigen (Ag)-pulsed DC. The presence of DC was elevated in the gastric lamina propria infiltrate of infected mice in comparison with controls. After treatment with Helicobacter felis Ag, DC were polarized to secrete interleukin-6 as the dominant cytokine. In the presence of DC and Helicobacter Ag, responder allogeneic T cells in culture exhibited limited cell division. We suggest that the response of DC and T cells to Helicobacter Ag is critical to the chronic persistence of Helicobacter-induced gastritis.
Collapse
Affiliation(s)
- Maureen L Drakes
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| | | | | |
Collapse
|
48
|
Anderson KM, Czinn SJ, Redline RW, Blanchard TG. Induction of CTLA-4-mediated anergy contributes to persistent colonization in the murine model of gastric Helicobacter pylori infection. THE JOURNAL OF IMMUNOLOGY 2006; 176:5306-13. [PMID: 16621997 DOI: 10.4049/jimmunol.176.9.5306] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori infection induces gastric inflammation but the host fails to generate protective immunity. Therefore, we evaluated the immunologic mechanisms that contribute to the failure of the T cells to promote active immunity to H. pylori in the mouse model of H. pylori infection. Spleen cells from infected C57BL/6 mice underwent significantly less proliferation and cytokine production than cells from immune mice upon in vitro stimulation with H. pylori lysate. Similar results were observed when stimulating with Ag-pulsed macrophages demonstrating that hyporesponsiveness was not due to a direct effect of H. pylori virulence factors on the T cells. Ag-specific hyporesponsiveness could be reversed by the addition of high-dose IL-2 but not by removal of CD4(+)CD25(+) T cells, indicating that hyporesponsiveness was due to anergy and not due to active suppression. Cells from infected mice lacked significant suppressor activity as shown by the failure to reduce the recall response of cells from immune mice in coculture at physiologic ratios. Direct blockade of CTLA-4 using anti-CTLA-4 Fabs or indirect blockade using CTLA-4 Ig plus anti-CD28 Ab resulted in significantly increased T cell activation in vitro. The importance of CTLA-4 in establishing anergy was confirmed in an in vivo model of H. pylori infection in which mice that received anti-CTLA-4 Fabs responded to H. pylori challenge with significantly greater inflammation and significantly reduced bacterial load. These results suggest that CTLA-4 engagement induces and maintains functional inactivation of H. pylori-specific T cells during H. pylori infection resulting in a reduced immune response.
Collapse
Affiliation(s)
- Kathleen M Anderson
- Department of Pathology, School of Medicine, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
49
|
McCracken VJ, Martin SM, Lorenz RG. The Helicobacter felis model of adoptive transfer gastritis. Immunol Res 2006; 33:183-94. [PMID: 16234583 DOI: 10.1385/ir:33:2:183] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The bacterium Helicobacter pylori is a major human pathogen and the principal cause of acute and chronic gastritis, gastric and duodenal ulcer disease, and gastric adenocarcinoma. Infection with gastric Helicobacter results in an early infiltration of neutrophils, monocytes, and natural killer cells, followed by an influx of T cells and plasma cells. Although the critical components of this gastric infiltrate that lead to disease are unclear, the Helicobacter felis-infected mouse and other mouse models of Helicobacter-associated gastritis have demonstrated the critical nature of adaptive immunity in the development of gastric epithelial pathology. To further investigate the role of adaptive immunity in this disease, adoptive transfer models of disease have also been utilized. These models clearly demonstrate that it is the host CD4+ T lymphocyte response that is crucial for the development of Helicobacter-associated gastric epithelial changes.
Collapse
Affiliation(s)
- Vance J McCracken
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA
| | | | | |
Collapse
|
50
|
Arnaboldi PM, Behr MJ, Metzger DW. Mucosal B cell deficiency in IgA-/- mice abrogates the development of allergic lung inflammation. THE JOURNAL OF IMMUNOLOGY 2005; 175:1276-85. [PMID: 16002732 DOI: 10.4049/jimmunol.175.2.1276] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have investigated the consequence of lack of IgA on host immunity using a murine model of allergic lung inflammation. Mice with a targeted disruption of the alpha-switch region and 5' H chain gene (IgA(-/-) mice), which lack total IgA, developed significantly reduced pulmonary inflammation with fewer inflammatory cells in lung tissue and bronchoalveolar lavage fluids, as well as reduced levels of total and IgG1 OVA-specific Abs and decreased IL-4 and IL-5 in bronchoalveolar lavage fluids compared with IgA(+/+) controls, following allergen sensitization and challenge. This defect was attributable to fewer B cells in the lungs of IgA(-/-) mice. Polymeric IgR-deficient (pIgR(-/-)) mice, which lack the receptor that transports polymeric IgA across the mucosal epithelium where it is cleaved to form secretory IgA, were used to assess the contribution of secretory IgA vs total IgA in the induction of allergic lung inflammation. pIgR(-/-) and pIgR(+/+) mice had comparable levels of inflammation, demonstrating that IgA bound to secretory component is not necessary for the development of allergic lung inflammation, although this does not necessarily rule out a role for transudated IgA in lung secretions because of "mucosal leakiness" in these mice. The results indicate that Ag-specific B cells are required at mucosal surfaces for induction of inflammation and likely function as major APCs in the lung for soluble protein Ags.
Collapse
Affiliation(s)
- Paul M Arnaboldi
- Center for Immunology and Microbial Disease, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | | | |
Collapse
|