1
|
Hirano KI, Hosokawa H, Yahata T, Ando K, Tanaka M, Imai J, Yazawa M, Ohtsuka M, Negishi N, Habu S, Sato T, Hozumi K. Dll1 Can Function as a Ligand of Notch1 and Notch2 in the Thymic Epithelium. Front Immunol 2022; 13:852427. [PMID: 35371023 PMCID: PMC8968733 DOI: 10.3389/fimmu.2022.852427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/22/2022] [Indexed: 11/30/2022] Open
Abstract
T-cell development in the thymus is dependent on Notch signaling induced by the interaction of Notch1, present on immigrant cells, with a Notch ligand, delta-like (Dll) 4, on the thymic epithelial cells. Phylogenetic analysis characterizing the properties of the Dll4 molecule suggests that Dll4 emerged from the common ancestor of lobe- and ray-finned fishes and diverged into bony fishes and terrestrial organisms, including mammals. The thymus evolved in cartilaginous fishes before Dll4, suggesting that T-cell development in cartilaginous fishes is dependent on Dll1 instead of Dll4. In this study, we compared the function of both Dll molecules in the thymic epithelium using Foxn1-cre and Dll4-floxed mice with conditional transgenic alleles in which the Dll1 or Dll4 gene is transcribed after the cre-mediated excision of the stop codon. The expression of Dll1 in the thymic epithelium completely restored the defect in the Dll4-deficient condition, suggesting that Dll1 can trigger Notch signaling that is indispensable for T-cell development in the thymus. Moreover, using bone marrow chimeras with Notch1- or Notch2-deficient hematopoietic cells, we showed that Dll1 is able to activate Notch signaling, which is sufficient to induce T-cell development, with both the receptors, in contrast to Dll4, which works only with Notch1, in the thymic environment. These results strongly support the hypothesis that Dll1 regulates T-cell development via Notch1 and/or Notch2 in the thymus of cartilaginous fishes and that Dll4 has replaced Dll1 in inducing thymic Notch signaling via Notch1 during evolution.
Collapse
Affiliation(s)
- Ken-ichi Hirano
- Department of Immunology, Tokai University School of Medicine, Isehara, Japan
| | - Hiroyuki Hosokawa
- Department of Immunology, Tokai University School of Medicine, Isehara, Japan
- Institute of Medical Sciences, Tokai University, Isehara, Japan
| | - Takashi Yahata
- Institute of Medical Sciences, Tokai University, Isehara, Japan
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Kiyoshi Ando
- Institute of Medical Sciences, Tokai University, Isehara, Japan
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Masayuki Tanaka
- Support Center of Medical Research and Education, Tokai University School of Medicine, Isehara, Japan
| | - Jin Imai
- Divison of Gastroenterology and Hepatology, Tokai University School of Medicine, Isehara, Japan
| | - Masaki Yazawa
- Department of Immunology, Tokai University School of Medicine, Isehara, Japan
| | - Masato Ohtsuka
- Institute of Medical Sciences, Tokai University, Isehara, Japan
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Naoko Negishi
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Sonoko Habu
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takehito Sato
- Department of Immunology, Tokai University School of Medicine, Isehara, Japan
| | - Katsuto Hozumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Japan
- *Correspondence: Katsuto Hozumi,
| |
Collapse
|
2
|
Zook EC, Zhang S, Gerstein RM, Witte PL, Le PT. Enhancing T lineage production in aged mice: a novel function of Foxn1 in the bone marrow niche. THE JOURNAL OF IMMUNOLOGY 2013; 191:5583-93. [PMID: 24184560 DOI: 10.4049/jimmunol.1202278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Foxn1 is essential for thymic organogenesis and T lymphopoiesis. Whereas reduced Foxn1 expression results in a decline in T lymphopoiesis, overexpression of Foxn1 in the thymus of a transgenic mouse model (Foxn1Tg) attenuates the age-associated decline in T lymphopoiesis. T lymphopoiesis begins with early T cell progenitors (ETP), derived from multipotent progenitors (MPP) in the bone marrow (BM). A decline in MPP and ETP numbers with age is thought to contribute to reduced T lymphopoiesis. Previously, we showed that reduced ETP number with age is attenuated in Foxn1 transgenic (Tg); whether the effect is initiated in the BM with MPP is not known. In this study, we report that Foxn1 is expressed in wild-type BM and overexpressed in Foxn1Tg. With age, the number of MPP in Foxn1Tg was not reduced, and Foxn1Tg also have a larger pool of hematopoietic stem cells. Furthermore, the Foxn1Tg BM is more efficient in generating MPP. In contrast to MPP, common lymphoid progenitors and B lineage cell numbers were significantly lower in both young and aged Foxn1Tg compared with wild type. We identified a novel population of lineage(neg/low), CD45(pos) EpCAM(pos), SCA1(pos), CD117(neg), CD138(neg), MHCII(neg) cells as Foxn1-expressing BM cells that also express Delta-like 4. Thus, Foxn1 affects both T lymphopoiesis and hematopoiesis, and the Foxn1 BM niche may function in skewing MPP development toward T lineage progenitors.
Collapse
Affiliation(s)
- Erin C Zook
- Cell Biology, Neurobiology, and Anatomy Graduate Program, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | | | | | | | | |
Collapse
|
3
|
Sato T, Chiba T, Ohno SI, Sato C, Sugoh T, Miyashita K, Akatsuka H, Hozumi K, Okada Y, Iida Y, Akatsuka A, Agata Y, Chiba M, Kohu K, Satake M, Tanabe H, Saya H, Habu S. Reciprocal Control of G1-Phase Progression Is Required for Th-POK/Runx3–Mediated CD4/8 Thymocyte Cell Fate Decision. THE JOURNAL OF IMMUNOLOGY 2012; 189:4426-36. [DOI: 10.4049/jimmunol.1102748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
4
|
The thymic epithelial microRNA network elevates the threshold for infection-associated thymic involution via miR-29a mediated suppression of the IFN-α receptor. Nat Immunol 2011; 13:181-7. [PMID: 22179202 DOI: 10.1038/ni.2193] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 11/21/2011] [Indexed: 11/08/2022]
Abstract
Thymic output is a dynamic process, with high activity at birth punctuated by transient periods of involution during infection. Interferon-α (IFN-α) is a critical molecular mediator of pathogen-induced thymic involution, yet despite the importance of thymic involution, relatively little is known about the molecular integrators that establish sensitivity. Here we found that the microRNA network dependent on the endoribonuclease Dicer, and specifically microRNA miR-29a, was critical for diminishing the sensitivity of the thymic epithelium to simulated infection signals, protecting the thymus against inappropriate involution. In the absence of Dicer or the miR-29a cluster in the thymic epithelium, expression of the IFN-α receptor by the thymic epithelium was higher, which allowed suboptimal signals to trigger rapid loss of thymic cellularity.
Collapse
|
5
|
Mohtashami M, Shah DK, Nakase H, Kianizad K, Petrie HT, Zúñiga-Pflücker JC. Direct comparison of Dll1- and Dll4-mediated Notch activation levels shows differential lymphomyeloid lineage commitment outcomes. THE JOURNAL OF IMMUNOLOGY 2010; 185:867-76. [PMID: 20548034 DOI: 10.4049/jimmunol.1000782] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the thymus, Notch signaling is essential for T lymphopoiesis, with Delta-like (Dll)4 uniquely involved in this process. However, using cocultures, either Dll4 or Dll1 were shown to support T lymphopoiesis. To address which Dll is more effective at inducing hematopoietic progenitor cells to give rise to T lineage cells in vitro, we generated OP9 cells expressing a series of incrementally discrete and equivalent levels of Dll1 or Dll4. In keeping with previous findings, OP9 cells expressing high levels of either Dll1 or Dll4 gave rise to T lineage cells with similar efficacy, and prevented the differentiation of B and myeloid-lineage cells. However, at limiting levels, Dll4 maintained its ability to inhibit B lineage choice and induce T lineage commitment and differentiation at lower levels than Dll1. This manifest property of Dll4 is evident despite lower levels of steady-state surface expression than Dll1 on OP9 cells. The heightened effectiveness of Dll4 over Dll1 also corresponded to the induction of Notch target genes, and inhibition of B and myeloid-specific transcription factors. Furthermore, we show that OP9 cells expressing levels of Dll4 equivalent to those present in thymic epithelial cells, as expected, gave rise to T lineage cells, but were also permissive for the differentiation of myeloid cells; whereas, still inhibiting B lymphopoiesis. Our findings show that Dll4 expressed at physiological levels on OP9 cells is functionally distinct from similarly expressed levels of Dll1, illustrating the unique properties of Dll4 in supporting the combined T lineage and specific myeloid-lineage outcomes that underpin its function within the thymus.
Collapse
Affiliation(s)
- Mahmood Mohtashami
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
6
|
Sato T, Ohno SI, Hayashi T, Sato C, Kohu K, Satake M, Habu S. Dual Functions of Runx Proteins for Reactivating CD8 and Silencing CD4 at the Commitment Process into CD8 Thymocytes. Immunity 2005; 22:317-28. [PMID: 15780989 DOI: 10.1016/j.immuni.2005.01.012] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 01/24/2005] [Accepted: 01/26/2005] [Indexed: 11/19/2022]
Abstract
To understand how CD8 expression is regulated during the transition process from CD4+8+ (CD4 and CD8 double positive, DP) to CD4-8+ (CD8 single positive, CD8SP) cells in the thymus, the involvement of Runx proteins in the alteration of chromatin configuration was investigated. Using the chromatin immunoprecipitation assay, we first demonstrated that Runx proteins bind to the stage-specific CD8 enhancer, as well as the CD4 silencer, in CD8SP thymocytes. Among Runx family members, Runx3 expression was initiated in DP thymocytes receiving a positive selection signal and increased in concert with differentiation to the CD8SP stage. Furthermore, reactivation of the CD8 gene, as well as CD4 silencing, was suppressed in positively selected thymocytes of Runx dominant-negative transgenic mice. These results suggest that Runx proteins, especially Runx3, are involved in lineage specification of CD8 T cells and provide important information for understanding the mechanism for the mutually exclusive expression of coreceptors in mature thymocytes.
Collapse
Affiliation(s)
- Takehito Sato
- Department of Immunology, Tokai University School of Medicine, Boseidai, Isehara, Kanagawa 259-1193, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Marshall D, Bagley J, Le P, Hogquist K, Cyr S, Von Schild E, Pykett M, Rosenzweig M. T cell generation including positive and negative selection ex vivo in a three-dimensional matrix. ACTA ACUST UNITED AC 2004; 12:565-74. [PMID: 14594513 DOI: 10.1089/152581603322448277] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The prevailing paradigm is that T cell differentiation is dependent on interactions between stem cells and neuroectodermal thymic cells in the context of a three-dimensional environment. We evaluated the utility of a three-dimensional matrix, the Cytomatrix, to facilitate T cell differentiation. Thymus stroma grown on the Cytomatrix and seeded with hematopoietic progenitors was observed to support the development of both CD4(+) and CD8(+) T cells. Murine transgenic models used to address T cell selection demonstrated that both positive and negative selection was maintained in the context of MHC Class I. These data demonstrate that this in vitro system using neuroectoderm tissue is capable of the efficient production of T cells from hematopoietic progenitors and presents the possibility of generating and adoptively transferring immune cells to patients.
Collapse
|
8
|
Sato T, Ito R, Nunomura S, Ohno SI, Hayashi K, Satake M, Habu S. Requirement of transcription factor AML1 in proliferation of developing thymocytes. Immunol Lett 2003; 89:39-46. [PMID: 12946863 DOI: 10.1016/s0165-2478(03)00103-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although the transcription factor AML1/Runx1 is known to be essential for definitive hematopoiesis, its role in T cell differentiation is not well understood. In this study, we investigated the functions of AML1 in the early stage of thymocyte differentiation. For this, we crossed AML1 dominant interfering form (Runt)-transgenic mice with TCR-transgenic mice, and demonstrated the decrease of CD4+8+ (DP) thymocyte cell number although their proportion was not reduced. Reaggregation culture system for thymocytes of (RuntxTCR) double transgenic mice, in which the rate of de novo transition from DN cells to the DP stage can be estimated, showed that the cell division during the DN-to-DP transition is impaired without significant cell death. These results indicate that AML1 is involved in thymocyte differentiation by controlling cell proliferation.
Collapse
Affiliation(s)
- Takehito Sato
- Department of Immunology, Tokai University School of Medicine, Boseidai, Isehara, Kanagawa 259-1193, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
A functional immune system requires the selection of T lymphocytes expressing receptors that are major histocompatibility complex restricted but tolerant to self-antigens. This selection occurs predominantly in the thymus, where lymphocyte precursors first assemble a surface receptor. In this review we summarize the current state of the field regarding the natural ligands and molecular factors required for positive and negative selection and discuss a model for how these disparate outcomes can be signaled via the same receptor. We also discuss emerging data on the selection of regulatory T cells. Such cells require a high-affinity interaction with self-antigens, yet differentiate into regulatory cells instead of being eliminated.
Collapse
Affiliation(s)
- Timothy K Starr
- Center for Immunology and the Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis 55455, USA.
| | | | | |
Collapse
|