1
|
Al-Allaf FA, Abduljaleel Z, Athar M, Taher MM, Khan W, Mehmet H, Colakogullari M, Apostolidou S, Bigger B, Waddington S, Coutelle C, Themis M, Al-Ahdal MN, Al-Mohanna FA, Al-Hassnan ZN, Bouazzaoui A. Modifying inter-cistronic sequence significantly enhances IRES dependent second gene expression in bicistronic vector: Construction of optimised cassette for gene therapy of familial hypercholesterolemia. Noncoding RNA Res 2018; 4:1-14. [PMID: 30891532 PMCID: PMC6404380 DOI: 10.1016/j.ncrna.2018.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 01/23/2023] Open
Abstract
Internal ribosome entry site (IRES) sequences have become a valuable tool in the construction of gene transfer and therapeutic vectors for multi-cistronic gene expression from a single mRNA transcript. The optimal conditions for effective use of this sequence to construct a functional expression vector are not precisely defined but it is generally assumed that the internal ribosome entry site dependent expression of the second gene in such as cassette is less efficient than the cap-dependent expression of the first gene. Mainly tailoring inter-cistronic sequence significantly enhances IRES dependent second gene expression in bicistronic vector further in construction of optimised cassette for gene therapy of familial hypercholesterolemia. We tailored the size of the inter-cistronic spacer sequence at the 5′ region of the internal ribosome entry site sequence using sequential deletions and demonstrated that the expression of the 3′ gene can be significantly increased to similar levels as the cap-dependent expression of the 5’ gene. Maximum expression efficiency of the downstream gene was obtained when the spacer is composed of 18–141 base pairs. In this case a single mRNA transcriptional unit containing both the first and the second Cistron was detected. Whilst constructs with spacer sequences of 216 bp or longer generate a single transcriptional unit containing only the first Cistron. This suggests that long spacers may affect transcription termination. When the spacer is 188 bp, both transcripts were produced simultaneously in most transfected cells, while a fraction of them expressed only the first but not the second gene. Expression analyses of vectors containing optimised cassettes clearly confirm that efficiency of gene transfer and biological activity of the expressed transgenic proteins in the transduced cells can be achieved. Furthermore, Computational analysis was carried out by molecular dynamics (MD) simulation to determine the most emerges as viable containing specific binding site and bridging of 5′ and 3′ ends involving direct RNA-RNA contacts and RNA-protein interactions. These results provide a mechanistic basis for translation stimulation and RNA resembling for the synergistic stimulation of cap-dependent translation.
Collapse
Affiliation(s)
- Faisal A Al-Allaf
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah, 21955, Saudi Arabia.,Science and Technology Unit, Umm Al-Qura University, P.O. Box 715, Makkah, 21955, Saudi Arabia.,Molecular Diagnostics Unit, Department of Laboratory and Blood Bank, King Abdullah Medical City, Makkah, 21955, Saudi Arabia.,Gene Therapy Research Group, Department of Molecular and Cell Medicine, Faculty of Medicine, Imperial College London, South Kensington, London, SW7 2AZ, UK.,Institute of Reproductive and Developmental Biology, Division of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Zainularifeen Abduljaleel
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah, 21955, Saudi Arabia.,Science and Technology Unit, Umm Al-Qura University, P.O. Box 715, Makkah, 21955, Saudi Arabia
| | - Mohammad Athar
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah, 21955, Saudi Arabia.,Science and Technology Unit, Umm Al-Qura University, P.O. Box 715, Makkah, 21955, Saudi Arabia
| | - Mohiuddin M Taher
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah, 21955, Saudi Arabia.,Science and Technology Unit, Umm Al-Qura University, P.O. Box 715, Makkah, 21955, Saudi Arabia
| | - Wajahatullah Khan
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, PO Box 3124, Riyadh, 11426, Saudi Arabia
| | - Huseyin Mehmet
- Institute of Reproductive and Developmental Biology, Division of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Mukaddes Colakogullari
- Institute of Reproductive and Developmental Biology, Division of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Sophia Apostolidou
- Institute of Reproductive and Developmental Biology, Division of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Brian Bigger
- Gene Therapy Research Group, Department of Molecular and Cell Medicine, Faculty of Medicine, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Simon Waddington
- Gene Therapy Research Group, Department of Molecular and Cell Medicine, Faculty of Medicine, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Charles Coutelle
- Gene Therapy Research Group, Department of Molecular and Cell Medicine, Faculty of Medicine, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Michael Themis
- Gene Therapy Research Group, Department of Molecular and Cell Medicine, Faculty of Medicine, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Mohammed N Al-Ahdal
- Department of Infection and Immunity, King Faisal Specialist Hospital & Research Center, Riyadh, 11211, Saudi Arabia
| | - Futwan A Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Zuhair N Al-Hassnan
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Abdellatif Bouazzaoui
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah, 21955, Saudi Arabia.,Science and Technology Unit, Umm Al-Qura University, P.O. Box 715, Makkah, 21955, Saudi Arabia
| |
Collapse
|
2
|
Ouadani H, Ben-Mustapha I, Ben-ali M, Ben-khemis L, Larguèche B, Boussoffara R, Maalej S, Fetni I, Hassayoun S, Mahfoudh A, Mellouli F, Yalaoui S, Masmoudi H, Bejaoui M, Barbouche MR. Novel and recurrent AID mutations underlie prevalent autosomal recessive form of HIGM in consanguineous patients. Immunogenetics 2015; 68:19-28. [PMID: 26545377 DOI: 10.1007/s00251-015-0878-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
Immunoglobulin class switch recombination deficiencies (Ig-CSR-D) are characterized by normal or elevated serum IgM level and absence of IgG, IgA, and IgE. Most reported cases are due to X-linked CD40L deficiency. Activation-induced cytidine deaminase deficiency is the most frequent autosomal recessive form, whereas CD40 deficiency is more rare. Herein, we present the first North African study on hyper IgM (HIGM) syndrome including 16 Tunisian patients. Phenotypic and genetic studies allowed us to determine their molecular basis. Three CD40LG mutations have been identified including two novels (c.348_351dup and c.782_*2del) and one already reported mutation (g.6182G>A). No mutation has been found in another patient despite the lack of CD40L expression. Interestingly, three AICDA mutations have been identified in 11 patients. Two mutations were novel (c.91T>C and c.389A>C found in one and five patients respectively), and one previously reported splicing mutation (c.156+1T>G) was found in five patients. Only one CD40-deficient patient, bearing a novel mutation (c.109T>G), has been identified. Thus, unlike previous reports, AID deficiency is the most frequent underlying molecular basis (68%) of Ig-CSR-D in Tunisian patients. This finding and the presence of specific recurrent mutations are probably due to the critical role played by inbreeding in North African populations.
Collapse
Affiliation(s)
- Hanen Ouadani
- Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis and University Tunis El Manar, Tunis, Tunisia
| | - Imen Ben-Mustapha
- Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis and University Tunis El Manar, Tunis, Tunisia
| | - Meriem Ben-ali
- Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis and University Tunis El Manar, Tunis, Tunisia
| | - Leila Ben-khemis
- Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis and University Tunis El Manar, Tunis, Tunisia
| | - Beya Larguèche
- Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis and University Tunis El Manar, Tunis, Tunisia
| | | | - Sonia Maalej
- Department of Pneumology "D", Abderahman Mami Hospital, Ariana, Tunisia
| | - Ilhem Fetni
- Department of Pediatrics, Mongi Slim Hospital, Marsa, Tunisia
| | | | | | - Fethi Mellouli
- Department of Pediatrics, Bone Marrow Transplantation Center, Tunis, Tunisia
| | - Sadok Yalaoui
- Laboratory of Biology, Abderahman Mami Hospital, Ariana, Tunisia
| | - Hatem Masmoudi
- Laboratory of Immunology, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Mohamed Bejaoui
- Department of Pediatrics, Bone Marrow Transplantation Center, Tunis, Tunisia
| | - Mohamed-Ridha Barbouche
- Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis and University Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
3
|
Generation of mice with conditional ablation of the Cd40lg gene: new insights on the role of CD40L. Transgenic Res 2013; 23:53-66. [PMID: 24030045 DOI: 10.1007/s11248-013-9743-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
Abstract
CD40 ligand (CD40L) acts as an immune modulator in activated T cells, and mutations in the extracellular domain are associated to X-linked hyper IgM syndrome. A role for platelet CD40L in mediating thrombotic and inflammatory processes in atherosclerosis has also been reported. Using the Cre/loxP recombination technology we generated four knockout lines of mice with deletion of the Cd40lg gene restricted to the hematopoietic system. Mouse lines with expression of Cre recombinase driven by the Tie2, Vav1, or CD4 promoters showed in vivo ablation of CD40L in leukocytes and platelets. In contrast, in mice with Cre expression driven by the megakaryocyte lineage-restricted Pf4 promoter, abolition of CD40L expression was observed in megakaryocytes cultured in vitro, but not in circulating platelets. Characterization of these animals revealed reduced in vivo thrombogenesis and defective activation of washed CD40L-deficient platelets, suggesting that membrane-bound CD40L is involved in the control of haemostasis acting as a platelet co-activator. In addition, we report the practically absence of CD40L in mouse and human endothelial cells, as well as the detection of an exon 3-deleted CD40L transcript in both platelets and leukocytes of mouse and human origin. Finally, compared with their corresponding littermate floxed controls, Cre+ mice carrying CD40-deficient leukocytes did not exhibit increased IgM levels, and reduction of IgA and IgG levels was statistically significant only in Tie2-Cre+ mice, suggesting that expression of CD40L in an earlier developmental step may be determinant in the regulation of the class switch recombination process.
Collapse
|
8
|
Kletzel M, Jacobsohn D, Duerst R. Pharmacokinetics of a Test Dose of Intravenous Busulfan Guide Dose Modifications to Achieve an Optimal Area Under the Curve of a Single Daily Dose of Intravenous Busulfan in Children Undergoing a Reduced-Intensity Conditioning Regimen with Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2006; 12:472-9. [PMID: 16545731 DOI: 10.1016/j.bbmt.2005.12.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Accepted: 12/07/2005] [Indexed: 10/24/2022]
Abstract
We studied 30 pediatric patients with malignant (n = 16) or nonmalignant (n = 14) conditions. The preparative regimen consisted of fludarabine, intravenous (IV) busulfan (Bu) for 2 daily doses, and antithymocyte globulin before stem cell transplantation. A test dose of IV Bu (0.8 mg/kg), anticipated to target an area under the concentration-time curve (AUC) of 800 to 1200 micromol.min, was followed later by 2 daily doses adjusted according to the pharmacokinetics (PK) to target an AUC of 3200 to 4800 micromol.min. The median test dose AUC was 953 micromol.min (range, 439-1315 micromol.min). The median AUC of single daily doses was 3798 micromol.min (range, 1511-7254 micromol.min). PK-based dose modification was required in 20 patients: 12 were adjusted to a higher dose, and in 8 the dose was decreased. Nausea and vomiting were noted in 15 patients. No patient developed hepatic veno-occlusive disease or seizures. Full donor chimerism was attained in 20 patients (mean of 24.5 days), 3 achieved partial chimerism, 5 did not engraft, and in 2 it is too early to assess chimerism. Acute graft-versus-host disease developed in 11 patients, grades I to II developed in 10 patients, and grade III developed in 1. Four patients died of infection and 5 of progressive disease. Thus, PK of a test dose of IV Bu provided information to adjust subsequent daily doses of IV Bu: this resulted in a regimen that was feasible, safe, and convenient for administration to children.
Collapse
Affiliation(s)
- Morris Kletzel
- Stem Cell Transplant Program, Children's Memorial Hospital, Feinberg School of Medicine, Department of Pediatrics, Northwestern University, Chicago, IL 60614, USA.
| | | | | |
Collapse
|
9
|
Jacobsohn DA, Emerick KM, Scholl P, Melin-Aldana H, O'Gorman M, Duerst R, Kletzel M. Nonmyeloablative hematopoietic stem cell transplant for X-linked hyper-immunoglobulin m syndrome with cholangiopathy. Pediatrics 2004; 113:e122-7. [PMID: 14754981 DOI: 10.1542/peds.113.2.e122] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE X-linked hyper-immunoglobulin M (X-HIM) syndrome is a rare genetic immunodeficiency syndrome caused by mutations in the gene encoding CD40 ligand (CD40L, CD154). Allogeneic hematopoietic stem cell transplantation (HSCT) offers the prospect of immune reconstitution in X-HIM syndrome. Standard HSCT using high-dose chemoradiotherapy can be followed by serious hepatic problems, including veno-occlusive disease, graft-versus-host disease, and/or drug-induced hepatotoxicity. In patients whose liver function is compromised before HSCT, such as in X-HIM syndrome caused by cholangiopathy and hepatitis related to opportunistic infections, there is a higher likelihood of hepatotoxicity. We explored nonmyeloablative HSCT in 2 patients with X-HIM syndrome. Nonmyeloablative HSCT without liver transplant for X-HIM syndrome, to our knowledge, has not been described previously. METHODS Two children with X-HIM syndrome and persistent infections had documented cholangiopathy on liver biopsy. Both children underwent nonmyeloablative HSCT from HLA-matched siblings with fludarabine, busulfan, and anti-thymocyte globulin as their preparative regimen. Graft-versus-host disease prophylaxis consisted of cyclosporine. RESULTS Both children are >2 years after their HSCT. One remains a mixed chimera, and the other shows 100% donor chimerism. Both children are now free of infections and are no longer dependent on intravenous gammaglobulin. Both show response to immunizations. Both have had resolution of their cholangiopathy. CONCLUSIONS Nonmyeloablative HSCT from HLA-matched siblings can offer immune reconstitution without hepatotoxicity in patients with X-HIM syndrome and preexisting cholangiopathy. Even with stable mixed chimerism after allogeneic HSCT, patients may be able to enjoy a normal phenotype. Nonmyeloablative HSCT warrants additional study in X-HIM syndrome.
Collapse
Affiliation(s)
- David A Jacobsohn
- Department of Pediatrics, Division of Hematology/Oncology/Transplant, Northwestern University, The Feinberg School of Medicine, Chicago, Illinois, USA.
| | | | | | | | | | | | | |
Collapse
|