1
|
Sharifinejad N, Jamee M, Zaki-Dizaji M, Lo B, Shaghaghi M, Mohammadi H, Jadidi-Niaragh F, Shaghaghi S, Yazdani R, Abolhassani H, Aghamohammadi A, Azizi G. Clinical, Immunological, and Genetic Features in 49 Patients With ZAP-70 Deficiency: A Systematic Review. Front Immunol 2020; 11:831. [PMID: 32431715 PMCID: PMC7214800 DOI: 10.3389/fimmu.2020.00831] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Zeta-Chain Associated Protein Kinase 70 kDa (ZAP-70) deficiency is a rare combined immunodeficiency (CID) caused by recessive homozygous/compound heterozygous loss-of-function mutations in the ZAP70 gene. Patients with ZAP-70 deficiency present with a variety of clinical manifestations, particularly recurrent respiratory infections and cutaneous involvements. Therefore, a systematic review of ZAP-70 deficiency is helpful to achieve a comprehensive view of this disease. Methods: We searched PubMed, Web of Science, and Scopus databases for all reported ZAP-70 deficient patients and screened against the described eligibility criteria. A total of 49 ZAP-70 deficient patients were identified from 33 articles. For all patients, demographic, clinical, immunologic, and molecular data were collected. Results: ZAP-70 deficient patients have been reported in the literature with a broad spectrum of clinical manifestations including recurrent respiratory infections (81.8%), cutaneous involvement (57.9%), lymphoproliferation (32.4%), autoimmunity (19.4%), enteropathy (18.4%), and increased risk of malignancies (8.1%). The predominant immunologic phenotype was low CD8+ T cell counts (97.9%). Immunologic profiling showed defective antibody production (57%) and decreased lymphocyte responses to mitogenic stimuli such as phytohemagglutinin (PHA) (95%). Mutations of the ZAP70 gene were located throughout the gene, and there was no mutational hotspot. However, most of the mutations were located in the kinase domain. Hematopoietic stem cell transplantation (HSCT) was applied as the major curative treatment in 25 (51%) of the patients, 18 patients survived transplantation, while two patients died and three required a second transplant in order to achieve full remission. Conclusion: Newborns with consanguineous parents, positive family history of CID, and low CD8+ T cell counts should be considered for ZAP-70 deficiency screening, since early diagnosis and treatment with HSCT can lead to a more favorable outcome. Based on the current evidence, there is no genotype-phenotype correlation in ZAP-70 deficient patients.
Collapse
Affiliation(s)
- Niusha Sharifinejad
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Mahnaz Jamee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Bernice Lo
- Sidra Medicine, Division of Translational Medicine, Research Branch, Doha, Qatar
| | - Mohammadreza Shaghaghi
- Johns Hopkins Hospital, Baltimore, MD, United States.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Shaghaghi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
2
|
Chinn IK, Sanders RP, Stray-Pedersen A, Coban-Akdemir ZH, Kim VHD, Dadi H, Roifman CM, Quigg T, Lupski JR, Orange JS, Hanson IC. Novel Combined Immune Deficiency and Radiation Sensitivity Blended Phenotype in an Adult with Biallelic Variations in ZAP70 and RNF168. Front Immunol 2017; 8:576. [PMID: 28603521 PMCID: PMC5445153 DOI: 10.3389/fimmu.2017.00576] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/01/2017] [Indexed: 12/11/2022] Open
Abstract
With the advent of high-throughput genomic sequencing techniques, novel genetic etiologies are being uncovered for previously unexplained Mendelian phenotypes, and the underlying genetic architecture of disease is being unraveled. Although most of these “mendelizing” disease traits represent phenotypes caused by single-gene defects, a percentage of patients have blended phenotypes caused by pathogenic variants in multiple genes. We describe an adult patient with susceptibility to bacterial, herpesviral, and fungal infections. Immunologic defects included CD8+ T cell lymphopenia, decreased T cell proliferative responses to mitogens, hypogammaglobulinemia, and radiation sensitivity. Whole-exome sequencing revealed compound heterozygous variants in ZAP70. Biallelic mutations in ZAP70 are known to produce a spectrum of immune deficiency that includes the T cell abnormalities observed in this patient. Analyses for variants in genes associated with radiation sensitivity identified the presence of a homozygous RNF168 variant of unknown significance. RNF168 deficiency causes radiosensitivity, immunodeficiency, dysmorphic features, and learning difficulties syndrome and may account for the radiation sensitivity. Thus, the patient was found to have a novel blended phenotype associated with multilocus genomic variation: i.e., separate and distinct genetic defects. These findings further illustrate the clinical utility of applying genomic testing in patients with primary immunodeficiency diseases.
Collapse
Affiliation(s)
- Ivan K Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Section of Immunology, Allergy, and Rheumatology, Texas Children's Hospital, Houston, TX, USA.,Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, USA
| | - Robert P Sanders
- Texas Transplant Institute, Methodist Hospital, San Antonio, TX, USA
| | - Asbjørg Stray-Pedersen
- Norwegian National Unit for Newborn Screening, Department of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston, TX, USA
| | - Zeynep H Coban-Akdemir
- Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Vy Hong-Diep Kim
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Harjit Dadi
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.,Canadian Centre for Primary Immunodeficiency, The Jeffrey Model Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Chaim M Roifman
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.,Canadian Centre for Primary Immunodeficiency, The Jeffrey Model Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Troy Quigg
- Texas Transplant Institute, Methodist Hospital, San Antonio, TX, USA
| | - James R Lupski
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Jordan S Orange
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Section of Immunology, Allergy, and Rheumatology, Texas Children's Hospital, Houston, TX, USA.,Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, USA
| | - I Celine Hanson
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Section of Immunology, Allergy, and Rheumatology, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
3
|
Morpholino-based correction of hypomorphic ZAP70 mutation in an adult with combined immunodeficiency. J Allergy Clin Immunol 2017; 139:1688-1692.e10. [PMID: 28216435 PMCID: PMC7126384 DOI: 10.1016/j.jaci.2017.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 01/23/2017] [Accepted: 02/01/2017] [Indexed: 12/02/2022]
|
4
|
Cuvelier GDE, Rubin TS, Wall DA, Schroeder ML. Long-Term Outcomes of Hematopoietic Stem Cell Transplantation for ZAP70 Deficiency. J Clin Immunol 2016; 36:713-24. [PMID: 27438785 DOI: 10.1007/s10875-016-0316-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/07/2016] [Indexed: 12/23/2022]
Abstract
ZAP70 deficiency is a rare T + B + NK+ combined immunodeficiency with limited outcome data to help guide decisions around hematopoietic stem cell transplant (HSCT). We sought to understand the long-term clinical and immunologic outcomes of both conditioned and unconditioned HSCT for ZAP70 deficiency following transplant from a variety of graft sources. We performed a retrospective, single center review of all cases of HSCT for genetically confirmed ZAP70 deficiency since 1992. At a median of 13.5-year post-HSCT, 8/8 (100 %) patients are alive. Three received unconditioned bone marrow transplants from human leukocyte antigen (HLA)-matched siblings and achieved stable mixed donor-recipient T cell chimerism but low B cell (4-9 %) and absent to near-absent myeloid donor engraftment. Despite this, all three have normal immunoglobulin levels, have developed specific protective antibody responses to post-HSCT vaccinations, and have discontinued immunoglobulin replacement. Five patients received myeloablative conditioning (three T cell-depleted haploidentical and two unrelated cord blood) and have full donor chimerism for T and B cells and myeloid lineages. One patient experienced primary graft failure after serotherapy only. CD8 T cell count is normal in 5/8, high in 1/8, and low in 2/8. Infectious complications in 5/5 and autoimmune thrombocytopenia in one patient resolved post-HSCT. Mitogen proliferation to phytohemagglutinin was normal after HSCT in 8/8 patients. In total, seven have discontinued immunoglobulin replacement. In conclusion, HSCT using a variety of graft sources and approaches, including unconditioned matched sibling donor transplant, is a life-saving therapy for ZAP70 deficiency, providing excellent long-term immune function and resolution of clinical problems.
Collapse
Affiliation(s)
- Geoffrey D E Cuvelier
- Manitoba Blood and Marrow Transplant Program, Division of Pediatric Hematology-Oncology, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, Canada. .,Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada. .,CancerCare Manitoba, ON2011-675 McDermot Avenue, Winnipeg, Manitoba, R3E 0V9, Canada.
| | - Tamar S Rubin
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada.,Division of Allergy and Clinical Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Donna A Wall
- Manitoba Blood and Marrow Transplant Program, Division of Pediatric Hematology-Oncology, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, Canada.,Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Marlis L Schroeder
- Manitoba Blood and Marrow Transplant Program, Division of Pediatric Hematology-Oncology, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, Canada.,Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
5
|
Fischer A, Picard C, Chemin K, Dogniaux S, le Deist F, Hivroz C. ZAP70: a master regulator of adaptive immunity. Semin Immunopathol 2010; 32:107-16. [DOI: 10.1007/s00281-010-0196-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 12/29/2009] [Indexed: 10/24/2022]
|
6
|
Turul T, Tezcan I, Artac H, de Bruin-Versteeg S, Barendregt BH, Reisli I, Sanal O, van Dongen JJM, van der Burg M. Clinical heterogeneity can hamper the diagnosis of patients with ZAP70 deficiency. Eur J Pediatr 2009; 168:87-93. [PMID: 18509675 DOI: 10.1007/s00431-008-0718-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 03/10/2008] [Indexed: 02/06/2023]
Abstract
One of the severe combined immunodeficiencies (SCIDs), which is caused by a genetic defect in the signal transduction pathways involved in T-cell activation, is the ZAP70 deficiency. Mutations in ZAP70 lead to both abnormal thymic development and defective T-cell receptor (TCR) signaling of peripheral T-cells. In contrast to the lymphopenia in most SCID patients, ZAP70-deficient patients have lymphocytosis, despite the selective absence of CD8+ T-cells. The clinical presentation is usually before 2 years of age with typical findings of SCID. Here, we present three new ZAP70-deficient patients who vary in their clinical presentation. One of the ZAP70-deficient patients presented as a classical SCID, the second patient presented as a healthy looking wheezy infant, whereas the third patient came to clinical attention for the eczematous skin lesions simulating atopic dermatitis with eosinophilia and elevated immunoglobulin E (IgE), similar to the Omenn syndrome. This study illustrates that awareness of the clinical heterogeneity of ZAP70 deficiency is of utmost importance for making a fast and accurate diagnosis, which will contribute to the improvement of the adequate treatment of this severe immunodeficiency.
Collapse
Affiliation(s)
- Tuba Turul
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
O'gorman MRG. Role of flow cytometry in the diagnosis and monitoring of primary immunodeficiency disease. Clin Lab Med 2007; 27:591-626, vii. [PMID: 17658409 DOI: 10.1016/j.cll.2007.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This presentation is organized according to the recent classification of primary immunodeficiencies published by the International Union of Immunological Societies Primary Immunodeficiency meeting. The diseases have been classified into eight groups. After each list, individual diseases that are amenable to assessment by flow cytometry are reviewed with a brief clinical description and a discussion of the appropriate flow cytometry application.
Collapse
|
8
|
Weiler CR, Bankers-Fulbright JL. Common variable immunodeficiency: test indications and interpretations. Mayo Clin Proc 2005; 80:1187-200. [PMID: 16178499 DOI: 10.4065/80.9.1187] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Common variable immunodeficiency (CVID) is a primary immunodeficiency disorder that can present with multiple phenotypes, all of which are characterized by hypogammaglobulinemia, in a person at any age. A specific genetic defect that accounts for all CVID phenotypes has not been identified, and it is likely that several distinct genetic disorders with similar clinical presentations are responsible for the observed variation. In this review, we summarize the known genetic mutations that give rise to hypogammaglobulinemia and how these gene products affect normal or abnormal B-cell development and function, with particular emphasis on CVID. Additionally, we describe specific phenotypic and genetic laboratory tests that can be used to diagnose CVID and provide guidelines for test interpretation and subsequent therapeutic intervention.
Collapse
Affiliation(s)
- Catherine R Weiler
- Department of Internal Medicine and Division of Allergic Diseases, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|