1
|
Lesage R, Ferrao Blanco MN, Narcisi R, Welting T, van Osch GJVM, Geris L. An integrated in silico-in vitro approach for identifying therapeutic targets against osteoarthritis. BMC Biol 2022; 20:253. [PMID: 36352408 PMCID: PMC9648005 DOI: 10.1186/s12915-022-01451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Without the availability of disease-modifying drugs, there is an unmet therapeutic need for osteoarthritic patients. During osteoarthritis, the homeostasis of articular chondrocytes is dysregulated and a phenotypical transition called hypertrophy occurs, leading to cartilage degeneration. Targeting this phenotypic transition has emerged as a potential therapeutic strategy. Chondrocyte phenotype maintenance and switch are controlled by an intricate network of intracellular factors, each influenced by a myriad of feedback mechanisms, making it challenging to intuitively predict treatment outcomes, while in silico modeling can help unravel that complexity. In this study, we aim to develop a virtual articular chondrocyte to guide experiments in order to rationalize the identification of potential drug targets via screening of combination therapies through computational modeling and simulations. RESULTS We developed a signal transduction network model using knowledge-based and data-driven (machine learning) modeling technologies. The in silico high-throughput screening of (pairwise) perturbations operated with that network model highlighted conditions potentially affecting the hypertrophic switch. A selection of promising combinations was further tested in a murine cell line and primary human chondrocytes, which notably highlighted a previously unreported synergistic effect between the protein kinase A and the fibroblast growth factor receptor 1. CONCLUSIONS Here, we provide a virtual articular chondrocyte in the form of a signal transduction interactive knowledge base and of an executable computational model. Our in silico-in vitro strategy opens new routes for developing osteoarthritis targeting therapies by refining the early stages of drug target discovery.
Collapse
Affiliation(s)
- Raphaëlle Lesage
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Biomechanics Section, KU Leuven, Leuven, Belgium
| | - Mauricio N Ferrao Blanco
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Roberto Narcisi
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Tim Welting
- Orthopedic Surgery Department, UMC+, Maastricht, the Netherlands
| | - Gerjo J V M van Osch
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Otorhinolaryngology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.
- Biomechanics Section, KU Leuven, Leuven, Belgium.
- GIGA In silico Medicine, University of Liège, Liège, Belgium.
| |
Collapse
|
2
|
Hodgson D, Rowan AD, Falciani F, Proctor CJ. Systems biology reveals how altered TGFβ signalling with age reduces protection against pro-inflammatory stimuli. PLoS Comput Biol 2019; 15:e1006685. [PMID: 30677026 PMCID: PMC6363221 DOI: 10.1371/journal.pcbi.1006685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 02/05/2019] [Accepted: 11/26/2018] [Indexed: 12/28/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative condition caused by dysregulation of multiple molecular signalling pathways. Such dysregulation results in damage to cartilage, a smooth and protective tissue that enables low friction articulation of synovial joints. Matrix metalloproteinases (MMPs), especially MMP-13, are key enzymes in the cleavage of type II collagen which is a vital component for cartilage integrity. Transforming growth factor beta (TGFβ) can protect against pro-inflammatory cytokine-mediated MMP expression. With age there is a change in the ratio of two TGFβ type I receptors (Alk1/Alk5), a shift that results in TGFβ losing its protective role in cartilage homeostasis. Instead, TGFβ promotes cartilage degradation which correlates with the spontaneous development of OA in murine models. However, the mechanism by which TGFβ protects against pro-inflammatory responses and how this changes with age has not been extensively studied. As TGFβ signalling is complex, we used systems biology to combine experimental and computational outputs to examine how the system changes with age. Experiments showed that the repressive effect of TGFβ on chondrocytes treated with a pro-inflammatory stimulus required Alk5. Computational modelling revealed two independent mechanisms were needed to explain the crosstalk between TGFβ and pro-inflammatory signalling pathways. A novel meta-analysis of microarray data from OA patient tissue was used to create a Cytoscape network representative of human OA and revealed the importance of inflammation. Combining the modelled genes with the microarray network provided a global overview into the crosstalk between the different signalling pathways involved in OA development. Our results provide further insights into the mechanisms that cause TGFβ signalling to change from a protective to a detrimental pathway in cartilage with ageing. Moreover, such a systems biology approach may enable restoration of the protective role of TGFβ as a potential therapy to prevent age-related loss of cartilage and the development of OA.
Collapse
Affiliation(s)
- David Hodgson
- Institute of Cellular Medicine, Ageing Research Laboratories, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing (CIMA), United Kingdom
| | - Andrew D. Rowan
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing (CIMA), United Kingdom
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Francesco Falciani
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing (CIMA), United Kingdom
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Carole J. Proctor
- Institute of Cellular Medicine, Ageing Research Laboratories, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing (CIMA), United Kingdom
- * E-mail:
| |
Collapse
|
3
|
Blaney Davidson EN, Vitters EL, van den Berg WB, van der Kraan PM. TGF beta-induced cartilage repair is maintained but fibrosis is blocked in the presence of Smad7. Arthritis Res Ther 2006; 8:R65. [PMID: 16584530 PMCID: PMC1526625 DOI: 10.1186/ar1931] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 02/23/2006] [Accepted: 03/07/2006] [Indexed: 11/17/2022] Open
Abstract
Cartilage damage in osteoarthritis (OA) is considered an imbalance between catabolic and anabolic factors, favoring the catabolic side. We assessed whether adenoviral overexpression of transforming growth factor-β (TGFβ) enhanced cartilage repair and whether TGFβ-induced fibrosis was blocked by local expression of the intracellular TGFβ inhibitor Smad7. We inflicted cartilage damage by injection of interleukin-1 (IL-1) into murine knee joints. After 2 days, we injected an adenovirus encoding TGFβ. On day 4, we measured proteoglycan (PG) synthesis and content. To examine whether we could block TGFβ-induced fibrosis and stimulate cartilage repair simultaneously, we injected Ad-TGFβ and Ad-Smad7. This was performed both after IL-1-induced damage and in a model of primary OA. In addition to PG in cartilage, synovial fibrosis was measured by determining the synovial width and the number of procollagen I-expressing cells. Adenoviral overexpression of TGFβ restored the IL-1-induced reduction in PG content and increased PG synthesis. TGFβ-induced an elevation in PG content in cartilage of the OA model. TGFβ-induced synovial fibrosis was strongly diminished by simultaneous synovial overexpression of Smad7 in the synovial lining. Of great interest, overexpression of Smad7 did not reduce the repair-stimulating effect of TGFβ on cartilage. Adenoviral overexpression of TGFβ stimulated repair of IL-1- and OA-damaged cartilage. TGFβ-induced synovial fibrosis was blocked by locally inhibiting TGFβ signaling in the synovial lining by simultaneously transfecting it with an adenovirus overexpressing Smad7.
Collapse
Affiliation(s)
- Esmeralda N Blaney Davidson
- Experimental Rheumatology and Advanced Therapeutics, St. Radboud University Medical Centre Nijmegen, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| | - Elly L Vitters
- Experimental Rheumatology and Advanced Therapeutics, St. Radboud University Medical Centre Nijmegen, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| | - Wim B van den Berg
- Experimental Rheumatology and Advanced Therapeutics, St. Radboud University Medical Centre Nijmegen, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology and Advanced Therapeutics, St. Radboud University Medical Centre Nijmegen, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
4
|
Barksby HE, Hui W, Wappler I, Peters HH, Milner JM, Richards CD, Cawston TE, Rowan AD. Interleukin-1 in combination with oncostatin M up-regulates multiple genes in chondrocytes: Implications for cartilage destruction and repair. ACTA ACUST UNITED AC 2006; 54:540-50. [PMID: 16447230 DOI: 10.1002/art.21574] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To identify the genes up-regulated by interleukin-1 (IL-1) in combination with oncostatin M (OSM) in chondrocytes that may be involved in mechanisms of cartilage repair and degradation. METHODS Gene microarray and real-time polymerase chain reaction (PCR) experiments were performed using RNA from SW1353 chondrocytes and primary human articular chondrocytes. Sections prepared from murine joints, injected with adenovirus vectors overexpressing IL-1 and/or OSM, were analyzed by immunohistochemistry for selected proteins. RESULTS The combination of IL-1 and OSM markedly up-regulated the expression of various genes, including matrix metalloproteinases (MMPs), cytokines, chemokines, extracellular matrix components, and genes involved in signal transduction. Real-time PCR confirmed a synergistic induction of several MMPs, activin A, pentraxin 3 (PTX-3), and IL-8. The in vivo findings further indicated that stimulation with IL-1 plus OSM induced protein expression of activin A, PTX-3, and KC (the murine homolog of IL-8), as compared with the changes induced by individual cytokine treatment and unstimulated controls. CONCLUSION The results confirm that the potent proinflammatory cytokine combination of IL-1 plus OSM synergistically and coordinately up-regulates many genes and several MMPs. Moreover, chondrocytes exhibit a potential repair response following this procatabolic stimulus such that the repair mechanisms are ultimately overwhelmed by degradative processes in the cartilage. This gene-profiling study provides insight into the complex processes that mediate joint disease in the inflammatory arthritides through the coordinated expression of multiple genes.
Collapse
Affiliation(s)
- H E Barksby
- University of Newcastle, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Tchetina EV, Antoniou J, Tanzer M, Zukor DJ, Poole AR. Transforming growth factor-beta2 suppresses collagen cleavage in cultured human osteoarthritic cartilage, reduces expression of genes associated with chondrocyte hypertrophy and degradation, and increases prostaglandin E(2) production. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:131-40. [PMID: 16400016 PMCID: PMC1592655 DOI: 10.2353/ajpath.2006.050369] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/14/2005] [Indexed: 11/20/2022]
Abstract
Articular cartilage degeneration in osteoarthritis (OA) involves type II collagen degradation and chondrocyte differentiation (hypertrophy). Because these changes resemble growth plate remodeling, we hypothesized that collagen degradation may be inhibitable by growth factors known to suppress growth plate hypertrophy, namely transforming growth factor (TGF)-beta2, fibroblast growth factor (FGF)-2, and insulin. Full-depth explants of human OA knee articular cartilage from arthroplasty were cultured with TGF-beta2, FGF-2, and insulin in combination (growth factors) or individually. In cultured explants from five OA patients, collagenase-mediated type II collagen cleavage was significantly down-regulated by combined growth factors as measured by enzyme-linked immunosorbent assay. Individually, FGF-2 and insulin failed to inhibit collagen cleavage in some OA explants whereas TGF-beta2 reduced collagen cleavage in these 5 explants and in 19 additional explants. Moreover, TGF-beta2 effectively suppressed cleavage at low concentrations. Together or individually these growth factors did not inhibit glycosaminoglycan (primarily aggrecan) degradation while TGF-beta2 occasionally did. Semiquantitative reverse transcriptase-polymerase chain reaction of articular cartilage from six OA patients revealed that TGF-beta2 suppressed expression of matrix metalloproteinase-13 and matrix metalloproteinase-9, early (PTHrP) and late (COL10A1) differentiation-related genes, and proinflammatory cytokines (interleukin-1beta, tumor necrosis factor-alpha). In contrast, TGF-beta2 up-regulated PGES-1 expression and prostaglandin E(2) release. These observations show that TGF-beta2 can suppress collagen resorption and chondrocyte differentiation in OA cartilage and that this may be mediated by prostaglandin E(2). Therefore TGF-beta2 could provide therapeutic control of type II collagen degeneration in OA.
Collapse
Affiliation(s)
- Elena V Tchetina
- Joint Diseases Laboratory, Shriners Hospitals for Children, 1529 Cedar Ave., Quebec H3G 1A6, Canada.
| | | | | | | | | |
Collapse
|
6
|
Abstract
The complex structure of articular cartilage, the connective tissue lining diarthrodial joints, enables this tissue to dissipate compressive loads but also appears to hinder its repair ability. At best, both natural and surgical repair attempts replace the highly ordered extracellular matrix of native articular cartilage with fibrous repair tissue of inferior mechanical properties. Numerous bioactive molecules closely regulate the cellular processes in healthy and degenerative articular cartilage. Accordingly, this review outlines the roles of important signaling molecules in cartilage tissue. In addition, drug delivery strategies, aimed at utilizing these bioactive agents to prevent inflammation, to regulate extracellular matrix metabolism, and to control cellular activities, are discussed. As scientists gain further insight into the complex signaling cascades of articular cartilage, continued refinement of drug delivery systems is necessary to develop effective clinical therapies for articular cartilage repair.
Collapse
Affiliation(s)
- Theresa A Holland
- Department of Bioengineering, Rice University, P O Box 1892, MS 142, Houston, TX 77251-1892, USA
| | | |
Collapse
|
7
|
Koshy PJ, Henderson N, Logan C, Life PF, Cawston TE, Rowan AD. Interleukin 17 induces cartilage collagen breakdown: novel synergistic effects in combination with proinflammatory cytokines. Ann Rheum Dis 2002; 61:704-13. [PMID: 12117676 PMCID: PMC1754191 DOI: 10.1136/ard.61.8.704] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To investigate whether interleukin 17 (IL17), derived specifically from T cells, can promote type II collagen release from cartilage. The ability of IL17 to synergise with other proinflammatory mediators to induce collagen release from cartilage, and what effect anti-inflammatory agents had on this process, was also assessed. METHODS IL17 alone, or in combination with IL1, IL6, oncostatin M (OSM), or tumour necrosis factor alpha (TNFalpha), was added to bovine nasal cartilage explant cultures. Proteoglycan and collagen release were determined. Collagenolytic activity was determined by bioassay. Chondroprotective effects of IL4, IL13, transforming growth factor beta1 (TGFbeta1) and insulin-like growth factor-1 (IGF1) were assessed by inclusion in the explant cultures. RESULTS IL17 alone stimulated a dose dependent release of proteoglycan and type II collagen from bovine nasal cartilage explants. Suboptimal doses of IL17 synergised potently with TNFalpha, IL1, OSM, and IL6 to promote collagen degradation. This collagen release was completely inhibited by tissue inhibitor of metalloproteinase-1 and BB-94 (a synthetic metalloproteinase inhibitor), and was significantly reduced by IL4, IL13, TGFbeta1, and IGF1. In IL17 treated chondrocytes, mRNA expression for matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 was detected. Moreover, a synergistic induction of these MMPs was seen when IL17 was combined with other proinflammatory cytokines. CONCLUSIONS IL17 can, alone and synergistically in combination with other proinflammatory cytokines, promote chondrocyte mediated MMP dependent type II collagen release from cartilage. Because levels of all these proinflammatory cytokines are raised in rheumatoid synovial fluids, this study suggests that IL17 may act as a potent upstream mediator of cartilage collagen breakdown in inflammatory joint diseases.
Collapse
Affiliation(s)
- P J Koshy
- Department of Rheumatology, School of Clinical Medical Sciences, The Medical School, University of Newcastle-upon-Tyne, Framlington Place, UK
| | | | | | | | | | | |
Collapse
|
8
|
Grimaud E, Heymann D, Rédini F. Recent advances in TGF-beta effects on chondrocyte metabolism. Potential therapeutic roles of TGF-beta in cartilage disorders. Cytokine Growth Factor Rev 2002; 13:241-57. [PMID: 12486877 DOI: 10.1016/s1359-6101(02)00004-7] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Novel approaches to treat osteoarthritis are required and progress in understanding the biology of cartilage disorders has led to the use of genes whose products stimulate cartilage repair or inhibit breakdown of the cartilaginous matrix. Among them, transforming growth factor-beta (TGF-beta) plays a significant role in promoting chondrocyte anabolism in vitro (enhancing matrix production, cell proliferation, osteochondrogenic differentiation) and in vivo (short-term intra-articular injections lead to increased bone formation and subsequent cartilage formation, beneficial effects on osteochondrogenesis). In vivo induction of the expression of TGF-beta and the use of gene transfer may provide a new approach for treatment of osteoarthritic lesions.
Collapse
Affiliation(s)
- Eva Grimaud
- Laboratoire de Physiopathologie de la Résorption Osseuse EE 99-01, Faculté de Médecine, University of Nantes, 1 rue Gaston Veil, 44035 Nantes, France
| | | | | |
Collapse
|
9
|
Cheon H, Yu SJ, Yoo DH, Chae IJ, Song GG, Sohn J. Increased expression of pro-inflammatory cytokines and metalloproteinase-1 by TGF-beta1 in synovial fibroblasts from rheumatoid arthritis and normal individuals. Clin Exp Immunol 2002; 127:547-52. [PMID: 11966774 PMCID: PMC1906321 DOI: 10.1046/j.1365-2249.2002.01785.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transforming growth factor (TGF)-beta1 is expressed abundantly in the rheumatoid synovium. In this study, the inflammatory effect of TGF-beta1 in rheumatoid arthritis (RA) was investigated using cultured fibroblast-like synoviocytes (FLS) from RA and osteoarthritis (OA) patients, as well as non-arthritic individuals. mRNA expressions of IL-1beta, tumour necrosis factor (TNF)-alpha, IL-8, macrophage inflammatory protein (MIP)-1alpha and metalloproteinase (MMP)-1 were increased in RA and OA FLS by TGF-beta1 treatment, but not in non-arthritic FLS. Enhanced protein expression of IL-1beta, IL-8 and MMP-1 was also observed in RA FLS. Moreover, TGF-beta1 showed a synergistic effect in increasing protein expression of IL-1beta and matrix metalloproteinase (MMP)-1 with TNFalpha and IL-1beta, respectively. Biological activity of IL-1 determined by mouse thymocyte proliferation assay was also enhanced by 50% in response to TGF-beta1 in the culture supernatant of RA FLS. DNA binding activities of nuclear factor (NF)-kappaB and activator protein (AP)-1 were shown to increase by TGF-beta1 as well. These results suggest that TGF-beta1 contributes for the progression of inflammation and joint destruction in RA, and this effect is specific for the arthritic synovial fibroblasts.
Collapse
Affiliation(s)
- H Cheon
- Department of Biochemistry, Korea University College of Medicine, Sungbuk-Gu, Seoul
| | | | | | | | | | | |
Collapse
|
10
|
Hui W, Rowan AD, Cawston T. Modulation of the expression of matrix metalloproteinase and tissue inhibitors of metalloproteinases by TGF-beta1 and IGF-1 in primary human articular and bovine nasal chondrocytes stimulated with TNF-alpha. Cytokine 2001; 16:31-5. [PMID: 11669584 DOI: 10.1006/cyto.2001.0950] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tumour necrosis factor-alpha (TNF-alpha) was able to promote collagen breakdown from bovine cartilage in explant culture. This release was dependent upon matrix metalloproteinases (MMPs) and could be prevented by transforming growth factor-beta1 (TGF-beta1) or insulin-like growth factor-1. Both growth factors reduced the expression and secretion of collagenase enzymes, and TGF-beta1 induced tissue inhibitor of metalloproteinase production. This study shows for the first time that these anabolic growth factors can protect cartilage against TNF-alpha-induced destruction.
Collapse
Affiliation(s)
- W Hui
- Department of Rheumatology, Medical School, University of Newcastle, Newcastle upon Tyne, NE2 4HH, UK
| | | | | |
Collapse
|
11
|
Rowan AD, Koshy PJ, Shingleton WD, Degnan BA, Heath JK, Vernallis AB, Spaull JR, Life PF, Hudson K, Cawston TE. Synergistic effects of glycoprotein 130 binding cytokines in combination with interleukin-1 on cartilage collagen breakdown. ARTHRITIS AND RHEUMATISM 2001; 44:1620-32. [PMID: 11465713 DOI: 10.1002/1529-0131(200107)44:7<1620::aid-art285>3.0.co;2-b] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To determine whether other glycoprotein 130 (gp130) binding cytokines can mimic the effects of oncostatin M (OSM) in acting synergistically with interleukin-1alpha (IL-1alpha) to induce cartilage collagen breakdown and collagenase expression, and to determine which receptors mediate these effects. METHODS The release of collagen and proteoglycan was assessed in bovine and human cartilage explant cultures. Messenger RNA (mRNA) and protein production from immortalized human chondrocytes (T/C28a4) was analyzed by Northern blotting and specific enzyme-linked immunosorbent assays. Collagenase activity was measured by bioassay. Cell surface receptors were detected by flow cytometry. RESULTS OSM in combination with IL-1alpha caused a rapid synergistic induction of matrix metalloproteinase 1 mRNA, which was sustained over a 72-hour period. Flow cytometric analyses detected both the OSM-specific receptor and the gp130 receptor at the chondrocyte cell surface, but failed to detect the leukemia inhibitory factor receptor (LIFR). Cartilage degradation assays revealed that, of the gp130 binding cytokines, only OSM and IL-6, in the presence of its soluble receptor (sIL-6R), were able to act synergistically with IL-1alpha to promote collagen release. CONCLUSION This study demonstrates that IL-6 can mimic OSM in synergizing with IL-1alpha to induce chondrocyte-mediated cartilage collagen breakdown and collagenase production. In order to have this effect, IL-6 requires the presence of its soluble receptor. The apparent absence of LIFR explains why other gp130 binding cytokines do not act in synergy with IL-1alpha. Since OSM, IL-6, and sIL-6R levels have all been shown to be elevated in the rheumatoid joint, our findings suggest that these cytokines may be key mediators of cartilage collagen catabolism in the inflammatory arthritides.
Collapse
Affiliation(s)
- A D Rowan
- Rheumatology, School of Clinical Medical Sciences, University of Newcastle, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hui W, Rowan AD, Cawston T. Insulin-like growth factor 1 blocks collagen release and down regulates matrix metalloproteinase-1, -3, -8, and -13 mRNA expression in bovine nasal cartilage stimulated with oncostatin M in combination with interleukin 1alpha. Ann Rheum Dis 2001; 60:254-61. [PMID: 11171688 PMCID: PMC1753584 DOI: 10.1136/ard.60.3.254] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To investigate the effect of insulin-like growth factor 1 (IGF1) on the release of collagen, and the production and expression of matrix metalloproteinases (MMPs) induced by the proinflammatory cytokine interleukin 1alpha (IL1alpha) in combination with oncostatin M (OSM) from bovine nasal cartilage and primary human articular chondrocytes. METHODS Human articular chondrocytes and bovine nasal cartilage were cultured with and without IGF1 in the presence of IL1alpha or IL1alpha + OSM. The release of collagen was measured by an assay for hydroxyproline. Collagenase activity was determined with the diffuse fibril assay using 3H acetylated collagen. The expression of MMP-1, MMP-3, MMP-8, MMP-13, and tissue inhibitor of metalloproteinase 1 (TIMP-1) mRNA was analysed by northern blot. RESULTS IGF1 can partially inhibit the release of collagen induced by IL1alpha or IL1alpha + OSM from bovine nasal cartilage. This was accompanied by a reduced secretion and activation of collagenase by bovine nasal cartilage. IGF1 can also down regulate IL1alpha or IL1alpha + OSM induced MMP-1, MMP-3, MMP-8, and MMP-13 mRNA expression in human articular chondrocytes and bovine chondrocytes. It had no significant effect on the production and expression of TIMP-1 mRNA in chondrocytes. CONCLUSION This study shows for the first time that IGF1 can partially block the release of collagen from cartilage and suggests that down regulation of collagenases by IGF1 may be an important mechanism in preventing cartilage resorption initiated by proinflammatory cytokines.
Collapse
Affiliation(s)
- W Hui
- Department of Rheumatology, Medical School, University of Newcastle, Newcastle Upon Tyne, NE2 4HH, UK.
| | | | | |
Collapse
|