1
|
Kell AM. Innate Immunity to Orthohantaviruses: Could Divergent Immune Interactions Explain Host-specific Disease Outcomes? J Mol Biol 2021; 434:167230. [PMID: 34487792 PMCID: PMC8894506 DOI: 10.1016/j.jmb.2021.167230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
The genus Orthohantavirus (family Hantaviridae, order Bunyavirales) consists of numerous genetic and pathologically distinct viral species found within rodent and mammalian insectivore populations world-wide. Although reservoir hosts experience persistent asymptomatic infection, numerous rodent-borne orthohantaviruses cause severe disease when transmitted to humans, with case-fatality rates up to 40%. The first isolation of an orthohantavirus occurred in 1976 and, since then, the field has made significant progress in understanding the immune correlates of disease, viral interactions with the human innate immune response, and the immune kinetics of reservoir hosts. Much still remains elusive regarding the molecular mechanisms of orthohantavirus recognition by the innate immune response and viral antagonism within the reservoir host, however. This review provides a summary of the last 45 years of research into orthohantavirus interaction with the host innate immune response. This summary includes discussion of current knowledge involving human, non-reservoir rodent, and reservoir innate immune responses to viruses which cause hemorrhagic fever with renal syndrome and hantavirus cardio-pulmonary syndrome. Review of the literature concludes with a brief proposition for the development of novel tools needed to drive forward investigations into the molecular mechanisms of innate immune activation and consequences for disease outcomes in the various hosts for orthohantaviruses.
Collapse
Affiliation(s)
- Alison M Kell
- Department of Molecular Genetics and Microbiology, University of New Mexico, 915 Camino de Salud, Albuquerque, NM 87131, United States.
| |
Collapse
|
2
|
Abstract
Hepaciviruses and pegiviruses constitute two closely related sister genera of the family Flaviviridae. In the past five years, the known phylogenetic diversity of the hepacivirus genera has absolutely exploded. What was once an isolated infection in humans (and possibly other primates) has now expanded to include horses, rodents, bats, colobus monkeys, cows, and, most recently, catsharks, shedding new light on the genetic diversity and host range of hepaciviruses. Interestingly, despite the identification of these many animal and primate hepaciviruses, the equine hepaciviruses remain the closest genetic relatives of the human hepaciviruses, providing an intriguing clue to the zoonotic source of hepatitis C virus. This review summarizes the significance of these studies and discusses current thinking about the origin and evolution of the animal hepaciviruses as well as their potential usage as surrogate models for the study of hepatitis C virus.
Collapse
Affiliation(s)
- Alex S Hartlage
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205;
| | - John M Cullen
- North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina 27606
| | - Amit Kapoor
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205; .,Department of Pediatrics, College of Medicine and Public Health, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
3
|
Mandl JN, Ahmed R, Barreiro LB, Daszak P, Epstein JH, Virgin HW, Feinberg MB. Reservoir host immune responses to emerging zoonotic viruses. Cell 2014; 160:20-35. [PMID: 25533784 PMCID: PMC4390999 DOI: 10.1016/j.cell.2014.12.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Indexed: 12/26/2022]
Abstract
Zoonotic viruses, such as HIV, Ebola virus, coronaviruses, influenza A viruses, hantaviruses, or henipaviruses, can result in profound pathology in humans. In contrast, populations of the reservoir hosts of zoonotic pathogens often appear to tolerate these infections with little evidence of disease. Why are viruses more dangerous in one species than another? Immunological studies investigating quantitative and qualitative differences in the host-virus equilibrium in animal reservoirs will be key to answering this question, informing new approaches for treating and preventing zoonotic diseases. Integrating an understanding of host immune responses with epidemiological, ecological, and evolutionary insights into viral emergence will shed light on mechanisms that minimize fitness costs associated with viral infection, facilitate transmission to other hosts, and underlie the association of specific reservoir hosts with multiple emerging viruses. Reservoir host studies provide a rich opportunity for elucidating fundamental immunological processes and their underlying genetic basis, in the context of distinct physiological and metabolic constraints that contribute to host resistance and disease tolerance.
Collapse
Affiliation(s)
- Judith N Mandl
- Lymphocyte Biology Section, Laboratory of Systems Biology, NIAID, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Luis B Barreiro
- Sainte-Justine Hospital Research Centre, Department of Pediatrics, University of Montreal, Montreal, QC H3T 1J4, Canada
| | | | | | - Herbert W Virgin
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
4
|
Guivier E, Galan M, Henttonen H, Cosson JF, Charbonnel N. Landscape features and helminth co-infection shape bank vole immunoheterogeneity, with consequences for Puumala virus epidemiology. Heredity (Edinb) 2013; 112:274-81. [PMID: 24149655 DOI: 10.1038/hdy.2013.103] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 09/09/2013] [Accepted: 09/16/2013] [Indexed: 12/21/2022] Open
Abstract
Heterogeneity in environmental conditions helps to maintain genetic and phenotypic diversity in ecosystems. As such, it may explain why the capacity of animals to mount immune responses is highly variable. The quality of habitat patches, in terms of resources, parasitism, predation and habitat fragmentation may, for example, trigger trade-offs ultimately affecting the investment of individuals in various immunological pathways. We described spatial immunoheterogeneity in bank vole populations with respect to landscape features and co-infection. We focused on the consequences of this heterogeneity for the risk of Puumala hantavirus (PUUV) infection. We assessed the expression of the Tnf-α and Mx2 genes and demonstrated a negative correlation between PUUV load and the expression of these immune genes in bank voles. Habitat heterogeneity was partly associated with differences in the expression of these genes. Levels of Mx2 were lower in large forests than in fragmented forests, possibly due to differences in parasite communities. We previously highlighted the positive association between infection with Heligmosomum mixtum and infection with PUUV. We found that Tnf-α was more strongly expressed in voles infected with PUUV than in uninfected voles or in voles co-infected with the nematode H. mixtum and PUUV. H. mixtum may limit the capacity of the vole to develop proinflammatory responses. This effect may increase the risk of PUUV infection and replication in host cells. Overall, our results suggest that close interactions between landscape features, co-infection and immune gene expression may shape PUUV epidemiology.
Collapse
Affiliation(s)
- E Guivier
- INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus international de Baillarguet, Montferrier-sur-Lez cedex, France
| | - M Galan
- INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus international de Baillarguet, Montferrier-sur-Lez cedex, France
| | - H Henttonen
- Finnish Forest Research Institute, Vantaa, Finland
| | - J-F Cosson
- INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus international de Baillarguet, Montferrier-sur-Lez cedex, France
| | - N Charbonnel
- INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus international de Baillarguet, Montferrier-sur-Lez cedex, France
| |
Collapse
|
5
|
Loria-Cervera EN, Sosa-Bibiano EI, Villanueva-Lizama LE, Van Wynsberghe NR, Schountz T, Andrade-Narvaez FJ. Cloning and sequence analysis of Peromyscus yucatanicus (Rodentia) Th1 (IL-12p35, IFN-γ and TNF) and Th2 (IL-4, IL-10 and TGF-β) cytokines. Cytokine 2013; 65:48-55. [PMID: 24120849 DOI: 10.1016/j.cyto.2013.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/22/2013] [Accepted: 09/04/2013] [Indexed: 11/17/2022]
Abstract
The Yucatan deer mouse, Peromyscus yucatanicus (order Rodentia), is the principal reservoir of Leishmania (Leishmania) mexicana in the Yucatan peninsula of Mexico. Experimental infection results in clinical and histopathological features similar to those observed in humans with cutaneous leishmaniasis (CL) as well as peritoneal macrophage production of nitric oxide. These results support the possible use of P. yucatanicus as a novel experimental model to study CL caused by L. (L.) mexicana. However, immunological studies in these rodents have been limited by the lack of specific reagents. To address this issue, we cloned and analyzed cytokine sequences of P. yucatanicus as part of an effort to develop this species as a CL model. We cloned P. yucatanicus interleukin 4 (IL-4), IL-10, IL-12p35, gamma interferon, transforming growth factor beta and tumor necrosis factor partial cDNAs. Most of the P. yucatanicus sequences were highly conserved with orthologs of other mammalian species and the identity of all sequences were confirmed by the presence of conserved amino acids with possible biological functions in each putative polypeptide. The availability of these sequences is a first step which will allow us to carry out studies characterizing the immune response during pathogenic and nonpathogenic L. (L.) mexicana infections in P. yucatanicus.
Collapse
Affiliation(s)
- Elsy Nalleli Loria-Cervera
- Universidad Autonoma de Yucatan, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Laboratorio de Inmunologia, Ave. Itzaes No. 490 x 59-A, Merida, Yucatan, Mexico.
| | | | | | | | | | | |
Collapse
|
6
|
Lehmer EM, Korb J, Bombaci S, McLean N, Ghachu J, Hart L, Kelly A, Jara-Molinar E, O'Brien C, Wright K. The interplay of plant and animal disease in a changing landscape: the role of sudden aspen decline in moderating Sin Nombre virus prevalence in natural deer mouse populations. ECOHEALTH 2012; 9:205-216. [PMID: 22526751 DOI: 10.1007/s10393-012-0765-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 03/07/2012] [Accepted: 03/31/2012] [Indexed: 05/31/2023]
Abstract
We examined how climate-mediated forest dieback regulates zoonotic disease prevalence using the relationship between sudden aspen decline (SAD) and Sin Nombre virus (SNV) as a model system. We compared understory plant community structure, small mammal community composition, and SNV prevalence on 12 study sites within aspen forests experiencing levels of SAD ranging from <10.0% crown fade to >95.0% crown fade. Our results show that sites with the highest levels of SAD had reduced canopy cover, stand density, and basal area, and these differences were reflected by reductions in understory vegetation cover. Conversely, sites with the highest levels of SAD had greater understory standing biomass, suggesting that vegetation on these sites was highly clustered. Changes in forest and understory vegetation structure likely resulted in shifts in small mammal community composition across the SAD gradient, as we found reduced species diversity and higher densities of deer mice, the primary host for SNV, on sites with the highest levels of SAD. Sites with the highest levels of SAD also had significantly greater SNV prevalence compared to sites with lower levels of SAD, which is likely a result of their abundance of deer mice. Collectively, results of our research provide strong evidence to show SAD has considerable impacts on vegetation community structure, small mammal density and biodiversity and the prevalence of SNV.
Collapse
Affiliation(s)
- Erin M Lehmer
- Department of Biology, Fort Lewis College, Durango, CO 81301, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Stoltz M, Sundström KB, Hidmark Å, Tolf C, Vene S, Ahlm C, Lindberg AM, Lundkvist Å, Klingström J. A model system for in vitro studies of bank vole borne viruses. PLoS One 2011; 6:e28992. [PMID: 22194969 PMCID: PMC3241689 DOI: 10.1371/journal.pone.0028992] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 11/17/2011] [Indexed: 12/24/2022] Open
Abstract
The bank vole (Myodes glareolus) is a common small mammal in Europe and a natural host for several important emerging zoonotic viruses, e.g. Puumala hantavirus (PUUV) that causes hemorrhagic fever with renal syndrome (HFRS). Hantaviruses are known to interfere with several signaling pathways in infected human cells, and HFRS is considered an immune-mediated disease. There is no in vitro-model available for infectious experiments in bank vole cells, nor tools for analyses of bank vole immune activation and responses. Consequently, it is not known if there are any differences in the regulation of virus induced responses in humans compared to natural hosts during infection. We here present an in vitro-model for studies of bank vole borne viruses and their interactions with natural host cell innate immune responses. Bank vole embryonic fibroblasts (VEFs) were isolated and shown to be susceptible for PUUV-infection, including a wild-type PUUV strain (only passaged in bank voles). The significance of VEFs as a model system for bank vole associated viruses was further established by infection studies showing that these cells are also susceptible to tick borne encephalitis, cowpox and Ljungan virus. The genes encoding bank vole IFN-β and Mx2 were partially sequenced and protocols for semi-quantitative RT-PCR were developed. Interestingly, PUUV did not induce an increased IFN-β or Mx2 mRNA expression. Corresponding infections with CPXV and LV induced IFN-β but not Mx2, while TBEV induced both IFN-β and Mx2. In conclusion, VEFs together with protocols developed for detection of bank vole innate immune activation provide valuable tools for future studies of how PUUV and other zoonotic viruses affect cells derived from bank voles compared to human cells. Notably, wild-type PUUV which has been difficult to cultivate in vitro readily infected VEFs, suggesting that embryonic fibroblasts from natural hosts might be valuable for isolation of wild-type hantaviruses.
Collapse
Affiliation(s)
- Malin Stoltz
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lehmer EM, Jones JD, Bego MG, Varner JM, Jeor SS, Clay CA, Dearing MD. Long-term patterns of immune investment by wild deer mice infected with Sin Nombre virus. Physiol Biochem Zool 2010; 83:847-57. [PMID: 20695811 DOI: 10.1086/656215] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Immunocompetence of animals fluctuates seasonally, However, there is little consensus on the cause of these fluctuations. Some studies have suggested that these patterns are influenced by changes in reproductive condition, whereas others have suggested that differences result from seasonal variations in energy expenditures. The objective of our study was to examine these contrasting views of immunity by evaluating seasonal patterns of immune response and reproduction in wild populations of deer mice Peromyscus maniculatus exposed to Sin Nombre virus (SNV). Over three consecutive fall (September, October, November) and three consecutive spring (March, April, May) sampling periods, we used titration enzyme-linked immunosorbent assay (ELISA) to quantify virus-specific antibody production in 48 deer mice infected with SNV. Levels of reproductive hormones were quantified using ELISA. SNV antibody titers reached their lowest level during November (geometric mean titer [GMT] = 420) and their highest levels during September (GMT = 5,545) and May (GMT = 3,582), suggesting that the immune response of deer mice to SNV has seasonal patterns. The seeming decrease in antibody titer over winter coupled with the consistency in body masses suggests that during winter, immunocompetence may be compromised to offset the energetic costs of maintenance functions, including those associated with maintaining body mass. Deer mice showed distinct sex-based differences in SNV antibody production, with males producing higher antibody titers (GMT = 3,333) than females (GMT = 1,477). Levels of reproductive hormones do not appear to influence antibody production in either males or females, as there was no correlation between estradiol concentrations and SNV antibody titer in female deer mice (r² = 0.26), nor was there a significant relationship between levels of testosterone and SNV antibody titers in males (r² = 0.28). Collectively, this study demonstrates that immunocompetence of wild deer mice is seasonally variable; however, reproduction is not the primary stressor responsible for this variation. Rather, the data suggest that deer mice may compromise immunocompetence during winter to offset other maintenance costs during this period.
Collapse
Affiliation(s)
- Erin M Lehmer
- Department of Biology, Fort Lewis College, Durango, CO 81301, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Richens T, Palmer ADN, Prescott J, Schountz T. Genomic organization and phylogenetic utility of deer mouse (Peromyscus maniculatus) lymphotoxin-alpha and lymphotoxin-beta. BMC Immunol 2008; 9:62. [PMID: 18976466 PMCID: PMC2605436 DOI: 10.1186/1471-2172-9-62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 10/31/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deer mice (Peromyscus maniculatus) are among the most common mammals in North America and are important reservoirs of several human pathogens, including Sin Nombre hantavirus (SNV). SNV can establish a life-long apathogenic infection in deer mice, which can shed virus in excrement for transmission to humans. Patients that die from hantavirus cardiopulmonary syndrome (HCPS) have been found to express several proinflammatory cytokines, including lymphotoxin (LT), in the lungs. It is thought that these cytokines contribute to the pathogenesis of HCPS. LT is not expressed by virus-specific CD4+ T cells from infected deer mice, suggesting a limited role for this pathway in reservoir responses to hantaviruses. RESULTS We have cloned the genes encoding deer mouse LTalpha and LTbeta and have found them to be highly similar to orthologous rodent sequences but with some differences in promoters elements. The phylogenetic analyses performed on the LTalpha, LTbeta, and combined data sets yielded a strongly-supported sister-group relationship between the two murines (the house mouse and the rat). The deer mouse, a sigmodontine, appeared as the sister group to the murine clade in all of the analyses. High bootstrap values characterized the grouping of murids. CONCLUSION No conspicuous differences compared to other species are present in the predicted amino acid sequences of LTalpha or LTbeta; however, some promoter differences were noted in LTbeta. Although more extensive taxonomic sampling is required to confirm the results of our analyses, the preliminary findings indicate that both genes (analyzed both separately and in combination) hold potential for resolving relationships among rodents and other mammals at the subfamily level.
Collapse
Affiliation(s)
- Tiffany Richens
- Department of Biological Sciences, Mesa State College, Grand Junction, Colorado, 81502, USA.
| | | | | | | |
Collapse
|
10
|
Schountz T, Prescott J, Cogswell AC, Oko L, Mirowsky-Garcia K, Galvez AP, Hjelle B. Regulatory T cell-like responses in deer mice persistently infected with Sin Nombre virus. Proc Natl Acad Sci U S A 2007; 104:15496-501. [PMID: 17875986 PMCID: PMC2000535 DOI: 10.1073/pnas.0707454104] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Indexed: 12/11/2022] Open
Abstract
Hantavirus cardiopulmonary syndrome is a zoonotic illness associated with a systemic inflammatory immune response, capillary leak, noncardiogenic pulmonary edema, and shock in humans. Cytokines, including TNF, IFN-gamma, and lymphotoxin, are thought to contribute to its pathogenesis. In contrast, infected rodent reservoirs of hantaviruses experience few or no pathologic changes and the host rodent can remain persistently infected for life. Generally, it is unknown why such dichotomous immune responses occur between humans and reservoir hosts. Thus, we examined CD4(+) T cell responses from one such reservoir, the deer mouse (Peromyscus maniculatus), infected with Sin Nombre virus. Proliferation responses to viral nucleocapsid antigen were relatively weak in T cells isolated from deer mice, regardless of acute or persistent infection. The T cells from acutely infected deer mice synthesized a broad spectrum of cytokines, including IFN-gamma, IL-4, IL-5, and TGF-beta(1), but not TNF, lymphotoxin, or IL-17. However, in T cells from persistently infected deer mice, only TGF-beta(1) was expressed by all lines, whereas some expressed reduced levels of IFN-gamma or IL-5. The Forkhead box P3 transcription factor, a marker of some regulatory T cells, was expressed by most of these cells. Collectively, these data suggest that TGF-beta(1)-expressing regulatory T cells may play an important role in limiting immunopathology in the natural reservoir host, but this response may interfere with viral clearance. Such a response may have arisen as a mutually beneficial coadaptive evolutionary event between hantaviruses and their rodent reservoirs, so as to limit disease while also allowing the virus to persist.
Collapse
Affiliation(s)
- Tony Schountz
- School of Biological Sciences, University of Northern Colorado, 1556 Ross Hall, Greeley, CO 80639, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Lehmer EM, Clay CA, Wilson E, St Jeor S, Dearing MD. Differential resource allocation in deer mice exposed to sin nombre virus. Physiol Biochem Zool 2007; 80:514-21. [PMID: 17717814 DOI: 10.1086/520128] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2007] [Indexed: 11/04/2022]
Abstract
The resource allocation hypothesis predicts that reproductive activity suppresses immunocompetence; however, this has never been tested in an endemic disease system with free-ranging mammals. We tested the resource allocation hypothesis in wild deer mice (Peromyscus maniculatus) with natural exposure to Sin Nombre Virus (SNV). Immunocompetence was estimated from the extent of swelling elicited after deer mice were injected with phytohemagglutinin (PHA); swelling is positively correlated with immunocompetence. After livetrapping deer mice, we determined their reproductive state and SNV infection status. Males were more likely to be seropositive for SNV than females (37% vs. 25%) and exhibited 10% less swelling after PHA injection. The swelling response of females differed with both infection status and reproductive condition. There was also a significant infection status by reproductive condition interaction: non-reproductive, seropositive females experienced the least amount of swelling, whereas females in all other categories experienced significantly greater swelling. The swelling response of males differed with both SNV infection status and reproductive condition, but there was no significant infection status by reproductive condition interaction. Seronegative males elicited greater swelling than seropositive males regardless of reproductive status. In contrast to the resource allocation hypothesis, these results do not indicate that reproductive activity suppresses immunocompetence of deer mice but rather suggest that chronic SNV infection reduces immunocompetence. Sex-based differences in swelling indicate that SNV modulates the immune system of female deer mice differently than it does that of males, particularly during reproduction. We propose that differences in resource allocation between males and females could result from inherent sex-based differences in parental investment.
Collapse
Affiliation(s)
- Erin M Lehmer
- Department of Biology, Fort Lewis College, Durango, Colorado, USA.
| | | | | | | | | |
Collapse
|
12
|
Oko L, Aduddell-Swope B, Willis D, Hamor R, Coons TA, Hjelle B, Schountz T. Profiling helper T cell subset gene expression in deer mice. BMC Immunol 2006; 7:18. [PMID: 16916450 PMCID: PMC1559719 DOI: 10.1186/1471-2172-7-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Accepted: 08/17/2006] [Indexed: 12/31/2022] Open
Abstract
Background Deer mice (Peromyscus maniculatus) are the most common mammals in North America and are reservoirs for several zoonotic agents, including Sin Nombre virus (SNV), the principal etiologic agent of hantavirus cardiopulmonary syndrome (HCPS) in North America. Unlike human HCPS patients, SNV-infected deer mice show no overt pathological symptoms, despite the presence of virus in the lungs. A neutralizing IgG antibody response occurs, but the virus establishes a persistent infection. Limitations of detailed analysis of deer mouse immune responses to SNV are the lack of reagents and methods for evaluating such responses. Results We developed real-time PCR-based detection assays for several immune-related transcription factor and cytokine genes from deer mice that permit the profiling of CD4+ helper T cells, including markers of Th1 cells (T-bet, STAT4, IFNγ, TNF, LT), Th2 cells (GATA-3, STAT6, IL-4, IL-5) and regulatory T cells (Fox-p3, IL-10, TGFβ1). These assays compare the expression of in vitro antigen-stimulated and unstimulated T cells from individual deer mice. Conclusion We developed molecular methods for profiling immune gene expression in deer mice, including a multiplexed real-time PCR assay for assessing expression of several cytokine and transcription factor genes. These assays should be useful for characterizing the immune responses of experimentally- and naturally-infected deer mice.
Collapse
Affiliation(s)
- Lauren Oko
- School of Biological Sciences, University of Northern Colorado, 1556 Ross Hall, Greeley, CO 80639, USA
| | - Bethany Aduddell-Swope
- Department of Biology, Mesa State College, 1100 North Ave., Grand Junction, CO 81501, USA
| | - Derall Willis
- Saccomanno Research Institute, 2530 N. 8Street, Wellington Bldg. 4, Ste. 100, Grand Junction, CO 81501, USA
| | - Robyn Hamor
- School of Biological Sciences, University of Northern Colorado, 1556 Ross Hall, Greeley, CO 80639, USA
| | - Teresa A Coons
- Saccomanno Research Institute, 2530 N. 8Street, Wellington Bldg. 4, Ste. 100, Grand Junction, CO 81501, USA
| | - Brian Hjelle
- Center for Infectious Diseases and Immunity, Departments of Pathology, Biology, and Molecular Genetics & Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Tony Schountz
- School of Biological Sciences, University of Northern Colorado, 1556 Ross Hall, Greeley, CO 80639, USA
- Saccomanno Research Institute, 2530 N. 8Street, Wellington Bldg. 4, Ste. 100, Grand Junction, CO 81501, USA
| |
Collapse
|
13
|
Davenport BJ, Willis DG, Prescott J, Farrell RM, Coons TA, Schountz T. Generation of competent bone marrow-derived antigen presenting cells from the deer mouse (Peromyscus maniculatus). BMC Immunol 2004; 5:23. [PMID: 15458574 PMCID: PMC524361 DOI: 10.1186/1471-2172-5-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2004] [Accepted: 09/30/2004] [Indexed: 01/03/2023] Open
Abstract
Background Human infections with Sin Nombre virus (SNV) and related New World hantaviruses often lead to hantavirus cardiopulmonary syndrome (HCPS), a sometimes fatal illness. Lungs of patients who die from HCPS exhibit cytokine-producing mononuclear infiltrates and pronounced pulmonary inflammation. Deer mice (Peromyscus maniculatus) are the principal natural hosts of SNV, in which the virus establishes life-long persistence without conspicuous pathology. Little is known about the mechanisms SNV employs to evade the immune response of deer mice, and experimental examination of this question has been difficult because of a lack of methodologies for examining such responses during infection. One such deficiency is our inability to characterize T cell responses because susceptible syngeneic deer mice are not available. Results To solve this problem, we have developed an in vitro method of expanding and generating competent antigen presenting cells (APC) from deer mouse bone marrow using commercially-available house mouse (Mus musculus) granulocyte-macrophage colony stimulating factor. These cells are capable of processing and presenting soluble protein to antigen-specific autologous helper T cells in vitro. Inclusion of antigen-specific deer mouse antibody augments T cell stimulation, presumably through Fc receptor-mediated endocytosis. Conclusions The use of these APC has allowed us to dramatically expand deer mouse helper T cells in culture and should permit extensive characterization of T cell epitopes. Considering the evolutionary divergence between deer mice and house mice, it is probable that this method will be useful to other investigators using unconventional models of rodent-borne diseases.
Collapse
Affiliation(s)
- Bennett J Davenport
- Department of Biological Sciences, Mesa State College, 1100 North Ave., Grand Junction, CO 81501, USA
| | - Derall G Willis
- Saccomanno Research Institute, St. Mary's Hospital, 2530 N. 8Street, Wellington Bldg. 4, Ste. 100, Grand Junction, CO 81501, USA
| | - Joseph Prescott
- Department of Biological Sciences, Mesa State College, 1100 North Ave., Grand Junction, CO 81501, USA
- Infectious Disease and Inflammation Program, Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Regina M Farrell
- Department of Biological Sciences, Mesa State College, 1100 North Ave., Grand Junction, CO 81501, USA
| | - Teresa A Coons
- Department of Biological Sciences, Mesa State College, 1100 North Ave., Grand Junction, CO 81501, USA
- Saccomanno Research Institute, St. Mary's Hospital, 2530 N. 8Street, Wellington Bldg. 4, Ste. 100, Grand Junction, CO 81501, USA
| | - Tony Schountz
- Department of Biological Sciences, Mesa State College, 1100 North Ave., Grand Junction, CO 81501, USA
- Saccomanno Research Institute, St. Mary's Hospital, 2530 N. 8Street, Wellington Bldg. 4, Ste. 100, Grand Junction, CO 81501, USA
| |
Collapse
|
14
|
Schountz T, Green R, Davenport B, Buniger A, Richens T, Root JJ, Davidson F, Calisher CH, Beaty BJ. Cloning and characterization of deer mouse (Peromyscus maniculatus) cytokine and chemokine cDNAs. BMC Immunol 2004; 5:1. [PMID: 14720307 PMCID: PMC331403 DOI: 10.1186/1471-2172-5-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2003] [Accepted: 01/13/2004] [Indexed: 12/04/2022] Open
Abstract
Background Sin Nombre virus (SNV) establishes a persistent infection in the deer mouse, Peromyscus maniculatus. A strong antibody response occurs in response to SNV infection, but the role of the innate immune response is unclear. To address this issue, we have initiated an effort to identify and characterize deer mouse cytokine and chemokine genes. Such cytokines and chemokines are involved in various aspects of immunity, including the transition from innate to adaptive responses, type I and type II responses, recruitment of leukocytes to sites of infection, and production of mature cells from bone marrow progenitors. Results We established a colony of SNV antibody-negative deer mice and cloned 11 cytokine and chemokine partial cDNA sequences using directed PCR. Most of the deer mouse sequences were highly conserved with orthologous sequences from other rodent species and functional domains were identified in each putative polypeptide. Conclusions The availability of these sequences will allow the examination of the role of these cytokines in deer mouse responses to infection with Sin Nombre virus.
Collapse
Affiliation(s)
- Tony Schountz
- Department of Biological Sciences, Mesa State College, 1100 North Ave., Grand Junction, CO 81501, USA
- Saccomanno Research Institute, 2530 N. 8Street, Wellington Bldg. 4, Ste. 100, Grand Junction, CO 81501, USA
| | - Renata Green
- Department of Biological Sciences, Mesa State College, 1100 North Ave., Grand Junction, CO 81501, USA
| | - Bennett Davenport
- Department of Biological Sciences, Mesa State College, 1100 North Ave., Grand Junction, CO 81501, USA
| | - Amie Buniger
- Department of Biological Sciences, Mesa State College, 1100 North Ave., Grand Junction, CO 81501, USA
| | - Tiffany Richens
- Department of Biological Sciences, Mesa State College, 1100 North Ave., Grand Junction, CO 81501, USA
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - J Jeffrey Root
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Forbes Davidson
- Department of Biological Sciences, Mesa State College, 1100 North Ave., Grand Junction, CO 81501, USA
| | - Charles H Calisher
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Barry J Beaty
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|