1
|
Geethadevi A, Ku Z, Tsaih SW, Parashar D, Kadamberi IP, Xiong W, Deng H, George J, Kumar S, Mittal S, Zhang N, Pradeep S, An Z, Chaluvally-Raghavan P. Blocking Oncostatin M receptor abrogates STAT3 mediated integrin signaling and overcomes chemoresistance in ovarian cancer. NPJ Precis Oncol 2024; 8:127. [PMID: 38839865 PMCID: PMC11153533 DOI: 10.1038/s41698-024-00593-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
Chemotherapy such as cisplatin is widely used to treat ovarian cancer either before or after surgical debulking. However, cancer relapse due to chemotherapy resistance is a major challenge in the treatment of ovarian cancer. The underlying mechanisms related to chemotherapy resistance remain largely unclear. Therefore, identification of effective therapeutic strategies is urgently needed to overcome therapy resistance. Transcriptome-based analysis, in vitro studies and functional assays identified that cisplatin-resistant ovarian cancer cells express high levels of OSMR compared to cisplatin sensitive cells. Furthermore, OSMR expression associated with a module of integrin family genes and predominantly linked with integrin αV (ITGAV) and integrin β3 (ITGB3) for cisplatin resistance. Using ectopic expression and knockdown approaches, we proved that OSMR directly regulates ITGAV and ITGB3 gene expression through STAT3 activation. Notably, targeting OSMR using anti-OSMR human antibody inhibited the growth and metastasis of ovarian cancer cells and sensitized cisplatin treatment. Taken together, our results underscore the pivotal role of OSMR as a requirement for cisplatin resistance in ovarian cancer. Notably, OSMR fostered the expression of a distinct set of integrin genes, which in turn resulted into a crosstalk between OSMR and integrins for signaling activation that is critical for cisplatin resistance. Therefore, targeting OSMR emerges as a promising and viable strategy to reverse cisplatin-resistance in ovarian cancer.
Collapse
Affiliation(s)
- Anjali Geethadevi
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
- Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Zhiqiang Ku
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Shirng-Wern Tsaih
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
- Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
- Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Medicine, Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ishaque P Kadamberi
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
- Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Wei Xiong
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Hui Deng
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Jasmine George
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
- Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sudhir Kumar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
- Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sonam Mittal
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
- Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Sunila Pradeep
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
- Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA.
| | - Pradeep Chaluvally-Raghavan
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA.
- Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
2
|
Ebrahimi B, Viswanadhapalli S, Pratap UP, Rahul G, Yang X, Pitta Venkata P, Drel V, Santhamma B, Konda S, Li X, Sanchez ALR, Yan H, Sareddy GR, Xu Z, Singh BB, Valente PT, Chen Y, Lai Z, Rao M, Kost ER, Curiel T, Tekmal RR, Nair HB, Vadlamudi RK. Pharmacological inhibition of the LIF/LIFR autocrine loop reveals vulnerability of ovarian cancer cells to ferroptosis. NPJ Precis Oncol 2024; 8:118. [PMID: 38789520 PMCID: PMC11126619 DOI: 10.1038/s41698-024-00612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Of all gynecologic cancers, epithelial-ovarian cancer (OCa) stands out with the highest mortality rates. Despite all efforts, 90% of individuals who receive standard surgical and cytotoxic therapy experience disease recurrence. The precise mechanism by which leukemia inhibitory factor (LIF) and its receptor (LIFR) contribute to the progression of OCa remains unknown. Analysis of cancer databases revealed that elevated expression of LIF or LIFR was associated with poor progression-free survival of OCa patients and a predictor of poor response to chemotherapy. Using multiple primary and established OCa cell lines or tissues that represent five subtypes of epithelial-OCa, we demonstrated that LIF/LIFR autocrine signaling is active in OCa. Moreover, treatment with LIFR inhibitor, EC359 significantly reduced OCa cell viability and cell survival with an IC50 ranging from 5-50 nM. Furthermore, EC359 diminished the stemness of OCa cells. Mechanistic studies using RNA-seq and rescue experiments unveiled that EC359 primarily induced ferroptosis by suppressing the glutathione antioxidant defense system. Using multiple in vitro, ex vivo and in vivo models including cell-based xenografts, patient-derived explants, organoids, and xenograft tumors, we demonstrated that EC359 dramatically reduced the growth and progression of OCa. Additionally, EC359 therapy considerably improved tumor immunogenicity by robust CD45+ leukocyte tumor infiltration and polarizing tumor-associated macrophages (TAMs) toward M1 phenotype while showing no impact on normal T-, B-, and other immune cells. Collectively, our findings indicate that the LIF/LIFR autocrine loop plays an essential role in OCa progression and that EC359 could be a promising therapeutic agent for OCa.
Collapse
Affiliation(s)
- Behnam Ebrahimi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Gopalam Rahul
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Xue Yang
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Prabhakar Pitta Venkata
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Viktor Drel
- Department of Periodontics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | | | | | - Xiaonan Li
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | | | - Hui Yan
- Department of microbiology and immunology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Zhenming Xu
- Department of microbiology and immunology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Brij B Singh
- Department of Periodontics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Philip T Valente
- Department of Pathology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Yidong Chen
- Department of Population Sciences, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Manjeet Rao
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Edward R Kost
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Tyler Curiel
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth, NH, 03755, USA
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | | | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
3
|
Zaporowska-Stachowiak I, Springer M, Stachowiak K, Oduah M, Sopata M, Wieczorowska-Tobis K, Bryl W. Interleukin-6 Family of Cytokines in Cancers. J Interferon Cytokine Res 2024; 44:45-59. [PMID: 38232478 DOI: 10.1089/jir.2023.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Nine soluble ligands [interleukin-6 (IL-6), interleukin-11 (IL-11), leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF), cardiotrophin-1 (CT-1), cardiotrophin-like cytokine, interleukin-27 (IL-27), and interleukin-31] share the ubiquitously expressed transmembrane protein-glycoprotein-130 beta-subunit (gp130) and thus form IL-6 family cytokines. Proteins that may be important for cancerogenesis, CT-1, IL-11, IL-27, LIF, OSM, and CNTF, belong to the superfamily of IL-6. Cytokines such as IL-6, IL-11, and IL-27 are better investigated in comparison with other members of the same family of cytokines, eg, CT-1. Gp130 is one of the main receptors through which these cytokines exert their effects. The clinical implication of understanding the pathways of these cytokines in oncology is that targeted therapy to inhibit or potentiate cytokine activity may lead to remission in some cases.
Collapse
Affiliation(s)
- Iwona Zaporowska-Stachowiak
- Department and Clinic of Palliative Medicine, Poznan University of Medical Sciences, Poznan, Poland
- Palliative Medicine In-Patient Unit, University Hospital of Lord's Transfiguration, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Springer
- Department of Internal Diseases, Metabolic Disorders and Arterial Hypertension, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Mary Oduah
- English Students' Research Association, Poznan University of Medical Sciences, Poznan, Poland
| | - Maciej Sopata
- Department and Clinic of Palliative Medicine, Poznan University of Medical Sciences, Poznan, Poland
- Palliative Medicine In-Patient Unit, University Hospital of Lord's Transfiguration, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Wieczorowska-Tobis
- Department and Clinic of Palliative Medicine, Poznan University of Medical Sciences, Poznan, Poland
- Palliative Medicine In-Patient Unit, University Hospital of Lord's Transfiguration, Poznan University of Medical Sciences, Poznan, Poland
| | - Wiesław Bryl
- Department of Internal Diseases, Metabolic Disorders and Arterial Hypertension, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
4
|
Wolf CL, Pruett C, Lighter D, Jorcyk CL. The clinical relevance of OSM in inflammatory diseases: a comprehensive review. Front Immunol 2023; 14:1239732. [PMID: 37841259 PMCID: PMC10570509 DOI: 10.3389/fimmu.2023.1239732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023] Open
Abstract
Oncostatin M (OSM) is a pleiotropic cytokine involved in a variety of inflammatory responses such as wound healing, liver regeneration, and bone remodeling. As a member of the interleukin-6 (IL-6) family of cytokines, OSM binds the shared receptor gp130, recruits either OSMRβ or LIFRβ, and activates a variety of signaling pathways including the JAK/STAT, MAPK, JNK, and PI3K/AKT pathways. Since its discovery in 1986, OSM has been identified as a significant contributor to a multitude of inflammatory diseases, including arthritis, inflammatory bowel disease, lung and skin disease, cardiovascular disease, and most recently, COVID-19. Additionally, OSM has also been extensively studied in the context of several cancer types including breast, cervical, ovarian, testicular, colon and gastrointestinal, brain,lung, skin, as well as other cancers. While OSM has been recognized as a significant contributor for each of these diseases, and studies have shown OSM inhibition is effective at treating or reducing symptoms, very few therapeutics have succeeded into clinical trials, and none have yet been approved by the FDA for treatment. In this review, we outline the role OSM plays in a variety of inflammatory diseases, including cancer, and outline the previous and current strategies for developing an inhibitor for OSM signaling.
Collapse
Affiliation(s)
- Cody L. Wolf
- Department of Biomolecular Sciences, Boise State University, Boise, ID, United States
| | - Clyde Pruett
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| | - Darren Lighter
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| | - Cheryl L. Jorcyk
- Department of Biomolecular Sciences, Boise State University, Boise, ID, United States
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| |
Collapse
|
5
|
Li Q, Wang Y, Li Z, Su M, Song Y, Hu Q, Zhou B, Zhang L. Association of oncostatin M receptor polymorphisms with clinical recurrence of ovarian cancer in the Chinese Han population. Biomark Med 2022; 16:461-471. [PMID: 35321549 DOI: 10.2217/bmm-2021-0989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: Ovarian cancer (OC) is a gynecological malignancy with a challenging judgment of prognosis due to complicated etiology and high recurrence rate. The oncostatin M receptor (OSMR) from members of the IL-6 receptor family is associated with tumor development. This study aims to explore the correlations between OSMR gene polymorphisms (rs2278329 [G/A, missense, Asp553Asn], rs2292016 [G/T, promoter, -100G/T]) and OC. Methods: This study enrolled 160 OC patients and 397 healthy controls. Genotypes of two single-nucleotide polymorphisms were distinguished using TaqMan SNP Genotyping Assay, and statistical analysis was performed using SPSS software. Results: A significantly decreased overall survival rate was found in serous OC patients carrying rs2278329 GA/AA genotypes. Meanwhile, TT genotype carriers of rs2292016 had an improved relapse rate, and the GT genotype showed a definitive correlation with a lower relapse rate. Conclusion: OSMR gene polymorphisms may be related to recurrence and overall survival of serous OC patients.
Collapse
Affiliation(s)
- Qin Li
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, PR, 610041, China
| | - Yanyun Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, PR, 610041, China
| | - Zhilong Li
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, PR, 610041, China
| | - Min Su
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, PR, 610041, China
| | - Yaping Song
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, PR, 610041, China
| | - Qian Hu
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, PR, 610041, China
| | - Bin Zhou
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, PR, 610041, China
| | - Lin Zhang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, PR, 610041, China
| |
Collapse
|
6
|
Bryson BL, Tamagno I, Taylor SE, Parameswaran N, Chernosky NM, Balasubramaniam N, Jackson MW. Aberrant Induction of a Mesenchymal/Stem Cell Program Engages Senescence in Normal Mammary Epithelial Cells. Mol Cancer Res 2020; 19:651-666. [PMID: 33443106 DOI: 10.1158/1541-7786.mcr-19-1181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 10/23/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022]
Abstract
Although frequently associated with tumor progression, inflammatory cytokines initially restrain transformation by inducing senescence, a key tumor-suppressive barrier. Here, we demonstrate that the inflammatory cytokine, oncostatin M, activates a mesenchymal/stem cell (SC) program that engages cytokine-induced senescence (CIS) in normal human epithelial cells. CIS is driven by Snail induction and requires cooperation between STAT3 and the TGFβ effector, SMAD3. Importantly, as cells escape CIS, they retain the mesenchymal/SC program and are thereby bestowed with a set of cancer SC (CSC) traits. Of therapeutic importance, cells that escape CIS can be induced back into senescence by CDK4/6 inhibition, confirming that the mechanisms allowing cells to escape senescence are targetable and reversible. Moreover, by combining CDK4/6 inhibition with a senolytic therapy, mesenchymal/CSCs can be efficiently killed. Our studies provide insight into how the CIS barriers that prevent tumorigenesis can be exploited as potential therapies for highly aggressive cancers. IMPLICATIONS: These studies reveal how a normal cell's arduous escape from senescence can bestow aggressive features early in the transformation process, and how this persistent mesenchymal/SC program can create a novel potential targetability following tumor development.
Collapse
Affiliation(s)
- Benjamin L Bryson
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Ilaria Tamagno
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Sarah E Taylor
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Neetha Parameswaran
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Noah M Chernosky
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Nikhila Balasubramaniam
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Mark W Jackson
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
7
|
STAT3 and p53: Dual Target for Cancer Therapy. Biomedicines 2020; 8:biomedicines8120637. [PMID: 33371351 PMCID: PMC7767392 DOI: 10.3390/biomedicines8120637] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
The tumor suppressor p53 is considered the "guardian of the genome" that can protect cells against cancer by inducing cell cycle arrest followed by cell death. However, STAT3 is constitutively activated in several human cancers and plays crucial roles in promoting cancer cell proliferation and survival. Hence, STAT3 and p53 have opposing roles in cellular pathway regulation, as activation of STAT3 upregulates the survival pathway, whereas p53 triggers the apoptotic pathway. Constitutive activation of STAT3 and gain or loss of p53 function due to mutations are the most frequent events in numerous cancer types. Several studies have reported the association of STAT3 and/or p53 mutations with drug resistance in cancer treatment. This review discusses the relationship between STAT3 and p53 status in cancer, the molecular mechanism underlying the negative regulation of p53 by STAT3, and vice versa. Moreover, it underlines prospective therapies targeting both STAT3 and p53 to enhance chemotherapeutic outcomes.
Collapse
|
8
|
Oncostatin M: A mysterious cytokine in cancers. Int Immunopharmacol 2020; 90:107158. [PMID: 33187910 DOI: 10.1016/j.intimp.2020.107158] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/04/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Oncostatin M (OSM), as a member of the Interleukin-6 family cytokines, plays a significant role in inflammation, autoimmunity, and cancers. It is mainly secreted by T lymphocytes, neutrophils, and macrophages and was initially introduced as anti-cancer agent. However, in some cases, it promotes cancer progression. Overexpression of OSM and OSM receptor has been detected in various cancers including colon cancer, breast cancer, pancreatic cancer, myeloma, brain tumors, chronic lymphocytic leukemia, and hepatoblastoma. STAT3 is the main downstream signaling molecule of OSM, which operates the leading role in modifications of cancer cells and enhancing cell growth, invasion, survival, and all other hallmarks of cancer cells. However, due to the presence of multiple signaling pathways, it can act contradictory in some cancers. In this review, we will discuss the emerging roles of OSM in cancer and elucidate its function in tumor control or progression and finally discuss therapeutic approaches designed to manipulate this cytokine in cancer.
Collapse
|
9
|
Wu CJ, Sundararajan V, Sheu BC, Huang RYJ, Wei LH. Activation of STAT3 and STAT5 Signaling in Epithelial Ovarian Cancer Progression: Mechanism and Therapeutic Opportunity. Cancers (Basel) 2019; 12:cancers12010024. [PMID: 31861720 PMCID: PMC7017004 DOI: 10.3390/cancers12010024] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal of all gynecologic malignancies. Despite advances in surgical and chemotherapeutic options, most patients with advanced EOC have a relapse within three years of diagnosis. Unfortunately, recurrent disease is generally not curable. Recent advances in maintenance therapy with anti-angiogenic agents or Poly ADP-ribose polymerase (PARP) inhibitors provided a substantial benefit concerning progression-free survival among certain women with advanced EOC. However, effective treatment options remain limited in most recurrent cases. Therefore, validated novel molecular therapeutic targets remain urgently needed in the management of EOC. Signal transducer and activator of transcription-3 (STAT3) and STAT5 are aberrantly activated through tyrosine phosphorylation in a wide variety of cancer types, including EOC. Extrinsic tumor microenvironmental factors in EOC, such as inflammatory cytokines, growth factors, hormones, and oxidative stress, can activate STAT3 and STAT5 through different mechanisms. Persistently activated STAT3 and, to some extent, STAT5 increase EOC tumor cell proliferation, survival, self-renewal, angiogenesis, metastasis, and chemoresistance while suppressing anti-tumor immunity. By doing so, the STAT3 and STAT5 activation in EOC controls properties of both tumor cells and their microenvironment, driving multiple distinct functions during EOC progression. Clinically, increasing evidence indicates that the activation of the STAT3/STAT5 pathway has significant correlation with reduced survival of recurrent EOC, suggesting the importance of STAT3/STAT5 as potential therapeutic targets for cancer therapy. This review summarizes the distinct role of STAT3 and STAT5 activities in the progression of EOC and discusses the emerging therapies specifically targeting STAT3 and STAT5 signaling in this disease setting.
Collapse
Affiliation(s)
- Chin-Jui Wu
- Department of Obstetrics & Gynecology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; (C.-J.W.); (B.-C.S.)
| | - Vignesh Sundararajan
- Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, Singapore 117599, Singapore;
| | - Bor-Ching Sheu
- Department of Obstetrics & Gynecology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; (C.-J.W.); (B.-C.S.)
| | - Ruby Yun-Ju Huang
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore 119077, Singapore;
- School of Medicine, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Lin-Hung Wei
- Department of Obstetrics & Gynecology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; (C.-J.W.); (B.-C.S.)
- Correspondence: ; Tel.: +886-2-2312-3456 (ext. 71570); Fax: +886-2-2311-4965
| |
Collapse
|
10
|
Expression of Oncostatin M in Early Gastric Cancer and Precancerous Lesions. Gastroenterol Res Pract 2019; 2019:3616140. [PMID: 31871447 PMCID: PMC6913316 DOI: 10.1155/2019/3616140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/16/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022] Open
Abstract
Objective To detect the expression of the Oncostatin M (OSM) gene and encoded protein in the mucosal epithelium of chronic gastritis, intestinal metaplasia (IM), low-grade intraepithelial neoplasia (LGIN), high-grade intraepithelial neoplasia (HGIN), early gastric cancer (EGC), and advanced gastric cancer (AGC) samples and to explore the correlation and clinicopathological significance of OSM expression in the process of gastric carcinogenesis. Methods The expression levels of OSM in chronic gastritis, IM, LGIN, HGIN, EGC, and AGC samples were detected by gene chip, real-time quantitative PCR, and immunohistochemical methods. The expression levels of OSM in the gastric mucosa were analyzed, and its correlation with clinical pathology was studied. Results The expression level of OSM in gastric HGIN and EGC tissues was significantly higher than that in LGIN tissues based on expression profiling (P < 0.001). The expression of the OSM gene in EGC was higher than that in HGIN (unpaired t test, P < 0.05) and LGIN (unpaired t test, P < 0.01) by qPCR. The expression of OSM in LGIN was significantly lower than that in HGIN (P = 0.008) and EGC (P = 0.044) by immunohistochemical staining. The expression of OSM in HGIN tissues was significantly higher than that in AGC (P = 0.007). Conclusion Alterations in the expression of the OSM gene may be involved in the malignant transformation of the gastric mucosal epithelium. Because of the significant difference in the cancerization rate and clinical management between LGIN and HGIN, the difference in the staining intensity of OSM between LGIN and HGIN may be one of the early markers of gastric intraepithelial neoplasia.
Collapse
|
11
|
Martins KR, Haas CS, Ferst JG, Rovani MT, Goetten AL, Duggavathi R, Bordignon V, Portela VV, Ferreira R, Gonçalves PB, Gasperin BG, Lucia T. Oncostatin M and its receptors mRNA regulation in bovine granulosa and luteal cells. Theriogenology 2019; 125:324-330. [DOI: 10.1016/j.theriogenology.2018.11.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 01/13/2023]
|
12
|
Bharadwaj U, Kasembeli MM, Tweardy DJ. STAT3 Inhibitors in Cancer: A Comprehensive Update. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-42949-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Jones LM, Broz ML, Ranger JJ, Ozcelik J, Ahn R, Zuo D, Ursini-Siegel J, Hallett MT, Krummel M, Muller WJ. STAT3 Establishes an Immunosuppressive Microenvironment during the Early Stages of Breast Carcinogenesis to Promote Tumor Growth and Metastasis. Cancer Res 2015; 76:1416-28. [PMID: 26719528 DOI: 10.1158/0008-5472.can-15-2770] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/21/2015] [Indexed: 02/07/2023]
Abstract
Immunosurveillance constitutes the first step of cancer immunoediting in which developing malignant lesions are eliminated by antitumorigenic immune cells. However, the mechanisms by which neoplastic cells induce an immunosuppressive state to evade the immune response are still unclear. The transcription factor STAT3 has been implicated in breast carcinogenesis and tumor immunosuppression in advanced disease, but its involvement in early disease development has not been established. Here, we genetically ablated Stat3 in the tumor epithelia of the inducible PyVmT mammary tumor model and found that Stat3-deficient mice recapitulated the three phases of immunoediting: elimination, equilibrium, and escape. Pathologic analyses revealed that Stat3-deficient mice initially formed hyperplastic and early adenoma-like lesions that later completely regressed, thereby preventing the emergence of mammary tumors in the majority of animals. Furthermore, tumor regression was correlated with massive immune infiltration into the Stat3-deficient lesions, leading to their elimination. In a minority of animals, focal, nonmetastatic Stat3-deficient mammary tumors escaped immune surveillance after a long latency or equilibrium period. Taken together, our findings suggest that tumor epithelial expression of Stat3 plays a critical role in promoting an immunosuppressive tumor microenvironment during breast tumor initiation and progression, and prompt further investigation of Stat3-inhibitory strategies that may reactivate the immunosurveillance program.
Collapse
Affiliation(s)
- Laura M Jones
- Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada. Departments of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Miranda L Broz
- Department of Pathology, University of California San Francisco, San Francisco, California
| | - Jill J Ranger
- Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada. Departments of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - John Ozcelik
- Departments of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Ryuhjin Ahn
- Department of Oncology, McGill University, Montreal, Quebec, Canada. Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Dongmei Zuo
- Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada. Departments of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Josie Ursini-Siegel
- Department of Oncology, McGill University, Montreal, Quebec, Canada. Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Michael T Hallett
- Departments of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Matthew Krummel
- Department of Pathology, University of California San Francisco, San Francisco, California
| | - William J Muller
- Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada. Departments of Biochemistry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
14
|
Transcriptomic analyses of genes differentially expressed by high-risk and low-risk human papilloma virus E6 oncoproteins. Virusdisease 2015; 26:105-16. [PMID: 26396976 DOI: 10.1007/s13337-015-0259-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/10/2015] [Indexed: 12/18/2022] Open
Abstract
Human papilloma virus is the causative agent for cervical cancer with 99 % of cervical cancer cases containing HPV. The high risk HPV-16, 18 and 31 are the major causative agents. The low risk HPV-6, 11 have been reported to cause penile, laryngeal, bronchogenic and oesophageal cancer. Since E6 oncoprotein is frequently over expressed in cancers, we did gene expression studies to compare between the E6 genes of high-risk (HPV18) or low-risk (HPV11)stably transfected in epithelial cell line EPC-2 or mock transfected with the basic vector pCDNA3.1. Microarray studies showed a total of 697 genes showing differential expression between the samples. Genes involved in several key cellular processes such as cell adhesion, angiogenesis, transcription regulation, cell cycle regulation and cell division showed altered expression between the samples. Gene Ontology mapping of 44 genes according cellular pathways revealed 13 pathways namely angiogenesis, alzhemier's, Wnt, p53, interleukin, TGF-β, cadherin, integrin, PI3-kinase, catennin, insulin, chemokine and G protein signalling pathways. The microarray results were confirmed by quantitative real-time PCR for some representative genes like IFI27, CTNNA1, OSMR, CYP1B1, TNFSF13, LAMA2 and COL5A3. Analysis of differentially expressed genes by high-risk and low-risk HPV E6 proteins might help in identification of potential biomarkers for diagnosis, progression and therapy of oesophageal cancer. The understanding of mechanisms of activation of these genes as well as the function of gene products will give a further insight into their roles in oesophageal cancer.
Collapse
|
15
|
Ma Y, Zhang X, Xu X, Shen L, Yao Y, Yang Z, Liu P. STAT3 Decoy Oligodeoxynucleotides-Loaded Solid Lipid Nanoparticles Induce Cell Death and Inhibit Invasion in Ovarian Cancer Cells. PLoS One 2015; 10:e0124924. [PMID: 25923701 PMCID: PMC4414561 DOI: 10.1371/journal.pone.0124924] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/10/2015] [Indexed: 12/11/2022] Open
Abstract
Recent advances in the synthesis of multi-functional nanoparticles have opened up tremendous opportunities for the targeted delivery of genes of interest. Cationic solid lipid nanoparticles (SLN) can efficiently bind nucleic acid molecules and transfect genes in vitro. Few reports have combined SLN with therapy using decoy oligodeoxynucleotides (ODN). In the present study, we prepared SLN to encapsulate STAT3 decoy ODN; then, the properties and in vitro behavior of SLN-STAT3 decoy ODN complexes were investigated. SLN-STAT3 decoy ODN complexes were efficiently taken up by human ovarian cancer cells and significantly suppressed cell growth. Blockage of the STAT3 pathway by SLN-STAT3 decoy ODN complexes resulted in an evident induction of cell death, including apoptotic and autophagic death. The mechanism involved the increased expression of cleaved caspase 3, Bax, Beclin-1 and LC3-II and reduced expression of Bcl-2, pro-caspase 3, Survivin, p-Akt and p-mTOR. In addition, SLN-STAT3 decoy ODN complexes inhibited cell invasion by up-regulating E-cadherin expression and down-regulating Snail and MMP-9 expression. These findings confirmed that SLN as STAT3 decoy ODN carriers can induce cell death and inhibit invasion of ovarian cancer cells. We propose that SLN represent a potential approach for targeted gene delivery in cancer therapy.
Collapse
Affiliation(s)
- Yanhui Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaolei Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaoxuan Xu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Liang Shen
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated with Shandong University, Jinan, Shandong, China
| | - Yao Yao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Ziyan Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
16
|
Gritsina G, Xiao F, O'Brien SW, Gabbasov R, Maglaty MA, Xu RH, Thapa RJ, Zhou Y, Nicolas E, Litwin S, Balachandran S, Sigal LJ, Huszar D, Connolly DC. Targeted Blockade of JAK/STAT3 Signaling Inhibits Ovarian Carcinoma Growth. Mol Cancer Ther 2015; 14:1035-47. [PMID: 25646015 PMCID: PMC4394029 DOI: 10.1158/1535-7163.mct-14-0800] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/26/2015] [Indexed: 12/22/2022]
Abstract
Ovarian carcinoma is the fifth leading cause of death among women in the United States. Persistent activation of STAT3 is frequently detected in ovarian carcinoma. STAT3 is activated by Janus family kinases (JAK) via cytokine receptors, growth factor receptor, and non-growth factor receptor tyrosine kinases. Activation of STAT3 mediates tumor cell proliferation, survival, motility, invasion, and angiogenesis, and recent work demonstrates that STAT3 activation suppresses antitumor immune responses and supports tumor-promoting inflammation. We hypothesized that therapeutic targeting of the JAK/STAT3 pathway would inhibit tumor growth by direct effects on ovarian carcinoma cells and by inhibition of cells in the tumor microenvironment (TME). To test this, we evaluated the effects of a small-molecule JAK inhibitor, AZD1480, on cell viability, apoptosis, proliferation, migration, and adhesion of ovarian carcinoma cells in vitro. We then evaluated the effects of AZD1480 on in vivo tumor growth and progression, gene expression, tumor-associated matrix metalloproteinase (MMP) activity, and immune cell populations in a transgenic mouse model of ovarian carcinoma. AZD1480 treatment inhibited STAT3 phosphorylation and DNA binding, and migration and adhesion of cultured ovarian carcinoma cells and ovarian tumor growth rate, volume, and ascites production in mice. In addition, drug treatment led to altered gene expression, decreased tumor-associated MMP activity, and fewer suppressor T cells in the peritoneal TME of tumor-bearing mice than control mice. Taken together, our results show pharmacologic inhibition of the JAK2/STAT3 pathway leads to disruption of functions essential for ovarian tumor growth and progression and represents a promising therapeutic strategy.
Collapse
Affiliation(s)
- Galina Gritsina
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Fang Xiao
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Shane W O'Brien
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Rashid Gabbasov
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania. Kazan (Volga Region) Federal University, Kazan, Russia
| | - Marisa A Maglaty
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Ren-Huan Xu
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Roshan J Thapa
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yan Zhou
- Biostatistics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | - Samuel Litwin
- Biostatistics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Siddharth Balachandran
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Luis J Sigal
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | - Denise C Connolly
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
17
|
Preclinical therapeutic potential of a nitrosylating agent in the treatment of ovarian cancer. PLoS One 2014; 9:e97897. [PMID: 24887420 PMCID: PMC4041717 DOI: 10.1371/journal.pone.0097897] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/24/2014] [Indexed: 12/27/2022] Open
Abstract
This study examines the role of s-nitrosylation in the growth of ovarian cancer using cell culture based and in vivo approaches. Using the nitrosylating agent, S-nitrosoglutathione (GSNO), a physiological nitric oxide molecule, we show that GSNO treatment inhibited proliferation of chemoresponsive and chemoresistant ovarian cancer cell lines (A2780, C200, SKVO3, ID8, OVCAR3, OVCAR4, OVCAR5, OVCAR7, OVCAR8, OVCAR10, PE01 and PE04) in a dose dependent manner. GSNO treatment abrogated growth factor (HB-EGF) induced signal transduction including phosphorylation of Akt, p42/44 and STAT3, which are known to play critical roles in ovarian cancer growth and progression. To examine the therapeutic potential of GSNO in vivo, nude mice bearing intra-peritoneal xenografts of human A2780 ovarian carcinoma cell line (2×106) were orally administered GSNO at the dose of 1 mg/kg body weight. Daily oral administration of GSNO significantly attenuated tumor mass (p<0.001) in the peritoneal cavity compared to vehicle (phosphate buffered saline) treated group at 4 weeks. GSNO also potentiated cisplatin mediated tumor toxicity in an A2780 ovarian carcinoma nude mouse model. GSNO’s nitrosylating ability was reflected in the induced nitrosylation of various known proteins including NFκB p65, Akt and EGFR. As a novel finding, we observed that GSNO also induced nitrosylation with inverse relationship at tyrosine 705 phosphorylation of STAT3, an established player in chemoresistance and cell proliferation in ovarian cancer and in cancer in general. Overall, our study underlines the significance of S-nitrosylation of key cancer promoting proteins in modulating ovarian cancer and proposes the therapeutic potential of nitrosylating agents (like GSNO) for the treatment of ovarian cancer alone or in combination with chemotherapeutic drugs.
Collapse
|
18
|
HiJAK'd Signaling; the STAT3 Paradox in Senescence and Cancer Progression. Cancers (Basel) 2014; 6:741-55. [PMID: 24675570 PMCID: PMC4074801 DOI: 10.3390/cancers6020741] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 03/08/2014] [Accepted: 03/11/2014] [Indexed: 12/11/2022] Open
Abstract
Clinical and epidemiological data have associated chronic inflammation with cancer progression. Most tumors show evidence of infiltrating immune and inflammatory cells, and chronic inflammatory disorders are known to increase the overall risk of cancer development. While immune cells are often observed in early hyperplastic lesions in vivo, there remains debate over whether these immune cells and the cytokines they produce in the developing hyperplastic microenvironment act to inhibit or facilitate tumor development. The interleukin-6 (IL-6) family of cytokines, which includes IL-6 and oncostatin M (OSM), among others (LIF, CT-1, CNTF, and CLC), are secreted by immune cells, stromal cells, and epithelial cells, and regulate diverse biological processes. Each of the IL-6 family cytokines signals through a distinct receptor complex, yet each receptor complex uses a shared gp130 subunit, which is critical for signal transduction following cytokine binding. Activation of gp130 results in the activation of Signal Transducer and Activator of Transcription 3 (STAT3), and the Mitogen-Activated Protein Kinase (MAPK) and Phosphatidylinositol 3-Kinase (PI3K) signaling cascades. Tumor suppressive signaling can often be observed in normal cells following prolonged STAT3 activation. However, there is mounting evidence that the IL-6 family cytokines can contribute to later stages of tumor progression in many ways. Here we will review how the microenvironmental IL-6 family cytokine OSM influences each stage of the transformation process. We discuss the intrinsic adaptations a developing cancer cell must make in order to tolerate and circumvent OSM-mediated growth suppression, as well as the OSM effectors that are hijacked during tumor expansion and metastasis. We propose that combining current therapies with new ones that suppress the signals generated from the tumor microenvironment will significantly impact an oncologist’s ability to treat cancer.
Collapse
|
19
|
Taniguchi K, Karin M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin Immunol 2014; 26:54-74. [PMID: 24552665 DOI: 10.1016/j.smim.2014.01.001] [Citation(s) in RCA: 509] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/06/2014] [Indexed: 11/17/2022]
Abstract
Inflammatory responses play pivotal roles in cancer development, including tumor initiation, promotion, progression, and metastasis. Cytokines are now recognized as important mediators linking inflammation and cancer, and are therefore potential therapeutic and preventive targets as well as prognostic factors. The interleukin (IL)-6 family of cytokines, especially IL-6 and IL-11, is highly up-regulated in many cancers and considered as one of the most important cytokine families during tumorigenesis and metastasis. This review discusses molecular mechanisms linking the IL-6 cytokine family to solid malignancies and their treatment.
Collapse
Affiliation(s)
- Koji Taniguchi
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; UC San Diego Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
20
|
Kumar J, Ward AC. Role of the interleukin 6 receptor family in epithelial ovarian cancer and its clinical implications. Biochim Biophys Acta Rev Cancer 2014; 1845:117-25. [PMID: 24388871 DOI: 10.1016/j.bbcan.2013.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 12/08/2013] [Accepted: 12/24/2013] [Indexed: 01/10/2023]
Abstract
Ovarian cancer is the most lethal gynecological malignancy, with few effective treatment options in most cases. Therefore, understanding the biology of ovarian cancer remains an important area of research in order to improve clinical outcomes. Cytokine receptor signaling through the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is an essential component of normal development and homeostasis. However, numerous studies have implicated perturbation of this pathway in a range of cancers. In particular, members of the IL-6R family acting via the downstream STAT3 transcription factor play an important role in a number of solid tumors - including ovarian cancer - by altering the expression of target genes that impact on key phenotypes. This has led to the development of specific inhibitors of this pathway which are being used in combination with standard chemotherapeutic agents. This review focuses on the role of IL-6R family members in the etiology of epithelial ovarian cancer, and the application of therapies specifically targeting IL-6R signaling in this disease setting.
Collapse
Affiliation(s)
- Janani Kumar
- School of Medicine, Deakin University, Geelong, Victoria, Australia; Strategic Research Centre in Molecular and Medical Research, Deakin University, Geelong, Victoria, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, Victoria, Australia; Strategic Research Centre in Molecular and Medical Research, Deakin University, Geelong, Victoria, Australia.
| |
Collapse
|
21
|
Liu H, Xiao F, Serebriiskii IG, O’Brien SW, Maglaty MA, Astsaturov I, Litwin S, Martin LP, Proia DA, Golemis EA, Connolly DC. Network analysis identifies an HSP90-central hub susceptible in ovarian cancer. Clin Cancer Res 2013; 19:5053-67. [PMID: 23900136 PMCID: PMC3778161 DOI: 10.1158/1078-0432.ccr-13-1115] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE Epithelial ovarian cancer (EOC) is usually detected at an advanced stage and is frequently lethal. Although many patients respond to initial surgery and standard chemotherapy consisting of a platinum-based agent and a taxane, most experience recurrence and eventually treatment-resistant disease. Although there have been numerous efforts to apply protein-targeted agents in EOC, these studies have so far documented little efficacy. Our goal was to identify broadly susceptible signaling proteins or pathways in EOC. EXPERIMENTAL DESIGN As a new approach, we conducted data-mining meta-analyses integrating results from multiple siRNA screens to identify gene targets that showed significant inhibition of cell growth. On the basis of this meta-analysis, we established that many genes with such activity were clients of the protein chaperone HSP90. We therefore assessed ganetespib, a clinically promising second-generation small-molecule HSP90 inhibitor, for activity against EOC, both as a single agent and in combination with cytotoxic and targeted therapeutic agents. RESULTS Ganetespib significantly reduced cell growth, induced cell-cycle arrest and apoptosis in vitro, inhibited growth of orthotopic xenografts and spontaneous ovarian tumors in transgenic mice in vivo, and inhibited expression and activation of numerous proteins linked to EOC progression. Importantly, paclitaxel significantly potentiated ganetespib activity in cultured cells and tumors. Moreover, combined treatment of cells with ganetespib and siRNAs or small molecules inhibiting genes identified in the meta-analysis in several cases resulted in enhanced activity. CONCLUSION These results strongly support investigation of ganetespib, a single-targeted agent with effects on numerous proteins and pathways, in augmenting standard EOC therapies.
Collapse
Affiliation(s)
- Hanqing Liu
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Fang Xiao
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ilya G. Serebriiskii
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Shane W. O’Brien
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Marisa A. Maglaty
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Igor Astsaturov
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Samuel Litwin
- Biostatistics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Lainie P. Martin
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Erica A. Golemis
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Denise C. Connolly
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
22
|
Xu S, Grande F, Garofalo A, Neamati N. Discovery of a Novel Orally Active Small-Molecule gp130 Inhibitor for the Treatment of Ovarian Cancer. Mol Cancer Ther 2013; 12:937-49. [DOI: 10.1158/1535-7163.mct-12-1082] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Song JK, Jo MR, Park MH, Song HS, An BJ, Song MJ, Han SB, Hong JT. Cell growth inhibition and induction of apoptosis by snake venom toxin in ovarian cancer cell via inactivation of nuclear factor κB and signal transducer and activator of transcription 3. Arch Pharm Res 2012; 35:867-76. [PMID: 22644854 DOI: 10.1007/s12272-012-0512-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/18/2011] [Accepted: 11/02/2011] [Indexed: 01/05/2023]
Abstract
Snake venom toxin from Vipera lebetina turanica induces apoptosis in many cancer cell lines, but there is no study about the apoptotic effect of snake venom toxin on human ovarian cancer cells. In this study, we investigated the apoptotic effect of snake venom toxin in human ovarian cancer PA-1 and SK-OV3 cells. Snake venom toxin dose dependently (0∼10 μg/mL) inhibited ovarian cancer cell growth with IC(50) values 4.5 μg/mL in PA-1 cells, and 6.5 μg/mL in SK-OV3 cells. Our results also showed that apoptotic cell death increased by snake venom toxin in a dose dependent manner (0∼10 μg/mL). Consistent with increased cell death, snake venom toxin increased the expression of pro-apoptotic protein Bax and caspase-3, but down-regulated anti-apoptotic protein Bcl-2. Untreated ovarian cancer cells showed a high DNA binding activity of nuclear factor B (NF-κB), but it was inhibited by snake venom toxin accompanied by inhibition of p50 and p65 translocation into the nucleus as well as phosphorylation of inhibitory κB. Snake venom toxin also inhibited DNA binding activity of the signal transducer and activator of transcription 3 (STAT3). Moreover, the combination treatment of NF-κB (salicylic acid, 1 or 5 μM) and STAT3 (stattic, 1 μM) with snake venom toxin (1 μg/mL) further enhanced cell growth inhibitory effects of snake venom toxin. These results showed that snake venom toxin from Vipera lebetina turanica caused apoptotic cell death of ovarian cancer cells through the inhibition of NF-κB and STAT3 signal, and suggested that snake venom toxin may be applicable as an anticancer agent for ovarian cancer.
Collapse
Affiliation(s)
- Ju Kyoung Song
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Korea
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Han Z, Hong Z, Gao Q, Chen C, Hao Z, Ji T, Hu W, Yan Y, Feng J, Liao S, Wu P, Wang D, Wang S, Zhou J, Ma D. A Potent Oncolytic Adenovirus Selectively Blocks the STAT3 Signaling Pathway and Potentiates Cisplatin Antitumor Activity in Ovarian Cancer. Hum Gene Ther 2012; 23:32-45. [PMID: 21875334 DOI: 10.1089/hum.2011.101] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Zhiqiang Han
- Cancer Biology Research Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhenya Hong
- Cancer Biology Research Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Qinglei Gao
- Cancer Biology Research Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Caihong Chen
- Cancer Biology Research Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhou Hao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Teng Ji
- Cancer Biology Research Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wencheng Hu
- Cancer Biology Research Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuting Yan
- Cancer Biology Research Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jing Feng
- Cancer Biology Research Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shujie Liao
- Cancer Biology Research Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Peng Wu
- Cancer Biology Research Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Daowen Wang
- Cancer Biology Research Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shixuan Wang
- Cancer Biology Research Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jianfeng Zhou
- Cancer Biology Research Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ding Ma
- Cancer Biology Research Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
25
|
Kan CE, Cipriano R, Jackson MW. c-MYC functions as a molecular switch to alter the response of human mammary epithelial cells to oncostatin M. Cancer Res 2011; 71:6930-9. [PMID: 21975934 DOI: 10.1158/0008-5472.can-10-3860] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cytokines play an important role in creating an inflammatory microenvironment, which is now considered a hallmark of cancer. Although tumor cells can exploit cytokine signaling to promote growth, invasion, and metastasis, the response of normal and premalignant epithelial cells to cytokines present in a developing tumor microenvironment remains unclear. Oncostatin M (OSM), an IL-6 family cytokine responsible for STAT3 activation, has been implicated in cancer development, progression, invasion, and metastasis. Paradoxically, OSM can also suppress the growth of normal cells and certain tumor-derived cell lines. Using isogenic human mammary epithelial cells (HMEC) at different stages of neoplastic transformation, we found that OSM signaling suppressed c-MYC expression and engaged a p16- and p53-independent growth arrest that required STAT3 activity. Inhibition of STAT3 activation by expressing a dominant-negative STAT3 protein or a STAT3-shRNA prevented the OSM-mediated arrest. In addition, expression of c-MYC from a constitutive promoter also abrogated the STAT3-mediated arrest, and strikingly, cooperated with OSM to promote anchorage-independent growth (AIG), a property associated with malignant transformation. Cooperative transformation by c-MYC and OSM required PI3K and AKT signaling, showing the importance of multiple signaling pathways downstream of the OSM receptor in defining the cellular response to cytokines. These findings identify c-MYC as an important molecular switch that alters the cellular response to OSM-mediated signaling from tumor suppressive to tumor promoting.
Collapse
Affiliation(s)
- Charlene E Kan
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
26
|
Ito H, Honda K, Satow R, Arai E, Shitashige M, Ono M, Sakuma T, Sakano S, Naito K, Matsuyama H, Yamada T. Combined functional genome survey of therapeutic targets for clear cell carcinoma of the kidney. Jpn J Clin Oncol 2011; 41:847-53. [PMID: 21576114 DOI: 10.1093/jjco/hyr060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE Emerging molecular targeting therapeutics have been incorporated into the management of advanced renal cell carcinoma; however, their efficacy remains limited. The aim of this study was to catalog potential therapeutic target molecules for renal cell carcinoma. METHODS We first selected genes up-regulated in clear cell renal cell carcinoma relative to surrounding normal kidney tissues in 10 patients (Study Cohort) using high-density exon arrays that detect all potential transcripts predicted in the human genome. The selected genes were subjected to independent validation in another set of 10 patients (Validation Cohort) using real-time reverse transcriptase polymerase chain reaction and functional screening using small interfering RNA in six clear cell renal cell carcinoma cell lines. RESULTS We identified 164 genes whose expression was significantly elevated in clear cell renal cell carcinoma (P< 0.0001 [Student's t-test] and at least a 3-fold change in transcription signal). We finally extracted 33 genes required for maintaining cell proliferation in at least two clear cell renal cell carcinoma cell lines. The 33 genes included 13 genes known to be associated with the development/progression of renal cell carcinoma, including CAIX and FLT-1, confirming the robustness of the current strategy. CONCLUSIONS Through a combination of genome-wide expression and functional assays, we identified a set of genes with high potential as targets for drug development. This method is rapid and comprehensive and could be applied to the discovery of diagnostic biomarkers and therapeutic targets for cancers other than clear cell renal cell carcinoma.
Collapse
Affiliation(s)
- Hideaki Ito
- Division of Chemotherapy and Clinical Research, National Cancer Centre Research Institute, Tokyo 104-0045, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang Y, Niu XL, Qu Y, Wu J, Zhu YQ, Sun WJ, Li LZ. Autocrine production of interleukin-6 confers cisplatin and paclitaxel resistance in ovarian cancer cells. Cancer Lett 2010; 295:110-23. [PMID: 20236757 DOI: 10.1016/j.canlet.2010.02.019] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 02/19/2010] [Accepted: 02/19/2010] [Indexed: 11/19/2022]
Abstract
It has been shown that IL-6 is elevated in the serum and ascites of ovarian cancer patients, and increased IL-6 concentration correlates with poor prognosis and chemoresistance. However, the role of IL-6 expression in the acquisition of the chemoresistance phenotype and the underlining mechanisms of drug resistance in ovarian cancer cells remain unclear. Here we demonstrate that both exogenous (a relatively short period of treatment with recombination IL-6) and endogenous IL-6 (by transfecting with plasmid encoding for sense IL-6) induce cisplatin and paclitaxel resistance in non-IL-6-expressing A2780 cells, while deleting of endogenous IL-6 expression in IL-6-overexpressing SKOV3 cells (by transfecting with plasmid encoding for antisense IL-6) promotes the sensitivity of these cells to anticancer drugs. IL-6-mediated resistance of ovarian cancer cells exhibits decreased proteolytic activation of caspase-3. Meanwhile, the further study demonstrates that the chemoresistance caused by IL-6 is associated with increased expression of both multidrug resistance-related genes (MDR1 and GSTpi) and apoptosis inhibitory proteins (Bcl-2, Bcl-xL and XIAP), as well as activation of Ras/MEK/ERK and PI3K/Akt signaling. Therefore, modulation of IL-6 expression or its related signaling pathway may be a promising strategy of treatment for drug-resistant ovarian cancer.
Collapse
Affiliation(s)
- Yue Wang
- Department of Immunology, Medical College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
28
|
Zhang X, Liu P, Zhang B, Wang A, Yang M. Role of STAT3 decoy oligodeoxynucleotides on cell invasion and chemosensitivity in human epithelial ovarian cancer cells. ACTA ACUST UNITED AC 2010; 197:46-53. [PMID: 20113836 DOI: 10.1016/j.cancergencyto.2009.10.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 10/01/2009] [Accepted: 10/05/2009] [Indexed: 11/30/2022]
Abstract
Recent studies have reported that STAT3 activation is associated with poor prognosis in human epithelial ovarian cancer. STAT3 has been proposed to play an important role in ovarian cancer metastasis and chemoresistance. This mechanism, however, is still not thoroughly understood. In this study, to investigate the role of STAT3 on ovarian cancer cells, we used decoy oligodeoxynucleotide (ODN) technology to regulate STAT3 in SKOV3 and OVCAR3 cells in vitro. Cell invasive power and chemo-sensitivity were assessed in the cells transfected with STAT3 decoy ODN and control ODN. Western blot analysis was used to examine the expression of EMMPRIN, P-gp, and Akt. Results showed that STAT3 decoy ODN inhibited cancer cell invasive power and enhanced sensitivity to paclitaxel for SKOV3 and OVCAR3 cells. The mechanism involved the inhibition of EMMPRIN, P-gp, and pAkt by STAT3 decoy ODN. These three proteins were probably the target proteins of STAT3. These findings suggest that STAT3 is a key factor for ovarian cancer metastasis and chemoresistance. STAT3 decoy ODN may prove to be a beneficial therapeutic agent, especially for invasive or chemoresistant ovarian cancer.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wen-hua Xi Road, Jinan, Shandong Province, P.R. China
| | | | | | | | | |
Collapse
|
29
|
Walker EC, McGregor NE, Poulton IJ, Solano M, Pompolo S, Fernandes TJ, Constable MJ, Nicholson GC, Zhang JG, Nicola NA, Gillespie MT, Martin TJ, Sims NA. Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice. J Clin Invest 2010; 120:582-92. [PMID: 20051625 DOI: 10.1172/jci40568] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 11/11/2009] [Indexed: 11/17/2022] Open
Abstract
Effective osteoporosis therapy requires agents that increase the amount and/or quality of bone. Any modification of osteoclast-mediated bone resorption by disease or drug treatment, however, elicits a parallel change in osteoblast-mediated bone formation because the processes are tightly coupled. Anabolic approaches now focus on uncoupling osteoblast action from osteoclast formation, for example, by inhibiting sclerostin, an inhibitor of bone formation that does not influence osteoclast differentiation. Here, we report that oncostatin M (OSM) is produced by osteoblasts and osteocytes in mouse bone and that it has distinct effects when acting through 2 different receptors, OSM receptor (OSMR) and leukemia inhibitory factor receptor (LIFR). Specifically, mouse OSM (mOSM) inhibited sclerostin production in a stromal cell line and in primary murine osteoblast cultures by acting through LIFR. In contrast, when acting through OSMR, mOSM stimulated RANKL production and osteoclast formation. A key role for OSMR in bone turnover was confirmed by the osteopetrotic phenotype of mice lacking OSMR. Furthermore, in contrast to the accepted model, in which mOSM acts only through OSMR, mOSM inhibited sclerostin expression in Osmr-/- osteoblasts and enhanced bone formation in vivo. These data reveal what we believe to be a novel pathway by which bone formation can be stimulated independently of bone resorption and provide new insights into OSMR and LIFR signaling that are relevant to other medical conditions, including cardiovascular and neurodegenerative diseases and cancer.
Collapse
|
30
|
Seo JH, Jeong KJ, Oh WJ, Sul HJ, Sohn JS, Kim YK, Cho DY, Kang JK, Park CG, Lee HY. Lysophosphatidic acid induces STAT3 phosphorylation and ovarian cancer cell motility: their inhibition by curcumin. Cancer Lett 2009; 288:50-6. [PMID: 19647363 DOI: 10.1016/j.canlet.2009.06.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 06/22/2009] [Accepted: 06/23/2009] [Indexed: 12/17/2022]
Abstract
Lysophosphatidic acid (LPA) is a biolipid that stimulates tumor cell invasion and metastasis. In this report, we determined the role of signal transducers and activators of transcription 3 (STAT3) and the effect of a chemopreventive agent, curcumin, on LPA-induced ovarian cancer cell motility. LPA phosphorylated STAT3 in a dose-dependent manner. Treatment of cells with a JAK/STAT inhibitor, AG490, inhibited LPA-induced cell motility. In contrast, transfection of a constitutively active form of STAT3 induced ovarian cancer cell motility. LPA also stimulated interleukin (IL)-6 and IL-8 secretion, which results in STAT3 phosphorylation. Treatment of the cells with curcumin inhibited LPA-induced IL-6 and IL-8 secretion and STAT3 phosphorylation, leading to blocked ovarian cancer cell motility. Collectively, the present study shows the critical role of STAT3 in ovarian cancer cell motility and that this process can be prevented by curcumin.
Collapse
Affiliation(s)
- Ji Hye Seo
- Myunggok Medical Research Institute, College of Medicine, Konyang Univeristy, Daejeon 302-718, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chen LL, Ye F, LÜ WG, Yu Y, Chen HZ, Xie X. Evaluation of immune inhibitory cytokine profiles in epithelial ovarian carcinoma. J Obstet Gynaecol Res 2009; 35:212-8. [DOI: 10.1111/j.1447-0756.2008.00935.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Cross talk of signals between EGFR and IL-6R through JAK2/STAT3 mediate epithelial-mesenchymal transition in ovarian carcinomas. Br J Cancer 2008; 100:134-44. [PMID: 19088723 PMCID: PMC2634691 DOI: 10.1038/sj.bjc.6604794] [Citation(s) in RCA: 249] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is overexpressed in ovarian carcinomas, with direct or indirect activation of EGFR able to trigger tumour growth. We demonstrate significant activation of both signal transducer and activator of transcription (STAT)3 and its upstream activator Janus kinase (JAK)2, in high-grade ovarian carcinomas compared with normal ovaries and benign tumours. The association between STAT3 activation and migratory phenotype of ovarian cancer cells was investigated by EGF-induced epithelial–mesenchymal transition (EMT) in OVCA 433 and SKOV3 ovarian cancer cell lines. Ligand activation of EGFR induced a fibroblast-like morphology and migratory phenotype, consistent with the upregulation of mesenchyme-associated N-cadherin, vimentin and nuclear translocation of β-catenin. This occurred concomitantly with activation of the downstream JAK2/STAT3 pathway. Both cell lines expressed interleukin-6 receptor (IL-6R), and treatment with EGF within 1 h resulted in a several-fold enhancement of mRNA expression of IL-6. Consistent with that, EGF treatment of both OVCA 433 and SKOV3 cell lines resulted in enhanced IL-6 production in the serum-free medium. Exogenous addition of IL-6 to OVCA 433 cells stimulated STAT3 activation and enhanced migration. Blocking antibodies against IL-6R inhibited IL-6 production and EGF- and IL-6-induced migration. Specific inhibition of STAT3 activation by JAK2-specific inhibitor AG490 blocked STAT3 phosphorylation, cell motility, induction of N-cadherin and vimentin expression and IL6 production. These data suggest that the activated status of STAT3 in high-grade ovarian carcinomas may occur directly through activation of EGFR or IL-6R or indirectly through induction of IL-6R signalling. Such activation of STAT3 suggests a rationale for a combination of anti-STAT3 and EGFR/IL-6R therapy to suppress the peritoneal spread of ovarian cancer.
Collapse
|
33
|
Duan Z, Ames RY, Ryan M, Hornicek FJ, Mankin H, Seiden MV. CDDO-Me, a synthetic triterpenoid, inhibits expression of IL-6 and Stat3 phosphorylation in multi-drug resistant ovarian cancer cells. Cancer Chemother Pharmacol 2008; 63:681-9. [PMID: 18587580 DOI: 10.1007/s00280-008-0785-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 06/16/2008] [Indexed: 12/15/2022]
Abstract
Previous studies have identified interleukin 6 (IL-6) as an important cytokine with prognostic significance in ovarian cancer. Activation of the IL-6-Stat3 pathway contributes to tumor cell growth, survival and drug resistance in several cancers, including ovarian cancer. To explore potential therapeutic strategies for interrupting signaling through this pathway, we assessed the ability of CDDO-Me, a synthetic triterpenoid, to inhibit IL-6 secretion, Stat3 phosphorylation, Stat3 nuclear translocation and paclitaxel sensitivity in several cell line model systems. These studies demonstrated that CDDO-Me significantly inhibits IL-6 secretion in paclitaxel-resistant ovarian cancer cells and specifically suppresses IL-6- or oncostatin M-induced Stat3 nuclear translocation. Treatment with CDDO-Me significantly decreases the levels of Stat3, Jak2, and Src phosphorylation in ovarian and breast cancer cell lines with constitutively activated Stat3. This inhibition of the IL-6-Stat3 pathway correlated with suppression of the anti-apoptotic Stat3 target genes Bcl-X(L), survivin, and Mcl-1, and with apoptosis induction as measured by monitoring PARP and its cleavage product, as well as by quantitative measurement of the apoptosis-associated CK18Asp396. Furthermore, CDDO-Me increases the cytotoxic effects of paclitaxel in the paclitaxel-resistant ovarian cancer cell line OVCAR8(TR) (2 to 5-fold) and of cisplatin in the cisplatin-resistant ovarian cancer cell line A2780cp70 (2 to 4-fold). Our data confirm that CDDO-Me interrupts the signaling of multiple kinases involved in the IL-6-Stat3 and Src signaling pathways. Inhibition is likely achieved through multiple points within these pathways. In a model system of established acquired drug resistance, CCDO-Me is effective at partially reversing the drug-resistance phenotype.
Collapse
Affiliation(s)
- Zhenfeng Duan
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Hoque MO, Kim MS, Ostrow KL, Liu J, Wisman GBA, Park HL, Poeta ML, Jeronimo C, Henrique R, Lendvai A, Schuuring E, Begum S, Rosenbaum E, Ongenaert M, Yamashita K, Califano J, Westra W, van der Zee AGJ, Van Criekinge W, Sidransky D. Genome-wide promoter analysis uncovers portions of the cancer methylome. Cancer Res 2008; 68:2661-70. [PMID: 18413733 DOI: 10.1158/0008-5472.can-07-5913] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA methylation has a role in mediating epigenetic silencing of CpG island genes in cancer and other diseases. Identification of all gene promoters methylated in cancer cells "the cancer methylome" would greatly advance our understanding of gene regulatory networks in tumorigenesis. We previously described a new method of identifying methylated tumor suppressor genes based on pharmacologic unmasking of the promoter region and detection of re-expression on microarray analysis. In this study, we modified and greatly improved the selection of candidates based on new promoter structure algorithm and microarray data generated from 20 cancer cell lines of 5 major cancer types. We identified a set of 200 candidate genes that cluster throughout the genome of which 25 were previously reported as harboring cancer-specific promoter methylation. The remaining 175 genes were tested for promoter methylation by bisulfite sequencing or methylation-specific PCR (MSP). Eighty-two of 175 (47%) genes were found to be methylated in cell lines, and 53 of these 82 genes (65%) were methylated in primary tumor tissues. From these 53 genes, cancer-specific methylation was identified in 28 genes (28 of 53; 53%). Furthermore, we tested 8 of the 28 newly identified cancer-specific methylated genes with quantitative MSP in a panel of 300 primary tumors representing 13 types of cancer. We found cancer-specific methylation of at least one gene with high frequency in all cancer types. Identification of a large number of genes with cancer-specific methylation provides new targets for diagnostic and therapeutic intervention, and opens fertile avenues for basic research in tumor biology.
Collapse
Affiliation(s)
- Mohammad Obaidul Hoque
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Duluc D, Delneste Y, Tan F, Moles MP, Grimaud L, Lenoir J, Preisser L, Anegon I, Catala L, Ifrah N, Descamps P, Gamelin E, Gascan H, Hebbar M, Jeannin P. Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells. Blood 2007; 110:4319-30. [PMID: 17848619 DOI: 10.1182/blood-2007-02-072587] [Citation(s) in RCA: 339] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tumor-associated macrophages (TAMs), the most abundant immunosuppressive cells in the tumor microenvironment, originate from blood monocytes and exhibit an IL-10(high)IL-12(low) M2 profile. The factors involved in TAM generation remain unidentified. We identify here leukemia inhibitory factor (LIF) and IL-6 as tumor microenvironmental factors that can promote TAM generation. Ovarian cancer ascites switched monocyte differentiation into TAM-like cells that exhibit most ovarian TAM functional and phenotypic characteristics. Ovarian cancer ascites contained high concentrations of LIF and IL-6. Recombinant LIF and IL-6 skew monocyte differentiation into TAM-like cells by enabling monocytes to consume monocyte-colony-stimulating factor (M-CSF). Depletion of LIF, IL-6, and M-CSF in ovarian cancer ascites suppressed TAM-like cell induction. We extended these observations to different tumor-cell line supernatants. In addition to revealing a new tumor-escape mechanism associated with TAM generation via LIF and IL-6, these findings offer novel therapeutic perspectives to subvert TAM-induced immunosuppression and hence improve T-cell-based antitumor immunotherapy efficacy.
Collapse
|
36
|
Ng G, Winder D, Muralidhar B, Gooding E, Roberts I, Pett M, Mukherjee G, Huang J, Coleman N. Gain and overexpression of the oncostatin M receptor occur frequently in cervical squamous cell carcinoma and are associated with adverse clinical outcome. J Pathol 2007; 212:325-34. [PMID: 17516585 DOI: 10.1002/path.2184] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
For many oncogenes, increased expression resulting from copy number gain confers a selective advantage to cells that consequently make up the tumour bulk. To identify oncogenes of potential biological significance in cervical squamous cell carcinoma (SCC), 36 primary samples and ten cell lines were screened by array comparative genomic hybridization (CGH). The most commonly occurring regions of copy number gain that also showed amplification were 5p15.2-14.3 (59%), 5p13.3 (65%), and 5p13.2-13.1 (63%). Gene copy numbers were significantly associated with expression levels for three candidate oncogenes at these loci: OSMR (oncostatin M receptor) (p=0.03), PDZK3 (PDZ domain containing protein 3) (p=0.04), and TRIO (triple functional domain) (p=0.03). Further examination by fluorescence in situ hybridization on a tissue microarray of 110 primary cervical SCC samples revealed copy number gain frequencies of 60.9%, 57.3%, and 54.5% for OSMR, PDZK3, and TRIO, respectively, with OSMR adversely influencing overall patient survival independently of tumour stage (p=0.046). By array CGH, copy number gain of OSMR was not seen in any of 40 microdissected precursor cervical squamous intraepithelial lesions (SILs). Moreover, global mRNA expression analysis, using Affymetrix U133A 2.0 Arrays, showed no overexpression of OSMR in SILs, suggesting that OSMR gain and overexpression are relatively late steps in cervical carcinogenesis. In the cervical SCC cell lines CaSki and SW756, exogenous OSM activated downstream-signalling elements of OSMR including STAT3, p44/42 MAPK, and S6 ribosomal protein, and induced transcription of the angiogenic factor VEGF, effects that were reduced by OSMR depletion using RNA interference. We conclude that copy number gain of OSMR is frequently found in cervical SCC and is associated with adverse clinical outcome. As well as being a potential prognostic marker, OSMR is a candidate cell surface therapeutic target.
Collapse
Affiliation(s)
- G Ng
- Medical Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Piccaluga PP, Agostinelli C, Califano A, Rossi M, Basso K, Zupo S, Went P, Klein U, Zinzani PL, Baccarani M, Dalla Favera R, Pileri SA. Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets. J Clin Invest 2007; 117:823-34. [PMID: 17304354 PMCID: PMC1794115 DOI: 10.1172/jci26833] [Citation(s) in RCA: 226] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 12/14/2006] [Indexed: 12/16/2022] Open
Abstract
Peripheral T cell lymphoma, unspecified (PTCL/U), the most common form of PTCL, displays heterogeneous morphology and phenotype, poor response to treatment, and poor prognosis. We demonstrate that PTCL/U shows a gene expression profile clearly distinct from that of normal T cells. Comparison with the profiles of purified T cell subpopulations (CD4+, CD8+, resting [HLA-DR-], and activated [HLA-DR+]) reveals that PTCLs/U are most closely related to activated peripheral T lymphocytes, either CD4+ or CD8+. Interestingly, the global gene expression profile cannot be surrogated by routine CD4/CD8 immunohistochemistry. When compared with normal T cells, PTCLs/U display deregulation of functional programs often involved in tumorigenesis (e.g., apoptosis, proliferation, cell adhesion, and matrix remodeling). Products of deregulated genes can be detected in PTCLs/U by immunohistochemistry with an ectopic, paraphysiologic, or stromal location. PTCLs/U aberrantly express, among others, PDGFRalpha, a tyrosine-kinase receptor, whose deregulation is often related to a malignant phenotype. Notably, both phosphorylation of PDGFRalpha and sensitivity of cultured PTCL cells to imatinib (as well as to an inhibitor of histone deacetylase) were found. These results, which might be extended to other more rare PTCL categories, provide insight into tumor pathogenesis and clinical management of PTCL/U.
Collapse
Affiliation(s)
- Pier Paolo Piccaluga
- Institute of Hematology and Medical Oncology “L. and A. Seràgnoli,” Hematology and Hematopathology Units, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
Institute for Cancer Genetics and
Center for Computational Biology and Biochemistry, Columbia University, New York, New York, USA.
S.S.D. Diagnostica Malattie Linfoproliferative, Istituto Nazionale per la Ricerca sul Cancro, Genoa University, Genoa, Italy.
Institute of Pathology, Basel University, Basel, Switzerland.
Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| | - Claudio Agostinelli
- Institute of Hematology and Medical Oncology “L. and A. Seràgnoli,” Hematology and Hematopathology Units, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
Institute for Cancer Genetics and
Center for Computational Biology and Biochemistry, Columbia University, New York, New York, USA.
S.S.D. Diagnostica Malattie Linfoproliferative, Istituto Nazionale per la Ricerca sul Cancro, Genoa University, Genoa, Italy.
Institute of Pathology, Basel University, Basel, Switzerland.
Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| | - Andrea Califano
- Institute of Hematology and Medical Oncology “L. and A. Seràgnoli,” Hematology and Hematopathology Units, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
Institute for Cancer Genetics and
Center for Computational Biology and Biochemistry, Columbia University, New York, New York, USA.
S.S.D. Diagnostica Malattie Linfoproliferative, Istituto Nazionale per la Ricerca sul Cancro, Genoa University, Genoa, Italy.
Institute of Pathology, Basel University, Basel, Switzerland.
Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| | - Maura Rossi
- Institute of Hematology and Medical Oncology “L. and A. Seràgnoli,” Hematology and Hematopathology Units, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
Institute for Cancer Genetics and
Center for Computational Biology and Biochemistry, Columbia University, New York, New York, USA.
S.S.D. Diagnostica Malattie Linfoproliferative, Istituto Nazionale per la Ricerca sul Cancro, Genoa University, Genoa, Italy.
Institute of Pathology, Basel University, Basel, Switzerland.
Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| | - Katia Basso
- Institute of Hematology and Medical Oncology “L. and A. Seràgnoli,” Hematology and Hematopathology Units, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
Institute for Cancer Genetics and
Center for Computational Biology and Biochemistry, Columbia University, New York, New York, USA.
S.S.D. Diagnostica Malattie Linfoproliferative, Istituto Nazionale per la Ricerca sul Cancro, Genoa University, Genoa, Italy.
Institute of Pathology, Basel University, Basel, Switzerland.
Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| | - Simonetta Zupo
- Institute of Hematology and Medical Oncology “L. and A. Seràgnoli,” Hematology and Hematopathology Units, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
Institute for Cancer Genetics and
Center for Computational Biology and Biochemistry, Columbia University, New York, New York, USA.
S.S.D. Diagnostica Malattie Linfoproliferative, Istituto Nazionale per la Ricerca sul Cancro, Genoa University, Genoa, Italy.
Institute of Pathology, Basel University, Basel, Switzerland.
Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| | - Philip Went
- Institute of Hematology and Medical Oncology “L. and A. Seràgnoli,” Hematology and Hematopathology Units, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
Institute for Cancer Genetics and
Center for Computational Biology and Biochemistry, Columbia University, New York, New York, USA.
S.S.D. Diagnostica Malattie Linfoproliferative, Istituto Nazionale per la Ricerca sul Cancro, Genoa University, Genoa, Italy.
Institute of Pathology, Basel University, Basel, Switzerland.
Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| | - Ulf Klein
- Institute of Hematology and Medical Oncology “L. and A. Seràgnoli,” Hematology and Hematopathology Units, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
Institute for Cancer Genetics and
Center for Computational Biology and Biochemistry, Columbia University, New York, New York, USA.
S.S.D. Diagnostica Malattie Linfoproliferative, Istituto Nazionale per la Ricerca sul Cancro, Genoa University, Genoa, Italy.
Institute of Pathology, Basel University, Basel, Switzerland.
Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| | - Pier Luigi Zinzani
- Institute of Hematology and Medical Oncology “L. and A. Seràgnoli,” Hematology and Hematopathology Units, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
Institute for Cancer Genetics and
Center for Computational Biology and Biochemistry, Columbia University, New York, New York, USA.
S.S.D. Diagnostica Malattie Linfoproliferative, Istituto Nazionale per la Ricerca sul Cancro, Genoa University, Genoa, Italy.
Institute of Pathology, Basel University, Basel, Switzerland.
Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| | - Michele Baccarani
- Institute of Hematology and Medical Oncology “L. and A. Seràgnoli,” Hematology and Hematopathology Units, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
Institute for Cancer Genetics and
Center for Computational Biology and Biochemistry, Columbia University, New York, New York, USA.
S.S.D. Diagnostica Malattie Linfoproliferative, Istituto Nazionale per la Ricerca sul Cancro, Genoa University, Genoa, Italy.
Institute of Pathology, Basel University, Basel, Switzerland.
Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| | - Riccardo Dalla Favera
- Institute of Hematology and Medical Oncology “L. and A. Seràgnoli,” Hematology and Hematopathology Units, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
Institute for Cancer Genetics and
Center for Computational Biology and Biochemistry, Columbia University, New York, New York, USA.
S.S.D. Diagnostica Malattie Linfoproliferative, Istituto Nazionale per la Ricerca sul Cancro, Genoa University, Genoa, Italy.
Institute of Pathology, Basel University, Basel, Switzerland.
Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| | - Stefano A. Pileri
- Institute of Hematology and Medical Oncology “L. and A. Seràgnoli,” Hematology and Hematopathology Units, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
Institute for Cancer Genetics and
Center for Computational Biology and Biochemistry, Columbia University, New York, New York, USA.
S.S.D. Diagnostica Malattie Linfoproliferative, Istituto Nazionale per la Ricerca sul Cancro, Genoa University, Genoa, Italy.
Institute of Pathology, Basel University, Basel, Switzerland.
Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| |
Collapse
|
38
|
Abstract
Ovarian cancer is a heterogeneous disease with extensive cytogenetic and molecular heterogeneity including aneuploidy, chromosomal alterations, mutations and overexpression as well as a natural propensity to disseminate and spread, making it difficult to diagnose at an early stage. Insights into the molecular mechanisms operative in cancer development, progression and metastasis have uncovered a wide array of targets for therapeutic intervention. In the absence of a common driving oncogene in ovarian cancer, single targeted therapy for this disease is unlikely to yield significant clinical benefit. Tailored approaches that combine molecular targeting agents with cytotoxic regimens hold great promise when used in primary treatment, during consolidation and maintenance therapy, and in the treatment of persistent or recurrent disease. The most promising treatment strategies are those that target the drivers of tumorigenesis and enhance the activity of cytotoxic agents. Receptor tyrosine kinases, non-receptor tyrosine kinases, serine/threonine kinases, transferases, proteases and deacetylases are among the relevant molecular markers and targets for ovarian cancer that are discussed. Collaboration, coordination, creativity and aggressive outreach to patients and their advocates are essential for success in running the concurrent trials with multiple clinical end points and embedded translational research that are needed to evaluate the array of promising targeted therapeutics and combinations. Validated biomarkers, surrogate specimens and end points, and additional clinically relevant in vitro and in vivo models for ovarian cancer are needed to facilitate the drug development and evaluation process, and ultimately to make meaningful improvements in the diagnosis, prevention and management of ovarian cancer.
Collapse
|
39
|
Duan Z, Foster R, Bell DA, Mahoney J, Wolak K, Vaidya A, Hampel C, Lee H, Seiden MV. Signal transducers and activators of transcription 3 pathway activation in drug-resistant ovarian cancer. Clin Cancer Res 2006; 12:5055-63. [PMID: 16951221 DOI: 10.1158/1078-0432.ccr-06-0861] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE One of the major obstacles in the treatment of ovarian cancer is the development of multidrug resistance. Recent evidence shows that high-grade ovarian cancer often shows activation of the signal transducers and activators of transcription 3 (Stat3) pathway with subsequent transcription of genes that support tumor growth and survival. Less studied is the role of the Stat3 pathway in acquired drug resistance. There is no information on Stat3 expression in chemotherapy naïve ovarian cancer as compared with tumors collected later in the natural history of the disease. To further clarify the significance of Stat3 activation in ovarian cancer, here we investigated the Stat3 expression and activation in ovarian cancer and ovarian cancer multidrug resistance cell lines. EXPERIMENTAL DESIGN Western blotting, electrophoretic mobility shift assay, luciferase assays, ELISA assay, and real-time reverse transcription-PCR determined interleukin-6 and Stat3 pathway expression and activation in cell lines. Stat3 expression in ovarian cancer tissue microarray was evaluated by immunohistochemistry. RESULTS Activated (phosphorylated) Stat3 is overexpressed in most paclitaxel-resistant ovarian cancer cells. Inhibition of Stat3 activation results in significant decreases in paclitaxel resistance and enhanced apoptosis. Drug-resistant recurrent tumors have significantly greater phosphorylated Stat3 (pStat3) expression as compared with matched primary tumors. Tumors with associated inflammatory cell infiltrates also have a higher proportion of cells staining intensely for nuclear phosphorylated Stat3 as compared with tumors without inflammatory infiltrates, consistent with paracrine activation of the Stat3 pathway by immune-mediated cytokines. CONCLUSIONS These data support the hypothesis that interruption of Stat3 signaling could reverse resistance to paclitaxel and perhaps other chemotherapy agents in human cancer.
Collapse
Affiliation(s)
- Zhenfeng Duan
- Division of Hematology/Oncology, Department of Pathology, and Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Villedieu M, Deslandes E, Duval M, Héron JF, Gauduchon P, Poulain L. Acquisition of chemoresistance following discontinuous exposures to cisplatin is associated in ovarian carcinoma cells with progressive alteration of FAK, ERK and p38 activation in response to treatment. Gynecol Oncol 2006; 101:507-19. [PMID: 16387351 DOI: 10.1016/j.ygyno.2005.11.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 10/03/2005] [Accepted: 11/10/2005] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Recurrence and cisplatin resistance that progressively develops in the course of treatments are major impediments in ovarian cancer therapy. We investigated the involvement of alterations of different signaling pathways in this acquired chemoresistance. METHODS We studied the activation of these pathways in a model of progressive acquisition of resistance that we established, by discontinuously exposing a sensitive ovarian carcinoma cell line, OAW42, to increasing concentrations of cisplatin. RESULTS OAW42-T1 and -T2 variants, which emerged after the first two treatments of OAW42 cells with 5 microg/ml cisplatin, showed enhanced but transient resistance. OAW42-R cells, obtained following successive reiterations of the treatment, displayed both a stronger resistance to cisplatin-induced apoptosis and an increased capacity to recover a normal proliferation after treatment. The measurement of DNA adducts demonstrated that the mechanisms leading to a decreased DNA platination could not explain the level of resistance of OAW42-R cells. The simultaneous study of activation pattern of key proteins of different signaling pathways revealed that cisplatin induced both activation of ERK and p38 and inhibition of P-FAK in the sensitive cells, whereas it progressively failed to elicit such a response in the resistant variants. In contrast, STAT3 and Akt did not seem to be involved in the acquired chemoresistance in our model. CONCLUSIONS Our results suggested that emergence of chemoresistance was accompanied with the progressive loss of ERK and p38 activation and with the maintenance of FAK activation in response to cisplatin, and they demonstrated that these alterations were early events in the course of treatments.
Collapse
Affiliation(s)
- M Villedieu
- Groupe Régional d'Etudes sur le Cancer, (EA 1772, Université de Caen Basse-Normandie), Unité Biologie et Thérapies Innovantes des Cancers Localement Agressifs, CLCC F. Baclesse, Avenue du général Harris, 14076 Caen cedex 05, France
| | | | | | | | | | | |
Collapse
|
41
|
Douglas WG, Tracy E, Tan D, Yu J, Hicks Jr. WL, Rigual NR, Loree TR, Wang Y, Baumann H. Development of Head and Neck Squamous Cell Carcinoma Is Associated With Altered Cytokine Responsiveness. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.585.2.10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Growth of head and neck squamous cell carcinoma (HNSCC) is generally associated with an inflammatory component. It is hypothesized that these tumor cells develop mechanisms to evade the growth inhibitory effects of cytokines that are present in the tumor microenvironment. This study determined the changes in responsiveness to inflammatory cytokines that accompany the transition of normal to transformed epithelial cells. Paired primary cultures of normal epithelial cells (NEC) and SCC cells were established from 16 patients. Receptor-mediated activation of signal transducer and activator of transcription and extracellular signal-regulated kinase pathways in response to cytokine treatments was identified by immunoblot analysis. Thymidine incorporation determined the impact of the cytokines on DNA synthesis. HNNEC and HNSCC displayed a prominent signaling in response to oncostatin M, interleukin-6, IFN-γ, and epidermal growth factor. Untreated HNSCC showed an elevated level of phosphorylated signal transducer and activator of transcription 3 and extracellular signal-regulated kinase (P < 0.001) compared with HNNEC, suggesting constitutively activated pathways. Moreover, HNSCC cells phosphorylated significantly more signal transducer and activator of transcription 1 in response to oncostatin M (P = 0.002) and IFN-γ (P = 0.018) treatments. DNA synthesis of SCC cells was less inhibited by cytokines produced by endotoxin-stimulated macrophages (P = 0.016) than that of NEC. Low-dose oncostatin M slightly enhanced proliferation of SCC, whereas that of NEC was suppressed (P = 0.016). This study identified significant alterations in signal transduction pathways engaged by cytokines and which are associated with loss of growth inhibition of HNSCC. Increased signal transducer and activator of transcription phosphorylation, along with constitutively phosphorylated extracellular signal-regulated kinase in HNSCC, suggest that these pathways as molecular markers are important in the malignant transformation process and are potential targets for treatment.
Collapse
Affiliation(s)
- Wade G. Douglas
- 1Surgery, Division of Head and Neck and Plastic Surgery, Departments of
| | | | | | - Jihnhee Yu
- 4Biostatistics, Roswell Park Cancer Institute, Buffalo, New York
| | | | - Nestor R. Rigual
- 1Surgery, Division of Head and Neck and Plastic Surgery, Departments of
| | - Thom R. Loree
- 1Surgery, Division of Head and Neck and Plastic Surgery, Departments of
| | | | | |
Collapse
|
42
|
Silver DL, Naora H, Liu J, Cheng W, Montell DJ. Activated signal transducer and activator of transcription (STAT) 3: localization in focal adhesions and function in ovarian cancer cell motility. Cancer Res 2004; 64:3550-8. [PMID: 15150111 DOI: 10.1158/0008-5472.can-03-3959] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Constitutive activation of the Janus-activated kinase/signal transducer and activator of transcription (STAT) pathway promotes the proliferation and survival of cancer cells in culture and is associated with various cancers, including those of the ovary. We found that constitutively activated STAT3 levels correlated with aggressive clinical behavior of ovarian carcinoma specimens. Furthermore, inhibition of STAT3 reduced the motility of ovarian cancer cells in vitro. Surprisingly, we found that activated STAT3 localized not only to nuclei but also to focal adhesions in these cells. Activated STAT3 coimmunoprecipitated with phosphorylated paxillin and focal adhesion kinase and required paxillin and Src for its localization to focal adhesions. These results suggest that Janus-activated kinase/STAT signaling may contribute to ovarian cancer cell invasiveness.
Collapse
Affiliation(s)
- Debra L Silver
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
43
|
Ji Q, Liu PI, Chen PK, Aoyama C. Follicle stimulating hormone-induced growth promotion and gene expression profiles on ovarian surface epithelial cells. Int J Cancer 2004; 112:803-14. [PMID: 15386376 DOI: 10.1002/ijc.20478] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epidemiologic data have implicated reproductive follicle-stimulating hormone (FSH) as a probable risk factor for ovarian cancer (OC) development. Although pituitary and sex hormones have been reported to regulate OC cell growth, no information is available on the influence of FSH on gene expression profiles during ovarian surface epithelial (OSE) cell proliferation. This study evaluated the effect of FSH treatment on cell proliferation of various OSE cell lines and gene expression profiles with FSH treatment. Follicle-stimulating hormone receptor (FSHR) was found at higher expression at both transcriptional and protein levels in ovarian cancerous tissues compared to normal tissues, and FSH was shown to promote cell growth in 3 OSE cell lines. Furthermore, it was also found that overexpression of FSHR in Chinese hamster ovary (CHO) cells leads to cell proliferation. Using cDNA MicroArray analysis on MCV152 cells with FSH treatment, 91 genes were found upregulated and 68 genes downregulated for more than 2-fold after FSH treatment. Most of the genes were related to metabolism, cell proliferation and oncogenes. Downregulated genes included tumor suppressor genes (RB1, BRCA1, BS69) and the genes related to cell proliferation control. Pathway analysis found that FSH activates certain important enzymes in sterol biosynthesis pathways. FSH-induced gene expression profiles on MCV152 cells support the standing hypothesis that FSH is a probable risk factor for ovarian cancerous development.
Collapse
Affiliation(s)
- Qing Ji
- Department of Pathology, Olive View-UCLA Medical Center, Sylmar, CA, USA
| | | | | | | |
Collapse
|