1
|
Choi SH, Lee K, Han H, Mo H, Jung H, Ryu Y, Nam Y, Rim YA, Ju JH. Prochondrogenic effect of decellularized extracellular matrix secreted from human induced pluripotent stem cell-derived chondrocytes. Acta Biomater 2023:S1742-7061(23)00317-3. [PMID: 37295627 DOI: 10.1016/j.actbio.2023.05.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/27/2022] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Cartilage is mainly composed of chondrocytes and the extracellular matrix (ECM), which exchange important biochemical and biomechanical signals necessary for differentiation and homeostasis. Human articular cartilage has a low ability for regeneration because it lacks blood vessels, nerves, and lymphatic vessels. Currently, cell therapeutics, including stem cells, provide a promising strategy for cartilage regeneration and treatment; however, there are various hurdles to overcome, such as immune rejection and teratoma formation. In this study, we assessed the applicability of the stem cell-derived chondrocyte ECM for cartilage regeneration. Human induced pluripotent stem cell (hiPSC)-derived chondrocytes (iChondrocytes) were differentiated, and decellularized ECM (dECM) was successfully isolated from cultured chondrocytes. Isolated dECM enhanced in vitro chondrogenesis of iPSCs when recellularized. Implanted dECM also restored osteochondral defects in a rat osteoarthritis model. A possible association with the glycogen synthase kinase-3 beta (GSK3β) pathway demonstrated the fate-determining importance of dECM in regulating cell differentiation. Collectively, we suggested the prochondrogenic effect of hiPSC-derived cartilage-like dECM and offered a promising approach as a non-cellular therapeutic for articular cartilage reconstruction without cell transplantation. STATEMENT OF SIGNIFICANCE: Human articular cartilage has low ability for regeneration and cell culture-based therapeutics could aid cartilage regeneration. Yet, the applicability of human induced pluripotent stem cell-derived chondrocyte (iChondrocyte) extracellular matrix (ECM) has not been elucidated. Therefore, we first differentiated iChondrocytes and isolated the secreted ECM by decellularization. Recellularization was performed to confirm the pro-chondrogenic effect of the decellularized ECM (dECM). In addition, we confirmed the possibility of cartilage repair by transplanting the dECM into the cartilage defect in osteochondral defect rat knee joint. We believe that our proof-of-concept study will serve as a basis for investigating the potential of dECM obtained from iPSC-derived differentiated cells as a non-cellular resource for tissue regeneration and other future applications.
Collapse
Affiliation(s)
- Si Hwa Choi
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea
| | | | - Heeju Han
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea
| | - Hyunkyung Mo
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea
| | | | - YoungWoo Ryu
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea
| | | | - Yeri Alice Rim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea.
| | - Ji Hyeon Ju
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea; YiPSCELL, Inc., Seoul, South Korea; Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Rees JM, Sleight VA, Clark SJ, Nakamura T, Gillis JA. Ectodermal Wnt signaling, cell fate determination, and polarity of the skate gill arch skeleton. eLife 2023; 12:e79964. [PMID: 36940244 PMCID: PMC10027317 DOI: 10.7554/elife.79964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/03/2022] [Accepted: 03/03/2023] [Indexed: 03/21/2023] Open
Abstract
The gill skeleton of cartilaginous fishes (sharks, skates, rays, and holocephalans) exhibits a striking anterior-posterior polarity, with a series of fine appendages called branchial rays projecting from the posterior margin of the gill arch cartilages. We previously demonstrated in the skate (Leucoraja erinacea) that branchial rays derive from a posterior domain of pharyngeal arch mesenchyme that is responsive to Sonic hedgehog (Shh) signaling from a distal gill arch epithelial ridge (GAER) signaling centre. However, how branchial ray progenitors are specified exclusively within posterior gill arch mesenchyme is not known. Here, we show that genes encoding several Wnt ligands are expressed in the ectoderm immediately adjacent to the skate GAER, and that these Wnt signals are transduced largely in the anterior arch environment. Using pharmacological manipulation, we show that inhibition of Wnt signalling results in an anterior expansion of Shh signal transduction in developing skate gill arches, and in the formation of ectopic anterior branchial ray cartilages. Our findings demonstrate that ectodermal Wnt signalling contributes to gill arch skeletal polarity in skate by restricting Shh signal transduction and chondrogenesis to the posterior arch environment and highlights the importance of signalling interactions at embryonic tissue boundaries for cell fate determination in vertebrate pharyngeal arches.
Collapse
Affiliation(s)
- Jenaid M Rees
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Victoria A Sleight
- School of Biological Sciences, University of AberdeenAberdeenUnited Kingdom
| | | | - Tetsuya Nakamura
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
| | - J Andrew Gillis
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological LaboratoryWoods HoleUnited States
| |
Collapse
|
3
|
Han R, Han L, Xia Y, Guo M, Li H. lncRNA Sequencing of Antler Mesenchymal Tissue Revealed that the Regulatory Network of Antler Cell Proliferation and Differentiation. Anim Biotechnol 2022; 33:1629-1638. [PMID: 34010106 DOI: 10.1080/10495398.2021.1924762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022]
Abstract
Antlers have been widely studied due to their unique physiological characteristics, such as rapid growth, periodic shedding and regeneration. However, little is known about how antler growth is regulated by long non-coding RNA (lncRNA). The aim of the present study was to identify the lncRNAs expression profile and explore the function of lncRNAs during the antler growth. Herein, RNA-sequencing technology (RNA-seq) was performed on the three growth periods (early developmental period: EP, middle developmental period: MP, later developmental period: LP) of male sika deer (Cervus nippon) antler, 16 differentially expressed lncRNAs (DE lncRNAs) and 11 DE lncRNAs were identified in EP vs MP and MP vs LP related to cell proliferation and cell differentiation, respectively. Finally, lncRNAs-mRNAs co-expression networks were constructed based on the identified DE lncRNAs and their potential trans-target genes. The result reveals that lncRNAs may play diverse roles in different periods of antler growth. It provides a novel perspective for revealing the molecular mechanism of antler growth.
Collapse
Affiliation(s)
- Ruobing Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Lei Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yanling Xia
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Mengya Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Heping Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| |
Collapse
|
4
|
Wang F, Rummukainen P, Pehkonen M, Säämänen AM, Heino TJ, Kiviranta R. Mesenchymal cell-derived Wnt1 signaling regulates subchondral bone remodeling but has no effects on the development of growth plate or articular cartilage in mice. Bone 2022; 163:116497. [PMID: 35863746 DOI: 10.1016/j.bone.2022.116497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/05/2022] [Revised: 05/13/2022] [Accepted: 07/13/2022] [Indexed: 11/15/2022]
Abstract
Chondrocyte differentiation is a principal progress in endochondral ossification and in the formation of secondary ossification center (SOC) during the long bone development. We have previously reported that targeted deletion of Wnt1 in mesenchymal progenitors (Wnt1Prrx-/-) leads to spontaneous fractures and severe osteopenia in mouse long bones, suggesting that Wnt1 is a key regulator of bone metabolism. However, the effect of Wnt1 on the regulation of cartilage development and chondrocyte differentiation remained unknown. In this study, WNT1 protein expression was observed in lateral superficial cartilage and growth plate pre-hypertrophic chondrocytes in mice. Wnt1 mRNA expression was detected in epiphyseal cartilage from E16.5 to 3 month-old mice. Detailed histological analyses revealed that the average thickness and chondrocyte density of proximal tibial articular cartilage and growth plate were unchanged between Wnt1Prrx-/- and control mice. However, μCT analysis of tibial epiphyses showed that the subchondral bone mass was reduced in Wnt1Prrx-/- mice compared to control mice, as demonstrated by decreased bone volume, trabecular number, trabecular thickness, and increased trabecular separation in Wnt1Prrx-/- mice. Mechanistically, histomorphometric analyses showed that the reduced subchondral bone mass in Wnt1Prrx-/- mice was due to impaired bone formation and enhanced bone resorption. In vitro, exogenous Wnt1 inhibited chondrogenesis and chondrocyte hypertrophy in both cell autonomous and juxtacrine manners, while matrix mineralization and the expression of Mmp13, Mmp9 and Opn were induced in a juxtacrine manner. Taken together, mesenchymal cell-derived Wnt1 is an important regulator of subchondral bone remodeling, although it has no effect on the regulation of growth plate or articular cartilage.
Collapse
Affiliation(s)
- Fan Wang
- Institute of Biomedicine, University of Turku, Turku, Finland.
| | | | - Matias Pehkonen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Terhi J Heino
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Riku Kiviranta
- Institute of Biomedicine, University of Turku, Turku, Finland; Department of Endocrinology, Division of Medicine, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
5
|
Rolfe RA, Shea CA, Murphy P. Geometric analysis of chondrogenic self-organisation of embryonic limb bud cells in micromass culture. Cell Tissue Res 2022; 388:49-62. [PMID: 34988666 DOI: 10.1007/s00441-021-03564-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/26/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022]
Abstract
Spatial and temporal control of chondrogenesis generates precise, species-specific patterns of skeletal structures in the developing vertebrate limb. The pattern-template is laid down when mesenchymal cells at the core of the early limb bud condense and undergo chondrogenic differentiation. Although the mechanisms involved in organising such complex patterns are not fully understood, the interplay between BMP and Wnt signalling pathways is fundamental. Primary embryonic limb bud cells grown under high-density micromass culture conditions spontaneously create a simple cartilage nodule pattern, presenting a model to investigate pattern generation. We describe a novel analytical approach to quantify geometric properties and spatial relationships between chondrogenic condensations, utilizing the micromass model. We follow the emergence of pattern in live cultures with nodules forming at regular distances, growing and changing shape over time. Gene expression profiling supports rapid chondrogenesis and transition to hypertrophy, mimicking the process of endochondral ossification within the limb bud. Manipulating the signalling environment through addition of BMP or Wnt ligands, as well as the BMP pathway antagonist Noggin, altered the differentiation profile and nodule pattern. BMP2 addition increased chondrogenesis while WNT3A or Noggin had the opposite effect, but with distinct pattern outcomes. Titrating these pro- and anti-chondrogenic factors and examining the resulting patterns support the hypothesis that regularly spaced cartilage nodules formed by primary limb bud cells in micromass culture are influenced by the balance of Wnt and BMP signalling under a Turing-like mechanism. This study demonstrates an approach for investigating the mechanisms governing chondrogenic spatial organization using simple micromass culture.
Collapse
Affiliation(s)
- Rebecca A Rolfe
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Claire A Shea
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Paula Murphy
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| |
Collapse
|
6
|
Duboc V, Sulaiman FA, Feneck E, Kucharska A, Bell D, Holder-Espinasse M, Logan MPO. Tbx4 function during hindlimb development reveals a mechanism that explains the origins of proximal limb defects. Development 2021; 148:271903. [PMID: 34423345 PMCID: PMC8497778 DOI: 10.1242/dev.199580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/02/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022]
Abstract
We dissect genetically a gene regulatory network that involves the transcription factors Tbx4, Pitx1 and Isl1 acting cooperatively to establish the hindlimb bud, and identify key differences in the pathways that initiate formation of the hindlimb and forelimb. Using live image analysis of murine limb mesenchyme cells undergoing chondrogenesis in micromass culture, we distinguish a series of changes in cellular behaviours and cohesiveness that are required for chondrogenic precursors to undergo differentiation. Furthermore, we provide evidence that the proximal hindlimb defects observed in Tbx4 mutant mice result from a failure in the early differentiation step of chondroprogenitors into chondrocytes, providing an explanation for the origins of proximally biased limb defects.
Collapse
Affiliation(s)
- Veronique Duboc
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Fatima A Sulaiman
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Eleanor Feneck
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Anna Kucharska
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Donald Bell
- Light Microscopy, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Malcolm P O Logan
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
7
|
Wang X, He T, He L, Yang B, Liu Z, Pang M, Xie P, Zhang L, Rong L. Melatonin contributes to the hypertrophic differentiation of mesenchymal stem cell-derived chondrocytes via activation of the Wnt/β-catenin signaling pathway : Melatonin promotes MSC-derived chondrocytes hypertrophy. Stem Cell Res Ther 2021; 12:467. [PMID: 34419165 PMCID: PMC8379782 DOI: 10.1186/s13287-021-02536-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hypertrophy is a critical process for chondrocyte differentiation and maturation during endochondral ossification, which is responsible for the formation of long bone and postnatal longitudinal growth. Increasing evidence suggests that melatonin, an indole hormone, plays a pivotal role in chondrogenesis. However, little is known about the effects of melatonin on the terminal differentiation of chondrocytes. METHODS Mesenchymal stem cell (MSC)-derived chondrocytes generated by a high-density micromass culture system were induced to undergo hypertrophic differentiation. Melatonin-mediated hypertrophic differentiation was examined by reverse transcription polymerase chain reaction analysis (RT-PCR) analysis, histological staining and immunohistochemistry. Activation of the Wnt signaling pathway was evaluated by PCR array, RT-PCR, western blotting and immunofluorescence. XAV-939, a Wnt signaling pathway antagonist, was further used to determine whether the effect of melatonin on chondrocyte hypertrophic differentiation was mediated occurred by activation of Wnt signaling pathway. RESULTS Histological staining showed melatonin increased chondrocyte cell volume and the expression of type X collagen but decreased the expression of type II collagen compared with the control group. RT-PCR showed that melatonin significantly up-regulated the gene expressions of biomarkers of hypertrophic chondrocytes, including type X collagen, alkaline phosphatase, runt-related transcription factor 2, Indian hedgehog and parathyroid hormone-related protein receptor, and melatonin down-regulated the mRNA expression of hallmarks of chondrocytes, including parathyroid hormone-related protein. PCR array showed that the effect of melatonin on chondrocyte hypertrophic differentiation was accompanied by the up-regulation of multiple target genes of the canonical Wnt signaling pathway, and this effect was blocked by XAV-939. CONCLUSIONS The current findings demonstrate that melatonin enhances the hypertrophic differentiation of MSC-derived chondrocytes through the Wnt signaling pathway. Our findings add evidence to the role of melatonin in promoting bone development and highlight the positive effects of melatonin on terminal differentiation of chondrocytes.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Tianwei He
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Lei He
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Bu Yang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Zhongyu Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Mao Pang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Peigen Xie
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Liangming Zhang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China. .,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China. .,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China. .,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China. .,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.
| |
Collapse
|
8
|
Thorup AS, Strachan D, Caxaria S, Poulet B, Thomas BL, Eldridge SE, Nalesso G, Whiteford JR, Pitzalis C, Aigner T, Corder R, Bertrand J, Dell'Accio F. ROR2 blockade as a therapy for osteoarthritis. Sci Transl Med 2021; 12:12/561/eaax3063. [PMID: 32938794 DOI: 10.1126/scitranslmed.aax3063] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/12/2019] [Revised: 02/20/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022]
Abstract
Osteoarthritis is characterized by the loss of the articular cartilage, bone remodeling, pain, and disability. No pharmacological intervention can currently halt progression of osteoarthritis. Here, we show that blocking receptor tyrosine kinase-like orphan receptor 2 (ROR2) improves cartilage integrity and pain in osteoarthritis models by inhibiting yes-associated protein (YAP) signaling. ROR2 was up-regulated in the cartilage in response to inflammatory cytokines and mechanical stress. The main ligand for ROR2, WNT5A, and the targets YAP and connective tissue growth factor were up-regulated in osteoarthritis in humans. In vitro, ROR2 overexpression inhibited chondrocytic differentiation. Conversely, ROR2 blockade triggered chondrogenic differentiation of C3H10T1/2 cells and suppressed the expression of the cartilage-degrading enzymes a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4 and ADAMTS-5. The chondrogenic effect of ROR2 blockade in the cartilage was independent of WNT signaling and was mediated by down-regulation of YAP signaling. ROR2 signaling induced G protein and Rho-dependent nuclear accumulation of YAP, and YAP inhibition was required but not sufficient for ROR2 blockade-induced chondrogenesis. ROR2 silencing protected mice from instability-induced osteoarthritis with improved structural outcomes, sustained pain relief, and without apparent side effects or organ toxicity. Last, ROR2 silencing in human articular chondrocytes transplanted in nude mice led to the formation of cartilage organoids with more and better differentiated extracellular matrix, suggesting that the anabolic effect of ROR2 blockade is conserved in humans. Thus, ROR2 blockade is efficacious and well tolerated in preclinical animal models of osteoarthritis.
Collapse
Affiliation(s)
- Anne-Sophie Thorup
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Danielle Strachan
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Sara Caxaria
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Blandine Poulet
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Bethan L Thomas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Suzanne E Eldridge
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Giovanna Nalesso
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK
| | - James R Whiteford
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Costantino Pitzalis
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Thomas Aigner
- Institute of Pathology, Medical Center Coburg, Ketschendorferstrasse 33, 96450 Coburg, Germany
| | - Roger Corder
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Francesco Dell'Accio
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
9
|
Chen H, Tan XN, Hu S, Liu RQ, Peng LH, Li YM, Wu P. Molecular Mechanisms of Chondrocyte Proliferation and Differentiation. Front Cell Dev Biol 2021; 9:664168. [PMID: 34124045 PMCID: PMC8194090 DOI: 10.3389/fcell.2021.664168] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/04/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Abstract
Cartilage is a kind of connective tissue that buffers pressure and is essential to protect joint movement. It is difficult to self-recover once cartilage is damaged due to the lack of blood vessels, lymph, and nerve tissues. Repair of cartilage injury is mainly achieved by stimulating chondrocyte proliferation and extracellular matrix (ECM) synthesis. Cartilage homeostasis involves the regulation of multiple growth factors and the transduction of cellular signals. It is a very complicated process that has not been elucidated in detail. In this review, we summarized a variety of signaling molecules related to chondrocytes function. Especially, we described the correlation between chondrocyte-specific regulatory factors and cell signaling molecules. It has potential significance for guiding the treatment of cartilage injury.
Collapse
Affiliation(s)
- Hui Chen
- Hunan University of Chinese Medicine & Hunan Academy of Chinese Medicine, Changsha, China.,The Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, China.,Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Xiao-Ning Tan
- Hunan University of Chinese Medicine & Hunan Academy of Chinese Medicine, Changsha, China.,The Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, China
| | - Shi Hu
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan, China.,Center for Bionic Sensing and Intelligence, Institute of Bio-medical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ren-Qin Liu
- Hunan University of Chinese Medicine & Hunan Academy of Chinese Medicine, Changsha, China.,The Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, China.,Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Li-Hong Peng
- School of Computer, Hunan University of Technology, Zhuzhou, China
| | - Yong-Min Li
- Hunan University of Chinese Medicine & Hunan Academy of Chinese Medicine, Changsha, China.,The Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, China
| | - Ping Wu
- Hunan University of Chinese Medicine & Hunan Academy of Chinese Medicine, Changsha, China.,The Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, China.,Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan, China
| |
Collapse
|
10
|
Song X, Hu H, Zhao M, Ma T, Gao L. Prospects of circadian clock in joint cartilage development. FASEB J 2020; 34:14120-14135. [PMID: 32946614 DOI: 10.1096/fj.202001597r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/26/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022]
Abstract
Altering the food intake, exercise, and sleep patterns have a great influence on the homeostasis of the biological clock. This leads to accelerated aging of the articular cartilage, susceptibility to arthropathy and other aspects. Deficiency or overexpression of certain circadian clock-related genes accelerates the cartilage deterioration and leads to phenotypic variation in different joints. The process of joint cartilage development includes the formation of joint site, interzone, joint cavitation, epiphyseal ossification center, and cartilage maturation. The mechanism by which, biological clock regulates the cell-cycle, growth, metabolism, and other biological processes of chondrocytes is poorly understood. Here, we summarized the interaction between biological clock proteins and developmental pathways in chondrogenesis and provided the evidence from other tissues that further predicts the molecular patterns of these protein-protein networks in activation, proliferation, and differentiation. The purpose of this review is to gain deeper understanding of the evolution of cartilage and its irreversibility seen in damage and aging.
Collapse
Affiliation(s)
- Xiaopeng Song
- Heilongjiang Key Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hailong Hu
- Heilongjiang Key Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mingchao Zhao
- Heilongjiang Key Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tianwen Ma
- Heilongjiang Key Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Li Gao
- Heilongjiang Key Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
11
|
Struck AK, Braun M, Detering KA, Dziallas P, Neßler J, Fehr M, Metzger J, Distl O. A structural UGDH variant associated with standard Munchkin cats. BMC Genet 2020; 21:67. [PMID: 32605545 PMCID: PMC7325026 DOI: 10.1186/s12863-020-00875-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/18/2019] [Accepted: 06/24/2020] [Indexed: 02/06/2023] Open
Abstract
Background Munchkin cats were founded on a naturally occurring mutation segregating into long-legged and short-legged types. Short-legged cats showed disproportionate dwarfism (chondrodysplasia) in which all four legs are short and are referred as standard Munchkin cats. Long-legged animals are referred as non-standard Munchkin cats. A previous study using genome-wide single nucleotide polymorphisms (SNPs) for genome-wide association analysis identified a significantly associated region at 168–184 Mb on feline chromosome (FCA) B1. Results In this study, we validated the critical region on FCA B1 using a case-control study with 89 cats and 14 FCA B1-SNPs. A structural variant within UGDH (NC_018726.2:g.173294289_173297592delins108, Felis catus 8.0, equivalent to NC_018726.3:g.174882895_174886198delins108, Felis catus 9.0) on FCA B1 was perfectly associated with the phenotype of short-legged standard Munchkin cats. Conclusion This UGDH structural variant very likely causes the chondrodysplastic (standard) phenotype in Munchkin cats. The lack of homozygous mutant phenotypes and reduced litter sizes in standard Munchkin cats suggest an autosomal recessive lethal trait in the homozygote state. We propose an autosomal dominant mode of inheritance for the chondrodysplastic condition in Munchkin cats.
Collapse
Affiliation(s)
- Ann-Kathrin Struck
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover (Foundation), 30559, Hannover, Germany
| | - Marina Braun
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover (Foundation), 30559, Hannover, Germany
| | - Kim Aline Detering
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover (Foundation), 30559, Hannover, Germany
| | - Peter Dziallas
- Clinic for Small Animals, University of Veterinary Medicine Hannover (Foundation), 30559, Hannover, Germany
| | - Jasmin Neßler
- Clinic for Small Animals, University of Veterinary Medicine Hannover (Foundation), 30559, Hannover, Germany
| | - Michael Fehr
- Clinic for Small Animals, University of Veterinary Medicine Hannover (Foundation), 30559, Hannover, Germany
| | - Julia Metzger
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover (Foundation), 30559, Hannover, Germany
| | - Ottmar Distl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover (Foundation), 30559, Hannover, Germany.
| |
Collapse
|
12
|
Volleman TNE, Schol J, Morita K, Sakai D, Watanabe M. Wnt3a and wnt5a as Potential Chondrogenic Stimulators for Nucleus Pulposus Cell Induction: A Comprehensive Review. Neurospine 2020; 17:19-35. [PMID: 32252152 PMCID: PMC7136098 DOI: 10.14245/ns.2040040.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2020] [Accepted: 02/18/2020] [Indexed: 12/20/2022] Open
Abstract
Low back pain remains a highly prevalent pathology engendering a tremendous socioeconomic burden. Low back pain is generally associated with intervertebral disc (IVD) degeneration, a process involving the deterioration of nucleus pulpous (NP) cells and IVD matrix. Scientific interest has directed efforts to restoring cell numbers as a strategy to enable IVD regeneration. Currently, mesenchymal stromal cells (MSCs) are being explored as cell therapy agents, due to their easy accessibility and differentiation potential. For enhancement of MSCs, growth factor supplementation is commonly applied to induce differentiation towards a chondrogenic (NP) cell phenotype. The wnt signaling pathways play a crucial role in chondrogenesis, nonetheless, literature appears to present controversies with regard to wnt3a and wnt5a for the induction of NP cells, chondrocytes, and MSCs. This review aims to summarize the reporting on wnt3a/wnt5a mediated NP cell differentiation, and to elucidate the mechanisms involved in wnt3a and wnt5a mediated chondrogenesis for potential application as cell therapy supplements for IVD regeneration. Our review suggests that wnt3a, subsequently replaced with a chondrogenic stimulating growth factor, can enhance the chondrogenic potential of MSCs in vitro. Contrariwise, wnt5a is suggested to play a role in maintaining cell potency of differentiated NP or chondrogenic cells.
Collapse
Affiliation(s)
- Tibo Nico Emmie Volleman
- Department Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jordy Schol
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Kosuke Morita
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
13
|
Wang X, Cornelis FMF, Lories RJ, Monteagudo S. Exostosin-1 enhances canonical Wnt signaling activity during chondrogenic differentiation. Osteoarthritis Cartilage 2019; 27:1702-1710. [PMID: 31330188 DOI: 10.1016/j.joca.2019.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/11/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Exostosin-1 (Ext1) encodes a glycosyltransferase required for heparan sulfate (HS) chain elongation in HS-proteoglycan biosynthesis. HS chains serve as binding partners for signaling proteins, affecting their distribution and activity. The Wnt/β-catenin pathway emerged as critical regulator of chondrogenesis. Yet, how EXT1 and HS affect Wnt/β-catenin signaling during chondrogenesis remains unexplored. METHOD Ext1 was stably knocked-down or overexpressed in ATDC5 chondrogenic cells cultured as micromasses. HS content was determined using ELISA. Chondrogenic markers Sox9, Col2a1, Aggrecan, and Wnt direct target gene Axin2 were measured by RT-qPCR. Proteoglycan content was evaluated by Alcian blue and DMMB assay, canonical Wnt signaling activation by β-catenin Western blot and TOP/FOP assay. ATDC5 cells and human articular chondrocytes were treated with Wnt activators CHIR99021 and recombinant WNT3A. RESULTS Ext1 knock-down reduced HS, and increased chondrogenic markers and proteoglycan accumulation. Ext1 knock-down reduced active Wnt/β-catenin signaling. Conversely, Ext1 overexpressing cells, with higher HS content, showed decreased chondrogenic differentiation and enhanced Wnt/β-catenin signaling. Wnt/β-catenin signaling activation led to a down-regulation of Ext1 expression in ATDC5 cells and in human articular chondrocytes. CONCLUSIONS EXT1 affects chondrogenic differentiation of precursor cells, in part via changes in the activity of Wnt/β-catenin signaling. Wnt/β-catenin signaling controls Ext1 expression, suggesting a regulatory loop between EXT1 and Wnt/β-catenin signaling during chondrogenesis.
Collapse
Affiliation(s)
- X Wang
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.
| | - F M F Cornelis
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.
| | - R J Lories
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium; Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium.
| | - S Monteagudo
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.
| |
Collapse
|
14
|
Umair M, Hayat A. Nonsyndromic Split-Hand/Foot Malformation: Recent Classification. Mol Syndromol 2019; 10:243-254. [PMID: 32021595 DOI: 10.1159/000502784] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 08/07/2019] [Indexed: 01/05/2023] Open
Abstract
Split-hand/foot malformation (SHFM) is a genetic limb anomaly disturbing the central rays of the autopod. SHFM is a genetically heterogeneous disorder with variable expressivity inherited as syndromic and nonsyndromic forms. We provide an update of the clinical and molecular aspects of nonsyndromic SHFM. This rare condition is highly complex due to the clinical variability and irregular genetic inheritance observed in the affected individuals. Nonsyndromic SHFM types have been reviewed in terms of major molecular genetic alterations reported to date. This updated overview will assist researchers, scientists, and clinicians in making an appropriate molecular diagnosis, providing an accurate recurrence risk assessment, and developing a management plan.
Collapse
Affiliation(s)
- Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Ministry of National Guard-Health Affairs (MNGH), Riyadh, Saudi Arabia
| | - Amir Hayat
- Department of Biochemistry, Faculty of Life and Chemical Sciences, Abdul Wali Khan University, Mardan, Pakistan.,College of Medicine and Health, RILD Wellcome Wolfson Centre, University of Exeter, Royal Devon & Exeter NHS Foundation, Exeter, UK
| |
Collapse
|
15
|
Indirubin-3'-oxime stimulates chondrocyte maturation and longitudinal bone growth via activation of the Wnt/β-catenin pathway. Exp Mol Med 2019; 51:1-10. [PMID: 31515471 PMCID: PMC6802626 DOI: 10.1038/s12276-019-0306-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2019] [Revised: 05/07/2019] [Accepted: 05/15/2019] [Indexed: 12/02/2022] Open
Abstract
Researchers have shown increased interest in determining what stimulates height. Currently, many children undergo precocious puberty, resulting in short stature due to premature closure of the growth plate. However, the current approach for height enhancement is limited to growth hormone treatment, which often results in side effects and clinical failure and is costly. Although recent studies have indicated the importance of paracrine signals in the growth plate for longitudinal bone growth, height-stimulating agents targeting the signaling pathways involved in growth plate maturation remain unavailable in the clinic. The Wnt/β-catenin pathway plays a major role in the maturation of growth plate chondrocytes. In this study, by using an ex vivo tibial culture system, we identified indirubin-3′-oxime (I3O) as a compound capable of enhancing longitudinal bone growth. I3O promoted chondrocyte proliferation and differentiation via activation of the Wnt/β-catenin pathway in vitro. Intraperitoneal injection of I3O in adolescent mice increased growth plate height along with incremental chondrocyte maturation. I3O promoted tibial growth without significant adverse effects on bone thickness and articular cartilage. Therefore, I3O could be a potential therapeutic agent for increasing height in children with growth retardation. A compound that stimulates longitudinal bone growth could lead to safer treatments for children with short stature. Growth hormone treatments can normalize development in some children with growth hormone deficiency, but the side effects can be severe. Researchers led by Kang-Yell Choi at Yonsei University, Seoul, South Korea, have determined that chemical stimulation of a critical cell signaling pathway involving bone growth may offer a better approach for growing taller. Longitudinal growth of bones is driven by the proliferation and differentiation of cartilage cells in the growth plate. Choi and colleagues screened a chemical library and identified a compound derived from traditional Chinese herbs, which efficiently promotes this bone growth process in cultured cartilage cells and in the tibias of three-week-old mice. This compound appears safe, suggesting a potentially better avenue for promoting height growth.
Collapse
|
16
|
Lan L, Wang W, Huang Y, Bu X, Zhao C. Roles of Wnt7a in embryo development, tissue homeostasis, and human diseases. J Cell Biochem 2019; 120:18588-18598. [PMID: 31271226 DOI: 10.1002/jcb.29217] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/04/2019] [Accepted: 05/30/2019] [Indexed: 12/23/2022]
Abstract
Human Wnt family comprises 19 proteins which are critical to embryo development and tissue homeostasis. Binding to different frizzled (FZD) receptor, Wnt7a initiates both β-catenin dependent pathway, and β-catenin independent pathways such as PI3K/Akt, RAC/JNK, and extracellular signal-regulated kinase 5/peroxisome proliferator-activated receptor-γ. In the embryo, Wnt7a plays a crucial role in cerebral cortex development, synapse formation, and central nervous system vasculature formation and maintenance. Wnt7a is also involved in the development of limb and female reproductive system. Wnt7a mutation leads to human limb malformations and animal female reproductive system defects. Wnt7a is implicated in homeostasis maintenance of skeletal muscle, cartilage, cornea and hair follicle, and Wnt7a treatment may be potentially applied in skeletal muscle dystrophy, corneal damage, wound repair, and hair follicle regeneration. Wnt7a plays dual roles in human tumors. Wnt7a is downregulated in lung cancers, functioning as a tumor suppressor, however, it is upregulated in several other malignancies such as ovarian cancer, breast cancer, and glioma, acting as a tumor promoter. Moreover, Wnt7a overexpression is associated with inflammation and fibrosis, but its roles need to be further investigated.
Collapse
Affiliation(s)
- Lihui Lan
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China.,Department of Hepatobiliary and Spleen Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yue Huang
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Xianmin Bu
- Department of Hepatobiliary and Spleen Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
17
|
|
18
|
Kim H, Choi YJ, Lee YS, Park SY, Baek JE, Kim HK, Kim BJ, Lee SH, Koh JM. SLIT3 regulates endochondral ossification by β-catenin suppression in chondrocytes. Biochem Biophys Res Commun 2018; 506:847-853. [PMID: 30389141 DOI: 10.1016/j.bbrc.2018.10.167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/22/2018] [Accepted: 10/27/2018] [Indexed: 10/28/2022]
Abstract
Previously, we noted that SLIT3, slit guidance ligand 3, had an osteoprotective role with bone formation stimulation and bone resorption suppression. Additionally, we found that global Slit3 KO mice had smaller long bone. Skeletal staining showed short mineralized length in the newborn KO mice and wide hypertrophic chondrocyte area in the embryo KO mice, suggesting delayed chondrocyte maturation. The recombinant SLIT3 did not cause any change in proliferation of ATDC5 cells, but stimulated expressions of chondrocyte differentiation markers, such as COL2A1, SOX9, COL10A1, VEGF, and MMP13 in the cells. SLIT3 suppressed β-catenin activity in the cells, and activation of Wnt/β-catenin signaling by lithium chloride attenuated the SLIT3-stimulated differentiation markers. ATDC5 cells expressed only ROBO2 among their 4 isotypes, and the Robo2 knock-down with its siRNA reversed the SLIT3-stimulated differentiated markers in chondrocytes. Taken together, these indicate that SLIT3/ROBO2 promotes chondrocyte maturation via the inhibition of β-catenin signaling.
Collapse
Affiliation(s)
- Hanjun Kim
- Asan Institute for Life Sciences, Seoul, 138-736, South Korea
| | - Young-Jin Choi
- Asan Institute for Life Sciences, Seoul, 138-736, South Korea
| | - Young-Sun Lee
- Asan Institute for Life Sciences, Seoul, 138-736, South Korea
| | - Suk Young Park
- Asan Institute for Life Sciences, Seoul, 138-736, South Korea
| | - Ji-Eun Baek
- Asan Institute for Life Sciences, Seoul, 138-736, South Korea
| | - Ho-Kyoung Kim
- Asan Institute for Life Sciences, Seoul, 138-736, South Korea
| | - Beom-Jun Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, South Korea
| | - Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, South Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, South Korea.
| |
Collapse
|
19
|
Praxenthaler H, Krämer E, Weisser M, Hecht N, Fischer J, Grossner T, Richter W. Extracellular matrix content and WNT/β-catenin levels of cartilage determine the chondrocyte response to compressive load. Biochim Biophys Acta Mol Basis Dis 2017; 1864:851-859. [PMID: 29277327 DOI: 10.1016/j.bbadis.2017.12.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2017] [Revised: 12/15/2017] [Accepted: 12/17/2017] [Indexed: 11/19/2022]
Abstract
During osteoarthritis (OA)-development extracellular matrix (ECM) molecules are lost from cartilage, thus changing gene-expression, matrix synthesis and biomechanical competence of the tissue. Mechanical loading is important for the maintenance of articular cartilage; however, the influence of an altered ECM content on the response of chondrocytes to loading is not well understood, but may provide important insights into underlying mechanisms as well as supplying new therapies for OA. Objective here was to explore whether a changing ECM-content of engineered cartilage affects major signaling pathways and how this alters the chondrocyte response to compressive loading. Activity of canonical WNT-, BMP-, TGF-β- and p38-signaling was determined during maturation of human engineered cartilage and followed after exposure to a single dynamic compression-episode. WNT/β-catenin- and pSmad1/5/9-levels declined with increasing ECM-content of cartilage. While loading significantly suppressed proteoglycan-synthesis and ACAN-expression at low ECM-content this catabolic response then shifted to an anabolic reaction at high ECM-content. A positive correlation was observed between GAG-content and load-induced alteration of proteoglycan-synthesis. Induction of high β-catenin levels by the WNT-agonist CHIR suppressed load-induced SOX9- and GAG-stimulation in mature constructs. In contrast, the WNT-antagonist IWP-2 was capable of attenuating load-induced GAG-suppression in immature constructs. In conclusion, either ECM accumulation-associated or pharmacologically induced silencing of WNT-levels allowed for a more anabolic reaction of chondrocytes to physiological loading. This is consistent with the role of proteoglycans in sequestering WNT-ligands in the ECM, thus reducing WNT-activity and also provides a novel explanation of why low WNT-activity in cartilage protects from OA-development in mechanically overstressed cartilage.
Collapse
Affiliation(s)
- Heiko Praxenthaler
- Research Centre for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Heidelberg, Germany
| | - Elisabeth Krämer
- Research Centre for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Heidelberg, Germany
| | - Melanie Weisser
- Research Centre for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Heidelberg, Germany
| | - Nicole Hecht
- Research Centre for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Heidelberg, Germany
| | - Jennifer Fischer
- Research Centre for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Heidelberg, Germany
| | - Tobias Grossner
- Department of Orthopaedic and Trauma Surgery, Orthopaedic University Hospital Heidelberg, Heidelberg, Germany
| | - Wiltrud Richter
- Research Centre for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
20
|
Marcucio RS, Qin L, Alsberg E, Boerckel JD. Reverse engineering development: Crosstalk opportunities between developmental biology and tissue engineering. J Orthop Res 2017; 35:2356-2368. [PMID: 28660712 DOI: 10.1002/jor.23636] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/10/2017] [Accepted: 05/12/2017] [Indexed: 02/04/2023]
Abstract
The fields of developmental biology and tissue engineering have been revolutionized in recent years by technological advancements, expanded understanding, and biomaterials design, leading to the emerging paradigm of "developmental" or "biomimetic" tissue engineering. While developmental biology and tissue engineering have long overlapping histories, the fields have largely diverged in recent years at the same time that crosstalk opportunities for mutual benefit are more salient than ever. In this perspective article, we will use musculoskeletal development and tissue engineering as a platform on which to discuss these emerging crosstalk opportunities and will present our opinions on the bright future of these overlapping spheres of influence. The multicellular programs that control musculoskeletal development are rapidly becoming clarified, represented by shifting paradigms in our understanding of cellular function, identity, and lineage specification during development. Simultaneously, advancements in bioartificial matrices that replicate the biochemical, microstructural, and mechanical properties of developing tissues present new tools and approaches for recapitulating development in tissue engineering. Here, we introduce concepts and experimental approaches in musculoskeletal developmental biology and biomaterials design and discuss applications in tissue engineering as well as opportunities for tissue engineering approaches to inform our understanding of fundamental biology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2356-2368, 2017.
Collapse
Affiliation(s)
- Ralph S Marcucio
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 36th Street and Hamilton Walk, Philadelphia 19104-6081, Pennsylvania
| | - Eben Alsberg
- Departments of Biomedical Engineering and Orthopaedic Surgery, Case Western Reserve University, Cleveland, Ohio
| | - Joel D Boerckel
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 36th Street and Hamilton Walk, Philadelphia 19104-6081, Pennsylvania.,Department of Bioengineering, University of Pennslyvania, Philadelphia, Pennsylvania.,Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|
21
|
Abstract
Orthopedic tissue regeneration would benefit the aging population or patients with degenerative bone and cartilage diseases, especially osteoporosis and osteoarthritis. Despite progress in surgical and pharmacological interventions, new regenerative approaches are needed to meet the challenge of creating bone and articular cartilage tissues that are not only structurally sound but also functional, primarily to maintain mechanical integrity in their high load-bearing environments. In this review, we discuss new advances made in exploiting the three classes of materials in bone and cartilage regenerative medicine--cells, biomaterial-based scaffolds, and small molecules--and their successes and challenges reported in the clinic. In particular, the focus will be on the development of tissue-engineered bone and cartilage ex vivo by combining stem cells with biomaterials, providing appropriate structural, compositional, and mechanical cues to restore damaged tissue function. In addition, using small molecules to locally promote regeneration will be discussed, with potential approaches that combine bone and cartilage targeted therapeutics for the orthopedic-related disease, especially osteoporosis and osteoarthritis.
Collapse
Affiliation(s)
- Ok Hee Jeon
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, 5031 Smith Building, 400N. Broadway, Baltimore, MD, 21231, USA
| | - Jennifer Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, 5031 Smith Building, 400N. Broadway, Baltimore, MD, 21231, USA.
| |
Collapse
|
22
|
Shen G, Darendeliler MA. The Adaptive Remodeling of Condylar Cartilage— A Transition from Chondrogenesis to Osteogenesis. J Dent Res 2016; 84:691-9. [PMID: 16040724 DOI: 10.1177/154405910508400802] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022] Open
Abstract
Mandibular condylar cartilage is categorized as articular cartilage but markedly distinguishes itself in many biological aspects, such as its embryonic origin, ontogenetic development, post-natal growth mode, and histological structures. The most marked uniqueness of condylar cartilage lies in its capability of adaptive remodeling in response to external stimuli during or after natural growth. The adaptation of condylar cartilage to mandibular forward positioning constitutes the fundamental rationale for orthodontic functional therapy, which partially contributes to the correction of jaw discrepancies by achieving mandibular growth modification. The adaptive remodeling of condylar cartilage proceeds with the biomolecular pathway initiating from chondrogenesis and finalizing with osteogenesis. During condylar adaptation, chondrogenesis is activated when the external stimuli, e.g., condylar repositioning, generate the differentiation of mesenchymal cells in the articular layer of cartilage into chondrocytes, which proliferate and then progressively mature into hypertrophic cells. The expression of regulatory growth factors, which govern and control phenotypic conversions of chondrocytes during chondrogenesis, increases during adaptive remodeling to enhance the transition from chondrogenesis into osteogenesis, a process in which hypertrophic chondrocytes and matrices degrade and are replaced by bone. The transition is also sustained by increased neovascularization, which brings in osteoblasts that finally result in new bone formation beneath the degraded cartilage.
Collapse
Affiliation(s)
- G Shen
- Discipline of Orthodontics, Faculty of Dentistry, Sydney Dental Hospital, The University of Sydney, 2 Chalmers Street, Surry Hills, NSW 2010, Australia.
| | | |
Collapse
|
23
|
Real-Time Analysis of Endogenous Wnt Signalling in 3D Mesenchymal Stromal Cells. Stem Cells Int 2016; 2016:7132529. [PMID: 27668000 PMCID: PMC5030414 DOI: 10.1155/2016/7132529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/22/2016] [Accepted: 08/08/2016] [Indexed: 01/08/2023] Open
Abstract
Wnt signalling has been implicated in the regulation of stem cell self-renewal and differentiation; however, the majority of in vitro studies are carried out using monolayer 2D culture techniques. Here, we used mesenchymal stromal cell (MSC) EGFP reporter lines responsive to Wnt pathway activation in a 3D spheroid culture system to mimic better the in vivo environment. Endogenous Wnt signalling was then investigated under basal conditions and when MSCs were induced to undergo osteogenic and adipogenic differentiation. Interestingly, endogenous Wnt signalling was only active during 3D differentiation whereas 2D cultures showed no EGFP expression throughout an extended differentiation time-course. Furthermore, exogenous Wnt signalling in 3D adipogenic conditions inhibited differentiation compared to unstimulated controls. In addition, suppressing Wnt signalling by Dkk-1 restored and facilitated adipogenic differentiation in MSC spheroids. Our findings indicate that endogenous Wnt signalling is active and can be tracked in 3D MSC cultures where it may act as a molecular switch in adipogenesis. The identification of the signalling pathways that regulate MSCs in a 3D in vivo-like environment will advance our understanding of the molecular mechanisms that control MSC fate.
Collapse
|
24
|
Vernon LL, Vance DD, Wang L, Rampersaud E, Vance JM, Pericak-Vance M, Huang CYC, Kaplan LD. Regional Differential Genetic Response of Human Articular Cartilage to Impact Injury. Cartilage 2016; 7:163-73. [PMID: 27047639 PMCID: PMC4797239 DOI: 10.1177/1947603515618483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE Normal physiological movement creates different weightbearing zones within a human knee: the medial condyle bearing the highest and the trochlea bearing the lowest weight. Adaptation to different physiological loading conditions results in different tissue and cellular properties within a knee. The objective of this study was to use microarray analysis to examine gene expression differences among three anatomical regions of human knee articular cartilage at baseline and following induction of an acute impact injury. DESIGN Cartilage explants were harvested from 7 cadaveric knees (12 plugs per knee). A drop tower was utilized to introduce injury. Plugs were examined 24 hours after impact for gene expression using microarray. The primary analysis is the comparison of baseline versus impacted samples within each region separately. In addition, pairwise comparisons among the three regions were performed at baseline and after impact. False discovery rate (FDR) was used to evaluate significance of differential gene expression. RESULTS In the comparison of before and after injury, the trochlear had 130 differentially expressed genes (FDR ≤ 0.05) while the condyles had none. In the comparison among regions, smaller sets of differentially expressed genes (n ≤ 21) were found, with trochlea being more different than the condyles. Most of more frequently expressed genes in trochlea are developmental genes. CONCLUSIONS Within the experimental setup of this study, only the trochlea was displaying an acute genetic response on injury. Our data demonstrated the regional-specific response to injury in human articular cartilage.
Collapse
Affiliation(s)
- Lauren L. Vernon
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA,Division of Sports Medicine, UHealth Sports Performance and Wellness Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Danica D. Vance
- Division of Sports Medicine, UHealth Sports Performance and Wellness Institute, University of Miami Miller School of Medicine, Miami, FL, USA,John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Liyong Wang
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Evadnie Rampersaud
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeffery M. Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Margaret Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - C.-Y. Charles Huang
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Lee D. Kaplan
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA,Division of Sports Medicine, UHealth Sports Performance and Wellness Institute, University of Miami Miller School of Medicine, Miami, FL, USA,Lee D. Kaplan, Division of Sports Medicine, UHealth Sports Performance and Wellness Institute, University of Miami, 1400 NW 12th Avenue, First Floor Sports Medicine Clinic, Miami, FL 33136, USA.
| |
Collapse
|
25
|
Wnt signaling in cartilage development and diseases: lessons from animal studies. J Transl Med 2016; 96:186-96. [PMID: 26641070 PMCID: PMC4838282 DOI: 10.1038/labinvest.2015.142] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/10/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 01/08/2023] Open
Abstract
Cartilage not only plays essential roles in skeletal development and growth during pre- and postnatal stages but also serves to provide smooth movement of skeletons throughout life. Thus, dysfunction of cartilage causes a variety of skeletal disorders. Results from animal studies reveal that β-catenin-dependent canonical and independent non-canonical Wnt signaling pathways have multiple roles in regulation of cartilage development, growth, and maintenance. β-Catenin-dependent signaling is required for progression of endochondral ossification and growth of axial and appendicular skeletons, while excessive activation of this signaling can cause severe inhibition of initial cartilage formation and growth plate organization and function in mice. In contrast, non-canonical Wnt signaling is important in columnar organization of growth plate chondrocytes. Manipulation of Wnt signaling causes or ameliorates articular cartilage degeneration in rodent osteoarthritis models. Human genetic studies indicate that Wnt/β-catenin signaling is a risk factor for osteoarthritis. Accumulative findings from analysis of expression of Wnt signaling molecules and in vivo and in vitro functional experiments suggest that Wnt signaling is a therapeutic target for osteoarthritis. The target tissues of Wnt signaling may be not only articular cartilage but also synovium and subchondral bone.
Collapse
|
26
|
Niu Q, Li F, Zhang L, Xu X, Liu Y, Gao J, Feng X. Role of the Wnt/β-catenin signaling pathway in the response of chondrocytes to mechanical loading. Int J Mol Med 2016; 37:755-62. [PMID: 26821383 DOI: 10.3892/ijmm.2016.2463] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/17/2015] [Accepted: 01/05/2016] [Indexed: 11/05/2022] Open
Abstract
In order to better understand the mechanisms by which chondrocytes respond to mechanical stimulation, ATDC5 mouse embryonic carcinoma cells were induced to differentiate into chondrocytes and then exposed to mechanical loading. To specifically elucidate the role of this pathway, the localization and expression of proteins involved in the Wnt/β-catenin signaling pathway were observed. Chondrogenic-differentiated ATDC5 cells were exposed to a 12% cycle tension load for 1, 2, 4, or 8 h. At each time point, immunofluorescence staining, western blot analysis, and qPCR were used to track the localization of β-catenin and glycogen synthase kinase-3β (GSK-3β) expression. In addition, the mRNA expression of Wnt3a, disheveled homolog 1 (Dvl-1), GSK-3β, and collagen type II were also detected. Activation of the Wnt/β-catenin signaling pathway was investigated in cells treated with Dickkopf-related protein 1 (DKK-1). β-catenin and GSK-3β protein expression increased initially and then decreased over the mechanical loading period, and the corresponding mRNA levels followed a similar trend. After application of the inhibitor DKK-1, Wnt/β‑catenin signaling was suppressed, and the mRNA expression of collagen II was also reduced. Thus, stimulation of chondrocytes with mechanical strain loading is associated with the translocation of active β-catenin from the cytoplasm to the nucleus.
Collapse
Affiliation(s)
- Qiannan Niu
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Feifei Li
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Liang Zhang
- Department of Stomatology, Hospital 323 of The People's Liberation Army, Xi'an, Shaanxi 710045, P.R. China
| | - Xinyuan Xu
- Department of Biochemistry and Molecular Biology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yucong Liu
- Department of Stomatology, The First People's Hospital of Shuangliu County, Chengdu, Sichuan 610200, P.R. China
| | - Jie Gao
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xue Feng
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
27
|
|
28
|
Green JD, Tollemar V, Dougherty M, Yan Z, Yin L, Ye J, Collier Z, Mohammed MK, Haydon RC, Luu HH, Kang R, Lee MJ, Ho SH, He TC, Shi LL, Athiviraham A. Multifaceted signaling regulators of chondrogenesis: Implications in cartilage regeneration and tissue engineering. Genes Dis 2015; 2:307-327. [PMID: 26835506 PMCID: PMC4730920 DOI: 10.1016/j.gendis.2015.09.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/14/2015] [Accepted: 09/16/2015] [Indexed: 01/08/2023] Open
Abstract
Defects of articular cartilage present a unique clinical challenge due to its poor self-healing capacity and avascular nature. Current surgical treatment options do not ensure consistent regeneration of hyaline cartilage in favor of fibrous tissue. Here, we review the current understanding of the most important biological regulators of chondrogenesis and their interactions, to provide insight into potential applications for cartilage tissue engineering. These include various signaling pathways, including: fibroblast growth factors (FGFs), transforming growth factor β (TGF-β)/bone morphogenic proteins (BMPs), Wnt/β-catenin, Hedgehog, Notch, hypoxia, and angiogenic signaling pathways. Transcriptional and epigenetic regulation of chondrogenesis will also be discussed. Advances in our understanding of these signaling pathways have led to promising advances in cartilage regeneration and tissue engineering.
Collapse
Affiliation(s)
- Jordan D. Green
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Viktor Tollemar
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mark Dougherty
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zhengjian Yan
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Liangjun Yin
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jixing Ye
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Bioengineering, Chongqing University, Chongqing, China
| | - Zachary Collier
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Maryam K. Mohammed
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Richard Kang
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H. Ho
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Aravind Athiviraham
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
29
|
Bastakoty D, Saraswati S, Cates J, Lee E, Nanney LB, Young PP. Inhibition of Wnt/β-catenin pathway promotes regenerative repair of cutaneous and cartilage injury. FASEB J 2015; 29:4881-92. [PMID: 26268926 DOI: 10.1096/fj.15-275941] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/18/2015] [Accepted: 07/27/2015] [Indexed: 12/27/2022]
Abstract
Wound healing in mammals is a fibrotic process. The mechanisms driving fibrotic (as opposed to regenerative) repair are poorly understood. Herein we report that therapeutic Wnt inhibition with topical application of small-molecule Wnt inhibitors can reduce fibrosis and promote regenerative cutaneous wound repair. In the naturally stented model of ear punch injury, we found that Wnt/β-catenin pathway is activated most notably in the dermis of the wound bed early (d 2) after injury and subsides to baseline levels by d10. Topical application of either of 2 mechanistically distinct small-molecule Wnt pathway inhibitors (a tankyrase inhibitor, XAV-939, and the U.S. Food and Drug Administration-approved casein kinase activator, pyrvinium) in C57Bl/6J mice resulted in significantly increased rates of wound closure (72.3 ± 14.7% with XAV-939; and 52.1 ± 20.9% with pyrvinium) compared with contralateral controls (38.1 ± 23.0 and 40.4.± 16.7%, respectively). Histologically, Wnt inhibition reduced fibrosis as measured by α-smooth muscle actin positive myofibroblasts and collagen type I α1 synthesis. Wnt inhibition also restored skin architecture including adnexal structures in ear wounds and dermal-epidermal junction with rete pegs in excisional wounds. Additionally, in ear punch injury Wnt inhibitor treatment enabled regeneration of auricular cartilage. Our study shows that pharmacologic Wnt inhibition holds therapeutic utility for regenerative repair of cutaneous wounds.
Collapse
Affiliation(s)
- Dikshya Bastakoty
- *Department of Pathology, Microbiology, and Immunology, Department of Cell and Developmental Biology, and Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | - Sarika Saraswati
- *Department of Pathology, Microbiology, and Immunology, Department of Cell and Developmental Biology, and Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | - Justin Cates
- *Department of Pathology, Microbiology, and Immunology, Department of Cell and Developmental Biology, and Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | - Ethan Lee
- *Department of Pathology, Microbiology, and Immunology, Department of Cell and Developmental Biology, and Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | - Lillian B Nanney
- *Department of Pathology, Microbiology, and Immunology, Department of Cell and Developmental Biology, and Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | - Pampee P Young
- *Department of Pathology, Microbiology, and Immunology, Department of Cell and Developmental Biology, and Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
30
|
Shea CA, Rolfe RA, Murphy P. The importance of foetal movement for co-ordinated cartilage and bone development in utero : clinical consequences and potential for therapy. Bone Joint Res 2015; 4:105-16. [PMID: 26142413 PMCID: PMC4602203 DOI: 10.1302/2046-3758.47.2000387] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022] Open
Abstract
Construction of a functional skeleton is accomplished
through co-ordination of the developmental processes of chondrogenesis,
osteogenesis, and synovial joint formation. Infants whose movement in
utero is reduced or restricted and who subsequently suffer
from joint dysplasia (including joint contractures) and thin hypo-mineralised
bones, demonstrate that embryonic movement is crucial for appropriate
skeletogenesis. This has been confirmed in mouse, chick, and zebrafish
animal models, where reduced or eliminated movement consistently yields
similar malformations and which provide the possibility of experimentation
to uncover the precise disturbances and the mechanisms by which
movement impacts molecular regulation. Molecular genetic studies have
shown the important roles played by cell communication signalling
pathways, namely Wnt, Hedgehog, and transforming growth factor-beta/bone
morphogenetic protein. These pathways regulate cell behaviours such
as proliferation and differentiation to control maturation of the
skeletal elements, and are affected when movement is altered. Cell
contacts to the extra-cellular matrix as well as the cytoskeleton
offer a means of mechanotransduction which could integrate mechanical
cues with genetic regulation. Indeed, expression of cytoskeletal
genes has been shown to be affected by immobilisation. In addition
to furthering our understanding of a fundamental aspect of cell control
and differentiation during development, research in this area is
applicable to the engineering of stable skeletal tissues from stem
cells, which relies on an understanding of developmental mechanisms
including genetic and physical criteria. A deeper understanding
of how movement affects skeletogenesis therefore has broader implications
for regenerative therapeutics for injury or disease, as well as
for optimisation of physical therapy regimes for individuals affected
by skeletal abnormalities. Cite this article: Bone Joint Res 2015;4:105–116
Collapse
Affiliation(s)
- C A Shea
- Trinity College Dublin, College Green, Dublin, D2, Ireland
| | | | - P Murphy
- Trinity College Dublin, College Green, Dublin, D2, Ireland
| |
Collapse
|
31
|
Wu BT, Wen SH, Hwang SPL, Huang CJ, Kuan YS. Control of Wnt5b secretion by Wntless modulates chondrogenic cell proliferation through fine-tuning fgf3 expression. J Cell Sci 2015; 128:2328-39. [PMID: 25934698 DOI: 10.1242/jcs.167403] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/11/2014] [Accepted: 04/21/2015] [Indexed: 01/22/2023] Open
Abstract
Wnts and Fgfs regulate various tissues development in vertebrates. However, how regional Wnt or Fgf activities are established and how they interact in any given developmental event is elusive. Here, we investigated the Wnt-mediated craniofacial cartilage development in zebrafish and found that fgf3 expression in the pharyngeal pouches is differentially reduced along the anteroposterior axis in wnt5b mutants and wntless (wls) morphants, but its expression is normal in wnt9a and wnt11 morphants. Introducing fgf3 mRNAs rescued the cartilage defects in Wnt5b- and Wls-deficient larvae. In wls morphants, endogenous Wls expression is not detectable but maternally deposited Wls is present in eggs, which might account for the lack of axis defects in wls morphants. Secretion of endogenous Wnt5b but not Wnt11 was affected in the pharyngeal tissue of Wls morphants, indicating that Wls is not involved in every Wnt secretion event. Furthermore, cell proliferation but not apoptosis in the developing jaw was affected in Wnt5b- and Wls-deficient embryos. Therefore, Wnt5b requires Wls for its secretion and regulates the proliferation of chondrogenic cells through fine-tuning the expression of fgf3 during jaw cartilage development.
Collapse
Affiliation(s)
- Bo-Tsung Wu
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Shih-Hsien Wen
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Sheng-Ping L Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chang-Jen Huang
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Yung-Shu Kuan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan Center for System Biology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
32
|
Kozhemyakina E, Lassar AB, Zelzer E. A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. Development 2015; 142:817-31. [PMID: 25715393 DOI: 10.1242/dev.105536] [Citation(s) in RCA: 372] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
Abstract
Decades of work have identified the signaling pathways that regulate the differentiation of chondrocytes during bone formation, from their initial induction from mesenchymal progenitor cells to their terminal maturation into hypertrophic chondrocytes. Here, we review how multiple signaling molecules, mechanical signals and morphological cell features are integrated to activate a set of key transcription factors that determine and regulate the genetic program that induces chondrogenesis and chondrocyte differentiation. Moreover, we describe recent findings regarding the roles of several signaling pathways in modulating the proliferation and maturation of chondrocytes in the growth plate, which is the 'engine' of bone elongation.
Collapse
Affiliation(s)
- Elena Kozhemyakina
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Building C-Room 305A, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Andrew B Lassar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Building C-Room 305A, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Elazar Zelzer
- Weizmann Institute of Science, Department of Molecular Genetics, PO Box 26, Rehovot 76100, Israel
| |
Collapse
|
33
|
Boschert V, Muth EM, Knappik A, Frisch C, Mueller TD. Crystallization and preliminary X-ray crystallographic analysis of the sclerostin-neutralizing Fab AbD09097. Acta Crystallogr F Struct Biol Commun 2015; 71:388-92. [PMID: 25849496 PMCID: PMC4388170 DOI: 10.1107/s2053230x1500360x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/15/2015] [Accepted: 02/20/2015] [Indexed: 02/02/2023] Open
Abstract
The secreted cystine-knot protein sclerostin was first identified from genetic screening of patients suffering from the rare bone-overgrowth diseases sclerosteosis and van Buchem disease. Sclerostin acts a negative regulator of bone growth through inhibiting the canonical Wnt signalling cascade by binding to and blocking the Wnt co-receptor LRP5/6. Its function in blocking osteoblastogenesis makes it an important target for osteoanabolic therapy approaches to treat osteoporosis, which is characterized by a progressive decrease in bone mass and density. In this work, the production, crystallization and preliminary X-ray diffraction data analysis of a sclerostin-neutralizing human Fab antibody fragment, AbD09097, obtained from a naive antibody library are reported. Crystals of the Fab AbD09097 belonged to space group P21, with unit-cell parameters a = 45.19, b = 78.49, c = 59.20 Å, β = 95.71° and diffracted X-rays to a resolution of 1.8 Å.
Collapse
Affiliation(s)
- Verena Boschert
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Julius-von-Sachs Platz 2, 97082 Wuerzburg, Germany
| | - Eva-Maria Muth
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Julius-von-Sachs Platz 2, 97082 Wuerzburg, Germany
| | - Achim Knappik
- Life Science Group, Bio-Rad AbD Serotec, Zeppelinstrasse 4, 82178 Puchheim, Germany
| | - Christian Frisch
- Life Science Group, Bio-Rad AbD Serotec, Zeppelinstrasse 4, 82178 Puchheim, Germany
| | - Thomas D. Mueller
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Julius-von-Sachs Platz 2, 97082 Wuerzburg, Germany
| |
Collapse
|
34
|
Chen AX, Hoffman MD, Chen CS, Shubin AD, Reynolds DS, Benoit DSW. Disruption of cell-cell contact-mediated notch signaling via hydrogel encapsulation reduces mesenchymal stem cell chondrogenic potential: winner of the Society for Biomaterials Student Award in the Undergraduate Category, Charlotte, NC, April 15 to 18, 2015. J Biomed Mater Res A 2014; 103:1291-302. [PMID: 25504509 DOI: 10.1002/jbm.a.35383] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/15/2014] [Revised: 11/17/2014] [Accepted: 12/04/2014] [Indexed: 12/20/2022]
Abstract
Cell-cell contact-mediated Notch signaling is essential for mesenchymal stem cell (MSC) chondrogenesis during development. However, subsequent deactivation of Notch signaling is also required to allow for stem cell chondrogenic progression. Recent literature has shown that Notch signaling can also influence Wnt/β-catenin signaling, critical for MSC differentiation, through perturbations in cell-cell contacts. Traditionally, abundant cell-cell contacts, consistent with development, are emulated in vitro using pellet cultures for chondrogenesis. However, cells are often encapsulated within biomaterials-based scaffolds, such as hydrogels, to improve therapeutic cell localization in vivo. To explore the role of Notch and Wnt/β-catenin signaling in the context of hydrogel-encapsulated MSC chondrogenesis, we compared signaling and differentiation capacity of MSCs in both hydrogels and traditional pellet cultures. We demonstrate that encapsulation within poly(ethylene glycol) hydrogels reduces cell-cell contacts, and both Notch (7.5-fold) and Wnt/β-catenin (84.7-fold) pathway activation. Finally, we demonstrate that following establishment of cell-cell contacts and transient Notch signaling in pellet cultures, followed by Notch signaling deactivation, resulted in a 1.5-fold increase in MSC chondrogenesis. Taken together, these findings support that cellular condensation, and establishment of initial cell-cell contacts is critical for MSC chondrogenesis, and this process is inhibited by hydrogel encapsulation.
Collapse
Affiliation(s)
- Amanda X Chen
- Department of Biomedical Engineering, University of Rochester, 207 Robert B. Goergen Hall, Box 270168, Rochester, New York, 14627-0168
| | | | | | | | | | | |
Collapse
|
35
|
Ma Y, Li R, Zhang Y, Zhou L, Dai Y. Knockdown of peroxiredoxin 5 inhibits the growth of osteoarthritic chondrocytes via upregulating Wnt/β-catenin signaling. Free Radic Biol Med 2014; 76:251-60. [PMID: 25236745 DOI: 10.1016/j.freeradbiomed.2014.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/01/2014] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 11/21/2022]
Abstract
Peroxiredoxin 5 is a member of the peroxiredoxin family, which has been shown to act as an antioxidant whose main function is to reduce reactive oxygen species in cells. Peroxiredoxin 5 has been found to be abnormally elevated in human osteoarthritic chondrocytes. However, the detailed mechanism by which peroxiredoxin 5 modulates human osteoarthritic chondrocytes' survival has not been elucidated. In the current study, we demonstrated that peroxiredoxin 5 knockdown activated osteoarthritic chondrocytes apoptosis, and decreased scavenging of endogenous reactive oxygen species. Furthermore, silencing of peroxiredoxin 5 resulted in an altered expression of proteins associated with Wnt signaling. Collectively, these results demonstrated that the regulatory effects of peroxiredoxin 5 can be partially attributed to Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Yini Ma
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, You Yi Road 1#, Chongqing 400016, People's Republic of China
| | - Rongheng Li
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, You Yi Road 1#, Chongqing 400016, People's Republic of China.
| | - Yudi Zhang
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, You Yi Road 1#, Chongqing 400016, People's Republic of China
| | - Lingyun Zhou
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, You Yi Road 1#, Chongqing 400016, People's Republic of China
| | - Yehong Dai
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, You Yi Road 1#, Chongqing 400016, People's Republic of China
| |
Collapse
|
36
|
Zhong Z, Ethen NJ, Williams BO. WNT signaling in bone development and homeostasis. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 3:489-500. [PMID: 25270716 DOI: 10.1002/wdev.159] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/19/2014] [Revised: 08/16/2014] [Accepted: 08/25/2014] [Indexed: 01/29/2023]
Abstract
The balance between bone formation and bone resorption controls postnatal bone homeostasis. Research over the last decade has provided a vast amount of evidence that WNT signaling plays a pivotal role in regulating this balance. Therefore, understanding how the WNT signaling pathway regulates skeletal development and homeostasis is of great value for human skeletal health and disease.
Collapse
Affiliation(s)
- Zhendong Zhong
- Center for Skeletal Disease and Tumor Microenvironment, Van Andel Research Institute, Grand Rapids, MI, USA
| | | | | |
Collapse
|
37
|
Liu S, Zhang E, Yang M, Lu L. Overexpression of Wnt11 promotes chondrogenic differentiation of bone marrow-derived mesenchymal stem cells in synergism with TGF-β. Mol Cell Biochem 2014; 390:123-31. [PMID: 24474615 DOI: 10.1007/s11010-014-1963-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2013] [Accepted: 01/14/2014] [Indexed: 12/19/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs), the most widely used cell source for cartilage tissue engineering, are multipotent cells which have been shown to differentiate into various mesenchyme-lineage cell types including chondrocytes. However, the molecular mechanisms controlling the chondrogenic differentiation of MSCs remain to be fully elucidated. It has been demonstrated that Wnt signaling involves regulating chondrogenesis and MSC differentiation. The aim of the present study was to investigate the role of Wnt11, a member of noncanonical Wnts, in MSCs during chondrogenic differentiation. We observed that overexpression of Wnt11 inhibited proliferation of MSCs and caused a G0/G1 cell cycle arrest. The expression level of chondrogenic markers, aggrecan and Collagen II, was significantly increased in MSCs transduced with Wnt11 as compared with non-transduced cells or MSCs transduced with the empty lentiviral vector. Furthermore, ectopic expression of Wnt11 stimulated gene expression of chondrogenic regulators, SRY-related gene 9, Runt-related transcription factor 2, and Indian hedgehog. Finally, Wnt11 overexpression promoted chondrogenic differentiation of MSCs in synergism with TGF-β. Collectively, these results indicate that Wnt11 plays a crucial role in regulating MSC chondrogenic differentiation.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, 117 North Nanjing Street, 110001, Shenyang, People's Republic of China
| | | | | | | |
Collapse
|
38
|
Aziz A, Irfanullah, Khan S, Zimri FK, Muhammad N, Rashid S, Ahmad W. Novel homozygous mutations in the WNT10B gene underlying autosomal recessive split hand/foot malformation in three consanguineous families. Gene 2013; 534:265-71. [PMID: 24211389 DOI: 10.1016/j.gene.2013.10.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2013] [Revised: 09/22/2013] [Accepted: 10/23/2013] [Indexed: 10/26/2022]
Abstract
Split-hand/split-foot malformation (SHFM), representing variable degree of median clefts of hands and feet, is a genetically heterogeneous group of limb malformations with seven loci mapped on different human chromosomes. However, only 3 genes (TP63, WNT10B, DLX5) for the seven loci have been identified. The study, presented here, described three consanguineous Pakistani families segregating SHFM in autosomal recessive manner. Linkage in the families was searched by genotyping microsatellite markers and mutation screening of candidate gene was performed by Sanger DNA sequencing. Clinical features of affected members of these families exhibited SHFM phenotype with involvement of hands and feet. Genotyping using microsatellite markers mapped the families to WNT10B gene at SHFM6 on chromosome 12q13.11-q13. Subsequently, sequence analysis of WNT10B gene revealed a novel 4-bp deletion mutation (c.1165_1168delAAGT) in one family and 7-bp duplication (c.300_306dupAGGGCGG) in two other families. Structure-based analysis showed a significant conformational shift in the active binding site of mutated WNT10B (p.Lys388Glufs*36), influencing binding with Fzd8. The mutations identified in the WNT10B gene extend the body of evidence implicating it in the pathogenesis of SHFM.
Collapse
Affiliation(s)
- Abdul Aziz
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Irfanullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Saadullah Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | | | - Noor Muhammad
- Department of Biotechnology & Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, KPK, Pakistan
| | - Sajid Rashid
- National Center for Bioinformatics, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan.
| |
Collapse
|
39
|
Al-Qattan MM. Molecular basis of the clinical features of Al-Awadi-Raas-Rothschild (limb/pelvis/uterus-hypoplasia/aplasia) syndrome (AARRS) and Fuhrmann syndrome. Am J Med Genet A 2013; 161A:2274-80. [PMID: 23922166 DOI: 10.1002/ajmg.a.35437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/09/2011] [Accepted: 03/24/2012] [Indexed: 12/26/2022]
Abstract
This paper reviews the molecular basis of the clinical features of Al-Awadi-Raas-Rothschild (limb/pelvis/uterus-hypoplasia-aplasia) (AARRS) syndrome and Fuhrmann syndrome. Human WNT7A mutations are also reviewed. Based on this review, these mutations will be classified into two main groups of phenotypes: Fuhrmann and AARRS phenotypes in which there is partial and complete loss of WNT7A functions, respectively.
Collapse
Affiliation(s)
- M M Al-Qattan
- Division of Plastic Surgery, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
40
|
Ma B, Landman EBM, Miclea RL, Wit JM, Robanus-Maandag EC, Post JN, Karperien M. WNT signaling and cartilage: of mice and men. Calcif Tissue Int 2013; 92:399-411. [PMID: 23212543 DOI: 10.1007/s00223-012-9675-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/06/2012] [Accepted: 11/03/2012] [Indexed: 01/08/2023]
Abstract
In adult articular cartilage, the extracellular matrix is maintained by a balance between the degradation and the synthesis of matrix components. Chondrocytes that sparsely reside in the matrix and rarely proliferate are the key cellular mediators for cartilage homeostasis. There are indications for the involvement of the WNT signaling pathway in maintaining articular cartilage. Various WNTs are involved in the subsequent stages of chondrocyte differentiation during development, and deregulation of WNT signaling was observed in cartilage degeneration. Even though gene expression and protein synthesis can be activated upon injury, articular cartilage has a limited ability of self-repair and efforts to regenerate articular cartilage have so far not been successful. Because WNT signaling was found to be involved in the development and maintenance of cartilage as well as in the degeneration of cartilage, interfering with this pathway might contribute to improving cartilage regeneration. However, most of the studies on elucidating the role of WNT signaling in these processes were conducted using in vitro or in vivo animal models. Discrepancies have been found in the role of WNT signaling between chondrocytes of mouse and human origin, and extrapolation of results from mouse models to the human situation remains a challenge. Elucidation of detailed WNT signaling functions will provide knowledge to improve cartilage regeneration.
Collapse
Affiliation(s)
- Bin Ma
- Department of Developmental BioEngineering, University of Twente, Drienerlolaan 5, 7522NB, Enschede, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The Wnt signalling cascades have essential roles in development, growth and homeostasis of joints and the skeleton. Progress in basic research, particularly relating to our understanding of intracellular signalling cascades and fine regulation of receptor activation in the extracellular space, has provided novel insights into the roles of Wnt signalling in chronic arthritis. Cartilage and bone homeostasis require finely tuned Wnt signalling; both activation and suppression of the Wnt-β-catenin cascade can lead to osteoarthritis in rodent models. Genetic associations with the Wnt antagonist encoded by FRZB and the transcriptional regulator encoded by Dot1l with osteoarthritis further corroborate the essential part played by Wnts in the joint. In rheumatoid arthritis, inhibition of Wnt signalling has a role in the persistence of bone erosions, whereas Wnts have been associated with the ankylosing phenotype in spondyloarthritis. Together, these observations identify the Wnt pathway as an attractive target for therapeutic intervention; however, the complexity of the Wnt signalling cascades and the potential secondary effects of drug interventions targeting them highlight the need for further research and suggest that our understanding of this exciting pathway is still in its infancy.
Collapse
|
42
|
Abstract
Much of the mammalian skeleton is composed of bones that originate from cartilage templates through endochondral ossification. Elucidating the mechanisms that control endochondral bone development is critical for understanding human skeletal diseases, injury response, and aging. Mouse genetic studies in the past 15 years have provided unprecedented insights about molecules regulating chondrocyte formation, chondrocyte maturation, and osteoblast differentiation, all key processes of endochondral bone development. These include the roles of the secreted proteins IHH, PTHrP, BMPs, WNTs, and FGFs, their receptors, and transcription factors such as SOX9, RUNX2, and OSX, in regulating chondrocyte and osteoblast biology. This review aims to integrate the known functions of extracellular signals and transcription factors that regulate development of the endochondral skeleton.
Collapse
Affiliation(s)
- Fanxin Long
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
43
|
Regard JB, Zhong Z, Williams BO, Yang Y. Wnt signaling in bone development and disease: making stronger bone with Wnts. Cold Spring Harb Perspect Biol 2012; 4:4/12/a007997. [PMID: 23209148 DOI: 10.1101/cshperspect.a007997] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022]
Abstract
The skeleton as an organ is widely distributed throughout the entire vertebrate body. Wnt signaling has emerged to play major roles in almost all aspects of skeletal development and homeostasis. Because abnormal Wnt signaling causes various human skeletal diseases, Wnt signaling has become a focal point of intensive studies in skeletal development and disease. As a result, promising effective therapeutic agents for bone diseases are being developed by targeting the Wnt signaling pathway. Understanding the functional mechanisms of Wnt signaling in skeletal biology and diseases highlights how basic and clinical studies can stimulate each other to push a quick and productive advancement of the entire field. Here we review the current understanding of Wnt signaling in critical aspects of skeletal biology such as bone development, remodeling, mechanotransduction, and fracture healing. We took special efforts to place fundamentally important discoveries in the context of human skeletal diseases.
Collapse
Affiliation(s)
- Jean B Regard
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
44
|
Geetha-Loganathan P, Nimmagadda S, Scaal M. Wnt signaling in limb organogenesis. Organogenesis 2012; 4:109-15. [PMID: 19279722 DOI: 10.4161/org.4.2.5857] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2008] [Accepted: 03/06/2008] [Indexed: 11/19/2022] Open
Abstract
Secreted signaling molecules of the Wnt family have been found to play a central role in controlling embryonic development of a wide range of taxa from Hydra to humans. The most extensively studied Wnt signaling pathway is the canonical Wnt pathway, which controls gene expression by stabilizing beta-catenin, and regulates a multitude of developmental processes. More recently, noncanonical Wnt pathways, which are beta-catenin-independent, have been found to be important developmental regulators. Understanding the mechanisms of Wnt signaling is essential for the development of novel preventive and therapeutic approaches of human diseases. Limb development is a paradigm to study the principles of Wnt signaling in various developmental contexts. In the developing vertebrate limb, Wnt signaling has been shown to have important functions during limb bud initiation, limb outgrowth, early limb patterning, and later limb morphogenesis events. This review provides a brief overview on the diversity of Wnt-dependent signaling events during embryonic development of the vertebrate limb.
Collapse
Affiliation(s)
- Poongodi Geetha-Loganathan
- Institute of Anatomy and Cell Biology; Department of Molecular Embryology; University of Freiburg; Freiburg, Germany
| | | | | |
Collapse
|
45
|
Paik S, Jung HS, Lee S, Yoon DS, Park MS, Lee JW. miR-449a regulates the chondrogenesis of human mesenchymal stem cells through direct targeting of lymphoid enhancer-binding factor-1. Stem Cells Dev 2012; 21:3298-308. [PMID: 22769578 DOI: 10.1089/scd.2011.0732] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/01/2023] Open
Abstract
microRNAs are small molecules, about 17-23 nucleotides in length, that act as translational regulators of their target gene. By binding to a target, microRNAs are known to either inhibit translation or induce degradation of the target. Despite the great interest in microRNAs, however, the exact targets of each individual microRNA in different processes remain largely unknown. In this study, we determined that the lymphoid enhancer-binding factor-1 (LEF-1) was expressed during the chondrogenesis of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and sought to identify a novel microRNA targeting this gene. Through subsequent studies, we have identified, for the first time, one particular microRNA, miR-449a, that recognizes and regulates the expression of LEF-1 in a dose-dependent and sequence-specific manner. In addition, we observed that the inhibition of LEF-1 via miR-449a led to the subsequent repression of Sox 9, which is a well-established regulator of chondrogenesis. Collectively, this study demonstrated that miR-449a directly targets LEF-1, which in turn affects the expression of Sox 9, ultimately leading to the proper regulation of the differentiation and chondrogenesis of human MSCs (hBM-MSCs).
Collapse
Affiliation(s)
- Seungil Paik
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
46
|
Staines KA, Macrae VE, Farquharson C. Cartilage development and degeneration: a Wnt Wnt situation. Cell Biochem Funct 2012; 30:633-42. [PMID: 22714865 DOI: 10.1002/cbf.2852] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/02/2012] [Revised: 04/25/2012] [Accepted: 05/20/2012] [Indexed: 12/27/2022]
Abstract
The Wnt signaling pathway plays a crucial role in the development and homeostasis of a variety of adult tissues and, as such, is emerging as an important therapeutic target for numerous diseases. Factors involved in the Wnt pathway are expressed throughout limb development and chondrogenesis and have been shown to be critical in joint homeostasis and endochondral ossification. Therefore, in this review, we discuss Wnt regulation of chondrogenic differentiation, hypertrophy and cartilage function. Moreover, we detail the role of the Wnt signaling pathway in cartilage degeneration and its potential to act as a target for therapy in osteoarthritis.
Collapse
Affiliation(s)
- Katherine Ann Staines
- The Roslin Institute and Royal-Dick School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, Scotland.
| | | | | |
Collapse
|
47
|
Abstract
The Ihh (Indian Hedgehog) pathway plays an essential role in facilitating chondrocyte hypertrophy and bone formation during skeletal development. Nkx3.2 (NK3 homeobox 2) is initially induced in chondrocyte precursor cells, maintained in early-stage chondrocytes and down-regulated in terminal-stage chondrocytes. Consistent with these expression patterns, Nkx3.2 has been shown to enhance chondrocyte differentiation and cell survival, while inhibiting chondrocyte hypertrophy and apoptosis. Thus, in the present study, we investigated whether Nkx3.2, an early-stage chondrogenic factor, can be regulated by Ihh, a key regulator for chondrocyte hypertrophy. We show that Ihh signalling can induce proteasomal degradation of Nkx3.2. In addition, we found that Ihh can suppress levels of Lrp (low-density-lipoprotein-receptor-related protein) (Wnt co-receptor) and Sfrp (secreted frizzled-related protein) (Wnt antagonist) expression, which, in turn, may selectively enhance Lrp-independent non-canonical Wnt pathways in chondrocytes. In agreement with these findings, Ihh-induced Nkx3.2 degradation requires Wnt5a, which is capable of triggering Nkx3.2 degradation. Finally, we found that Nkx3.2 protein levels in chondrocytes are remarkably elevated in mice defective in Ihh signalling by deletion of either Ihh or smoothened. Thus these results suggest that Ihh/Wnt5a signalling may play a role in negative regulation of Nkx3.2 for appropriate progression of chondrocyte hypertrophy during chondrogenesis.
Collapse
|
48
|
rAAV Vectors as Safe and Efficient Tools for the Stable Delivery of Genes to Primary Human Chondrosarcoma Cells In Vitro and In Situ. Sarcoma 2012; 2012:347417. [PMID: 22645415 PMCID: PMC3356986 DOI: 10.1155/2012/347417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/01/2011] [Revised: 02/17/2012] [Accepted: 02/17/2012] [Indexed: 12/11/2022] Open
Abstract
Treatment of chondrosarcoma remains a major challenge in orthopaedic oncology. Gene transfer strategies based on recombinant adenoassociated viral (rAAV) vectors may provide powerful tools to develop new, efficient therapeutic options against these tumors. In the present study, we tested the hypothesis that rAAV is adapted for a stable and safe delivery of foreign sequences in human chondrosarcoma tissue by transducing primary human chondrosarcoma cells in vitro and in situ with different reporter genes (E. coli lacZ, firefly luc, Discosoma sp. RFP). The effects of rAAV administration upon cell survival and metabolic activities were also evaluated to monitor possibly detrimental effects of the gene transfer method. Remarkably, we provide evidence that efficient and prolonged expression of transgene sequences via rAAV can be safely achieved in all the systems investigated, demonstrating the potential of the approach of direct application of therapeutic gene vectors as a means to treat chondrosarcoma.
Collapse
|
49
|
Hiyama A, Arai F, Sakai D, Yokoyama K, Mochida J. The effects of oxygen tension and antiaging factor Klotho on Wnt signaling in nucleus pulposus cells. Arthritis Res Ther 2012; 14:R105. [PMID: 22551380 PMCID: PMC3446482 DOI: 10.1186/ar3830] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/28/2011] [Accepted: 05/02/2012] [Indexed: 01/10/2023] Open
Abstract
Introduction The goals of this study were to examine the oxemic regulation of Wnt signaling to explore whether Wnt signaling accelerates the age-related degeneration of nucleus pulposus cells, and if so, to define the mechanism underlying this effect. We investigated the expression of Klotho, a newly identified antiaging gene, and whether its regulation is attributable to the suppression of Wnt signaling. Methods Rat nucleus pulposus cells were cultured under normoxic (21% O2) or hypoxic (2% O2) conditions, and the expression and promoter activity of Wnt signaling and Klotho were evaluated. The effect of Klotho protein was examined with transfection experiments, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, senescence-associated β-galactosidase staining, and cell-cycle analysis. To determine the methylation status of the Klotho promoter region, bisulfite genomic sequencing analysis was performed. Its relation with the activation of Wnt signaling was assessed. We also examined whether the expression of Klotho could block the effects of pathological Wnt expression in nucleus pulposus cells. Results Nucleus pulposus cells exhibited increased β-catenin mRNA and protein under the hypoxic condition. Klotho protein was expressed in vivo, and protein and messenger RNA expression decreased under the hypoxic condition. Klotho treatment decreased cell proliferation and induced the quiescence of nucleus pulposus cells. In addition, Klotho treatment inhibited expression of β-catenin gene and protein compared with untreated control cells. Conclusions These data indicate that Wnt signaling and Klotho form a negative-feedback loop in nucleus pulposus cells. These results suggest that the expression of Klotho is regulated by the balance between upregulation and downregulation of Wnt signaling.
Collapse
Affiliation(s)
- Akihiko Hiyama
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | | | | | | | | |
Collapse
|
50
|
Esapa CT, Hough TA, Testori S, Head RA, Crane EA, Chan CPS, Evans H, Bassett JHD, Tylzanowski P, McNally EG, Carr AJ, Boyde A, Howell PGT, Clark A, Williams GR, Brown MA, Croucher PI, Nesbit MA, Brown SDM, Cox RD, Cheeseman MT, Thakker RV. A mouse model for spondyloepiphyseal dysplasia congenita with secondary osteoarthritis due to a Col2a1 mutation. J Bone Miner Res 2012; 27:413-28. [PMID: 22028304 DOI: 10.1002/jbmr.547] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022]
Abstract
Progeny of mice treated with the mutagen N-ethyl-N-nitrosourea (ENU) revealed a mouse, designated Longpockets (Lpk), with short humeri, abnormal vertebrae, and disorganized growth plates, features consistent with spondyloepiphyseal dysplasia congenita (SEDC). The Lpk phenotype was inherited as an autosomal dominant trait. Lpk/+ mice were viable and fertile and Lpk/Lpk mice died perinatally. Lpk was mapped to chromosome 15 and mutational analysis of likely candidates from the interval revealed a Col2a1 missense Ser1386Pro mutation. Transient transfection of wild-type and Ser1386Pro mutant Col2a1 c-Myc constructs in COS-7 cells and CH8 chondrocytes demonstrated abnormal processing and endoplasmic reticulum retention of the mutant protein. Histology revealed growth plate disorganization in 14-day-old Lpk/+ mice and embryonic cartilage from Lpk/+ and Lpk/Lpk mice had reduced safranin-O and type-II collagen staining in the extracellular matrix. The wild-type and Lpk/+ embryos had vertical columns of proliferating chondrocytes, whereas those in Lpk/Lpk mice were perpendicular to the direction of bone growth. Electron microscopy of cartilage from 18.5 dpc wild-type, Lpk/+, and Lpk/Lpk embryos revealed fewer and less elaborate collagen fibrils in the mutants, with enlarged vacuoles in the endoplasmic reticulum that contained amorphous inclusions. Micro-computed tomography (CT) scans of 12-week-old Lpk/+ mice revealed them to have decreased bone mineral density, and total bone volume, with erosions and osteophytes at the joints. Thus, an ENU mouse model with a Ser1386Pro mutation of the Col2a1 C-propeptide domain that results in abnormal collagen processing and phenotypic features consistent with SEDC and secondary osteoarthritis has been established.
Collapse
Affiliation(s)
- Christopher T Esapa
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Headington, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|