1
|
Yoshida K, Hayashi S. Epidermal growth factor receptor signaling protects epithelia from morphogenetic instability and tissue damage in Drosophila. Development 2023; 150:297057. [PMID: 36897356 PMCID: PMC10108703 DOI: 10.1242/dev.201231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/09/2023] [Indexed: 03/11/2023]
Abstract
Dying cells in the epithelia communicate with neighboring cells to initiate coordinated cell removal to maintain epithelial integrity. Naturally occurring apoptotic cells are mostly extruded basally and engulfed by macrophages. Here, we have investigated the role of Epidermal growth factor (EGF) receptor (EGFR) signaling in the maintenance of epithelial homeostasis. In Drosophila embryos, epithelial tissues undergoing groove formation preferentially enhanced extracellular signal-regulated kinase (ERK) signaling. In EGFR mutant embryos at stage 11, sporadic apical cell extrusion in the head initiates a cascade of apical extrusions of apoptotic and non-apoptotic cells that sweeps the entire ventral body wall. Here, we show that this process is apoptosis dependent, and clustered apoptosis, groove formation, and wounding sensitize EGFR mutant epithelia to initiate massive tissue disintegration. We further show that tissue detachment from the vitelline membrane, which frequently occurs during morphogenetic processes, is a key trigger for the EGFR mutant phenotype. These findings indicate that, in addition to cell survival, EGFR plays a role in maintaining epithelial integrity, which is essential for protecting tissues from transient instability caused by morphogenetic movement and damage.
Collapse
Affiliation(s)
- Kentaro Yoshida
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Department of Biology, Kobe University Graduate School of Science, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8051, Japan
| | - Shigeo Hayashi
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Department of Biology, Kobe University Graduate School of Science, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8051, Japan
| |
Collapse
|
2
|
Novel phenotypes of Drosophila spinster locus on the head formation during embryogenesis. Genes Genomics 2017. [DOI: 10.1007/s13258-016-0513-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Urbach R, Jussen D, Technau GM. Gene expression profiles uncover individual identities of gnathal neuroblasts and serial homologies in the embryonic CNS of Drosophila. Development 2016; 143:1290-301. [PMID: 27095493 PMCID: PMC4852520 DOI: 10.1242/dev.133546] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/22/2016] [Indexed: 01/25/2023]
Abstract
The numbers and types of progeny cells generated by neural stem cells in the developing CNS are adapted to its region-specific functional requirements. In Drosophila, segmental units of the CNS develop from well-defined patterns of neuroblasts. Here we constructed comprehensive neuroblast maps for the three gnathal head segments. Based on the spatiotemporal pattern of neuroblast formation and the expression profiles of 46 marker genes (41 transcription factors), each neuroblast can be uniquely identified. Compared with the thoracic ground state, neuroblast numbers are progressively reduced in labial, maxillary and mandibular segments due to smaller sizes of neuroectodermal anlagen and, partially, to suppression of neuroblast formation and induction of programmed cell death by the Hox gene Deformed. Neuroblast patterns are further influenced by segmental modifications in dorsoventral and proneural gene expression. With the previously published neuroblast maps and those presented here for the gnathal region, all neuroectodermal neuroblasts building the CNS of the fly (ventral nerve cord and brain, except optic lobes) are now individually identified (in total 2×567 neuroblasts). This allows, for the first time, a comparison of the characteristics of segmental populations of stem cells and to screen for serially homologous neuroblasts throughout the CNS. We show that approximately half of the deutocerebral and all of the tritocerebral (posterior brain) and gnathal neuroblasts, but none of the protocerebral (anterior brain) neuroblasts, display serial homology to neuroblasts in thoracic/abdominal neuromeres. Modifications in the molecular signature of serially homologous neuroblasts are likely to determine the segment-specific characteristics of their lineages. Highlighted article: Characterisation of the neural stem cells in the gnathal head region completes the mapping of all individual neuroblasts that generate the Drosophila CNS.
Collapse
Affiliation(s)
- Rolf Urbach
- Institute of Genetics, University of Mainz, Mainz D-55099, Germany
| | - David Jussen
- Institute of Genetics, University of Mainz, Mainz D-55099, Germany
| | | |
Collapse
|
4
|
Rationally designed fluorogenic protease reporter visualizes spatiotemporal dynamics of apoptosis in vivo. Proc Natl Acad Sci U S A 2015; 112:3338-43. [PMID: 25733847 DOI: 10.1073/pnas.1502857112] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Fluorescence resonance energy transfer-based reporters have been widely used in imaging cell signaling; however, their in vivo application has been handicapped because of poor signal. Although fluorogenic reporters overcome this problem, no such reporter of proteases has been demonstrated for in vivo imaging. Now we have redesigned an infrared fluorescent protein so that its chromophore incorporation is regulated by protease activity. Upon protease activation, the infrared fluorogenic protease reporter becomes fluorescent with no requirement of exogenous cofactor. To demonstrate biological applications, we have designed an infrared fluorogenic executioner-caspase reporter, which reveals spatiotemporal coordination between cell apoptosis and embryonic morphogenesis, as well as dynamics of apoptosis during tumorigenesis in Drosophila. The designed scaffold may be used to engineer reporters of other proteases with specific cleavage sequence.
Collapse
|
5
|
Birkholz O, Vef O, Rogulja-Ortmann A, Berger C, Technau GM. Abdominal-B and caudal inhibit the formation of specific neuroblasts in the Drosophila tail region. Development 2013; 140:3552-64. [PMID: 23903193 PMCID: PMC3915569 DOI: 10.1242/dev.096099] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The central nervous system of Drosophila melanogaster consists of fused segmental units (neuromeres), each generated by a characteristic number of neural stem cells (neuroblasts). In the embryo, thoracic and anterior abdominal neuromeres are almost equally sized and formed by repetitive sets of neuroblasts, whereas the terminal abdominal neuromeres are generated by significantly smaller populations of progenitor cells. Here we investigated the role of the Hox gene Abdominal-B in shaping the terminal neuromeres. We show that the regulatory isoform of Abdominal-B (Abd-B.r) not only confers abdominal fate to specific neuroblasts (e.g. NB6-4) and regulates programmed cell death of several progeny cells within certain neuroblast lineages (e.g. NB3-3) in parasegment 14, but also inhibits the formation of a specific set of neuroblasts in parasegment 15 (including NB7-3). We further show that Abd-B.r requires cooperation of the ParaHox gene caudal to unfold its full competence concerning neuroblast inhibition and specification. Thus, our findings demonstrate that combined action of Abdominal-B and caudal contributes to the size and composition of the terminal neuromeres by regulating both the number and lineages of specific neuroblasts.
Collapse
|
6
|
Harris TJ. Adherens Junction Assembly and Function in the Drosophila Embryo. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 293:45-83. [DOI: 10.1016/b978-0-12-394304-0.00007-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Behura SK, Haugen M, Flannery E, Sarro J, Tessier CR, Severson DW, Duman-Scheel M. Comparative genomic analysis of Drosophila melanogaster and vector mosquito developmental genes. PLoS One 2011; 6:e21504. [PMID: 21754989 PMCID: PMC3130749 DOI: 10.1371/journal.pone.0021504] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/30/2011] [Indexed: 11/18/2022] Open
Abstract
Genome sequencing projects have presented the opportunity for analysis of developmental genes in three vector mosquito species: Aedes aegypti, Culex quinquefasciatus, and Anopheles gambiae. A comparative genomic analysis of developmental genes in Drosophila melanogaster and these three important vectors of human disease was performed in this investigation. While the study was comprehensive, special emphasis centered on genes that 1) are components of developmental signaling pathways, 2) regulate fundamental developmental processes, 3) are critical for the development of tissues of vector importance, 4) function in developmental processes known to have diverged within insects, and 5) encode microRNAs (miRNAs) that regulate developmental transcripts in Drosophila. While most fruit fly developmental genes are conserved in the three vector mosquito species, several genes known to be critical for Drosophila development were not identified in one or more mosquito genomes. In other cases, mosquito lineage-specific gene gains with respect to D. melanogaster were noted. Sequence analyses also revealed that numerous repetitive sequences are a common structural feature of Drosophila and mosquito developmental genes. Finally, analysis of predicted miRNA binding sites in fruit fly and mosquito developmental genes suggests that the repertoire of developmental genes targeted by miRNAs is species-specific. The results of this study provide insight into the evolution of developmental genes and processes in dipterans and other arthropods, serve as a resource for those pursuing analysis of mosquito development, and will promote the design and refinement of functional analysis experiments.
Collapse
Affiliation(s)
- Susanta K. Behura
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Morgan Haugen
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, Indiana, United States of America
| | - Ellen Flannery
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Joseph Sarro
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Charles R. Tessier
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, Indiana, United States of America
| | - David W. Severson
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, Indiana, United States of America
| | - Molly Duman-Scheel
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, Indiana, United States of America
- * E-mail:
| |
Collapse
|
8
|
Zhang L, Ward RE. Distinct tissue distributions and subcellular localizations of differently phosphorylated forms of the myosin regulatory light chain in Drosophila. Gene Expr Patterns 2010; 11:93-104. [PMID: 20920606 DOI: 10.1016/j.gep.2010.09.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 09/24/2010] [Accepted: 09/28/2010] [Indexed: 11/29/2022]
Abstract
Nonmuscle myosin II (myosin hereafter) has well-established roles in generating contractile force on actin filaments during morphogenetic processes in all metazoans. Myosin activation is regulated by phosphorylation of the myosin regulatory light chain (MRLC, encoded by spaghettisquash or sqh in Drosophila) first on Ser21 and subsequently on Thr20. These phosphorylation events are positively controlled by a variety of kinases including myosin light chain kinase, Rho kinase, citron kinase, and AMP kinase and are negatively regulated by myosin phosphatase. The activation of myosin is thus highly regulated and likely developmentally controlled. In order to monitor the activity of myosin during development, we have generated antibodies against the monophosphorylated (Sqh1P) and diphosphorylated (Sqh2P) forms of Sqh. We first show that the antibodies are highly specific. We then used these antibodies to monitor myosin activation in wild type Drosophila tissues. Interestingly, Sqh1P and Sqh2P show distinct patterns of expression in embryos. Sqh1P is expressed nearly ubiquitously and outlines cells consistent with a junctional localization, whereas Sqh2P is strongly expressed on the apical surfaces and in filopodia of tissues undergoing extensive cell shape change or cell movements including the invaginating fore- and hindgut, the invaginating tracheal system, the dorsal pouch and the dorsal most row of epidermal (DME) cells during dorsal closure. In imaginal discs, Sqh1P predominantly localizes in the adherens junction, whereas Sqh2P locates to the apical domain. These antibodies thus have the potential to be very useful in monitoring myosin activation for functional studies of morphogenesis in Drosophila.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | | |
Collapse
|
9
|
Rost-Roszkowska MM, Poprawa I, Chachulska-Zymełka A. Apoptosis and Autophagy in the Midgut Epithelium ofAcheta domesticus(Insecta, Orthoptera, Gryllidae). Zoolog Sci 2010; 27:740-5. [DOI: 10.2108/zsj.27.740] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
The role of apoptosis in shaping the tracheal system in the Drosophila embryo. Mech Dev 2009; 127:28-35. [PMID: 19995601 DOI: 10.1016/j.mod.2009.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 11/23/2009] [Accepted: 11/27/2009] [Indexed: 11/23/2022]
Abstract
The tubular network of the tracheal system in the Drosophila embryo is created from a set of epithelial placodes by cell migration, rearrangements, fusions and shape changes. A designated number of cells is initially allocated to each branch of the system. We show here that the final cell number in the dorsal branches is not only determined by early patterning events and subsequent cell rearrangements but also by elimination of cells from the developing branch. Extruded cells die and are engulfed by macrophages. Our results suggest that the pattern of cell extrusion and death is not hard-wired, but is determined by environmental cues.
Collapse
|
11
|
Rost-Roszkowska MM, Poprawa I, Klag J, Migula P, Mesjasz-Przybyłowicz J, Przybyłowicz W. Degeneration of the midgut epithelium in Epilachna cf. nylanderi (Insecta, Coccinellidae): apoptosis, autophagy, and necrosis. CAN J ZOOL 2008. [DOI: 10.1139/z08-096] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigates mechanisms of adaptation to metal toxicity peculiar to the midgut epithelium of Epilachna cf. nylanderi (Mulsant, 1850) (Coccinellidae). This species of beetle has currently been identified in only one locality in South Africa and is known to feed on the nickel hyperaccumulator Berkheya coddii Roessl. (Asteraceae), an endemic plant species of the South African ultramafic ecosystem. Our focus involves an analysis of the morphological features of cells forming the midgut epithelium, which is the first organ exposed to toxic levels of metals ingested by the insect. Through the three key processes of apoptosis, necrosis, and autophagy, excess metals are eliminated from the organism and homeostatic conditions are maintained. Apoptosis and necrosis are both known to be involved in the degradation of midgut epithelial cells, while the role of autophagy is mainly implicated in the disintegration of the organelles of cells. This study reports on the participation of these three key degenerative processes in the removal of excess metals based on targeted observations of the insect midgut epithelium by light and electron microscopies. Additionally, the TUNEL reaction was specifically used to detect apoptosis.
Collapse
Affiliation(s)
- Magdalena M. Rost-Roszkowska
- Department of Animal Histology and Embryology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
- Materials Research Group, iThemba LABS, Somerset West 7129, South Africa
| | - Izabela Poprawa
- Department of Animal Histology and Embryology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
- Materials Research Group, iThemba LABS, Somerset West 7129, South Africa
| | - Jerzy Klag
- Department of Animal Histology and Embryology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
- Materials Research Group, iThemba LABS, Somerset West 7129, South Africa
| | - Paweł Migula
- Department of Animal Histology and Embryology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
- Materials Research Group, iThemba LABS, Somerset West 7129, South Africa
| | - Jolanta Mesjasz-Przybyłowicz
- Department of Animal Histology and Embryology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
- Materials Research Group, iThemba LABS, Somerset West 7129, South Africa
| | - Wojciech Przybyłowicz
- Department of Animal Histology and Embryology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
- Materials Research Group, iThemba LABS, Somerset West 7129, South Africa
| |
Collapse
|
12
|
Rost-Roszkowska MM. Degeneration of the Midgut Epithelium in Allacma fusca L. (Insecta, Collembola, Symphypleona): Apoptosis and Necrosis. Zoolog Sci 2008; 25:753-9. [DOI: 10.2108/zsj.25.753] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 04/10/2008] [Indexed: 11/17/2022]
|
13
|
Schinko JB, Kreuzer N, Offen N, Posnien N, Wimmer EA, Bucher G. Divergent functions of orthodenticle, empty spiracles and buttonhead in early head patterning of the beetle Tribolium castaneum (Coleoptera). Dev Biol 2008; 317:600-13. [PMID: 18407258 DOI: 10.1016/j.ydbio.2008.03.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 03/03/2008] [Accepted: 03/04/2008] [Indexed: 01/08/2023]
Abstract
The head gap genes orthodenticle (otd), empty spiracles (ems) and buttonhead (btd) are required for metamerization and segment specification in Drosophila. We asked whether the function of their orthologs is conserved in the red flour beetle Tribolium castaneum which in contrast to Drosophila develops its larval head in a way typical for insects. We find that depending on dsRNA injection time, two functions of Tc-orthodenticle1 (Tc-otd1) can be identified. The early regionalization function affects all segments formed during the blastoderm stage while the later head patterning function is similar to Drosophila. In contrast, both expression and function of Tc-empty spiracles (Tc-ems) are restricted to the posterior part of the ocular and the anterior part of the antennal segment and Tc-buttonhead (Tc-btd) is not required for head cuticle formation at all. We conclude that the gap gene like roles of ems and btd are not conserved while at least the head patterning function of otd appears to be similar in fly and beetle. Hence, the ancestral mode of insect head segmentation remains to be discovered. With this work, we establish Tribolium as a model system for arthropod head development that does not suffer from the Drosophila specific problems like head involution and strongly reduced head structures.
Collapse
Affiliation(s)
- Johannes B Schinko
- Department of Developmental Biology, Johann Friedrich Blumenbach Institute of Zoology and Anthropology, Georg-August-University Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Page DT, Olofsson B. Multiple roles for apoptosis facilitating condensation of the Drosophila ventral nerve cord. Genesis 2008; 46:61-8. [PMID: 18257102 DOI: 10.1002/dvg.20365] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
At the end of embryogenesis, the ventral nerve cord (VNC) of Drosophila undergoes a shape change, termed condensation. During condensation the length of the VNC shortens by 25%, a process dependent on extracellular matrix deposited by hemocytes, an intact cytoskeleton of glia and neurons and neural activity. Here we show that cell death contributes to nerve cord shortening. Firstly, apoptosis occurs at the interface of the epidermis and the nerve cord where it plays a role in the separation of these two tissues. Separation precedes condensation and in conditions where separation is prevented, condensation fails. Secondly, many cells undergo apoptosis within VNC during condensation. This cell death is localized mainly to the posterior part of the nerve cord where more than half of all cell death occurs. Preventing apoptosis either in neurons or glia partially inhibits VNC shortening during condensation. Despite the importance of midline glia in axon tract development, preventing midline glia cell death results in normal hatching and adult formation. We find that undead midline glia are eliminated from the midline and become mispositioned or expelled from the nervous system. We suggest that this represent a form of pattern repair that operates to reduce the impact of the additional cells.
Collapse
Affiliation(s)
- Damon T Page
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge, United Kingdom
| | | |
Collapse
|
15
|
Urbach R, Volland D, Seibert J, Technau GM. Segment-specific requirements for dorsoventral patterning genes during early brain development in Drosophila. Development 2007; 133:4315-30. [PMID: 17038517 DOI: 10.1242/dev.02605] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An initial step in the development of the Drosophila central nervous system is the delamination of a stereotype population of neural stem cells (neuroblasts, NBs) from the neuroectoderm. Expression of the columnar genes ventral nervous system defective (vnd), intermediate neuroblasts defective (ind) and muscle segment homeobox (msh) subdivides the truncal neuroectoderm (primordium of the ventral nerve cord) into a ventral, intermediate and dorsal longitudinal domain, and has been shown to play a key role in the formation and/or specification of corresponding NBs. In the procephalic neuroectoderm (pNE, primordium of the brain), expression of columnar genes is highly complex and dynamic, and their functions during brain development are still unknown. We have investigated the role of these genes (with special emphasis on the Nkx2-type homeobox gene vnd) in early embryonic development of the brain. We show at the level of individually identified cells that vnd controls the formation of ventral brain NBs and is required, and to some extent sufficient, for the specification of ventral and intermediate pNE and deriving NBs. However, we uncovered significant differences in the expression of and regulatory interactions between vnd, ind and msh among brain segments, and in comparison to the ventral nerve cord. Whereas in the trunk Vnd negatively regulates ind, Vnd does not repress ind (but does repress msh) in the ventral pNE and NBs. Instead, in the deutocerebral region, Vnd is required for the expression of ind. We also show that, in the anterior brain (protocerebrum), normal production of early glial cells is independent from msh and vnd, in contrast to the posterior brain (deuto- and tritocerebrum) and to the ventral nerve cord.
Collapse
Affiliation(s)
- Rolf Urbach
- Institute of Genetics, University of Mainz, D-55099 Mainz, Germany.
| | | | | | | |
Collapse
|
16
|
Sprecher SG, Urbach R, Technau GM, Rijli FM, Reichert H, Hirth F. The columnar gene vnd is required for tritocerebral neuromere formation during embryonic brain development of Drosophila. Development 2007; 133:4331-9. [PMID: 17038518 DOI: 10.1242/dev.02606] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Drosophila, evolutionarily conserved transcription factors are required for the specification of neural lineages along the anteroposterior and dorsoventral axes, such as Hox genes for anteroposterior and columnar genes for dorsoventral patterning. In this report, we analyse the role of the columnar patterning gene ventral nervous system defective (vnd) in embryonic brain development. Expression of vnd is observed in specific subsets of cells in all brain neuromeres. Loss-of-function analysis focussed on the tritocerebrum shows that inactivation of vnd results in regionalized axonal patterning defects, which are comparable with the brain phenotype caused by mutation of the Hox gene labial (lab). However, in contrast to lab activity in specifying tritocerebral neuronal identity, vnd is required for the formation and specification of tritocerebral neural lineages. Thus, in early vnd mutant embryos, the Tv1-Tv5 neuroblasts, which normally express lab, do not form. Later in embryogenesis, vnd mutants show an extensive loss of lab-expressing cells because of increased apoptotic activity, resulting in a gap-like brain phenotype that is characterized by an almost complete absence of the tritocerebral neuromere. Correspondingly, genetic block of apoptosis in vnd mutant embryos partially restores tritocerebral cells as well as axon tracts. Taken together, our results indicate that vnd is required for the genesis and proper identity specification of tritocerebral neural lineages during embryonic brain development of Drosophila.
Collapse
|
17
|
Sprecher SG, Hirth F. Expression and function of the columnar patterning gene msh in late embryonic brain development of Drosophila. Dev Dyn 2007; 235:2920-9. [PMID: 16929521 DOI: 10.1002/dvdy.20936] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In Drosophila, specification of neural identity requires a network of conserved transcription factors, such as the columnar genes for dorsoventral patterning. Here, we analyze the expression and function of the columnar patterning gene muscle specific homeobox (msh) in late embryonic brain development. Expression of msh is observed in all brain neuromeres, including neurons and neuropile glia. Functional analysis demonstrates that msh is essential for proper development of the tritocerebral neuromere and brain neuropile glia. Thus, msh mutants display a severe loss of neural and glial tissue together with axonal patterning defects. This gap-like phenotype initially correlates with defects in neural and glial cell formation and during later embryonic development is associated with increased apoptotic activity. Taken together, our results provide evidence that the columnar patterning gene msh is required for correct tritocerebral neuromere development, as well as for neuropile glia formation and axogenesis in embryonic brain development of Drosophila.
Collapse
|
18
|
VanHook A, Letsou A. Head involution inDrosophila: Genetic and morphogenetic connections to dorsal closure. Dev Dyn 2007; 237:28-38. [DOI: 10.1002/dvdy.21405] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
19
|
Scuderi A, Simin K, Kazuko SG, Metherall JE, Letsou A. scylla and charybde, homologues of the human apoptotic gene RTP801, are required for head involution in Drosophila. Dev Biol 2006; 291:110-22. [PMID: 16423342 DOI: 10.1016/j.ydbio.2005.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 12/05/2005] [Accepted: 12/08/2005] [Indexed: 11/30/2022]
Abstract
We employed robotic methods and the whole-genome sequence of Drosophila melanogaster to facilitate a large-scale expression screen for spatially restricted transcripts in Drosophila embryos. In this screen, we identified a pair of genes, scylla (scyl) and charybde (chrb), that code for dorsal transcripts in early Drosophila embryos and are homologous to the human apoptotic gene RTP801. In Drosophila, both gene products are transcriptionally regulated targets of Dpp/Zen-mediated signal transduction and appear more generally to be downstream targets of homeobox regulation. Gene disruption studies revealed the functional redundancy of scyl and chrb, as well as their requirement for embryonic head involution. From the perspective of functional genomics, our studies demonstrate that global surveys of gene expression can complement traditional genetic screening methods for the identification of genes essential for development: beginning from their spatio-temporal expression profiles and extending to their downstream placement relative to dpp and zen, our studies reveal roles for the scyl and chrb gene products as links between patterning and cell death.
Collapse
Affiliation(s)
- Anne Scuderi
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
20
|
Johndrow JE, Magie CR, Parkhurst SM. Rho GTPase function in flies: insights from a developmental and organismal perspective. Biochem Cell Biol 2005; 82:643-57. [PMID: 15674432 DOI: 10.1139/o04-118] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Morphogenesis is a key event in the development of a multicellular organism and is reliant on coordinated transcriptional and signal transduction events. To establish the segmented body plan that underlies much of metazoan development, individual cells and groups of cells must respond to exogenous signals with complex movements and shape changes. One class of proteins that plays a pivotal role in the interpretation of extracellular cues into cellular behavior is the Rho family of small GTPases. These molecular switches are essential components of a growing number of signaling pathways, many of which regulate actin cytoskeletal remodeling. Much of our understanding of Rho biology has come from work done in cell culture. More recently, the fruit fly Drosophila melanogaster has emerged as an excellent genetic system for the study of these proteins in a developmental and organismal context. Studies in flies have greatly enhanced our understanding of pathways involving Rho GTPases and their roles in development.
Collapse
Affiliation(s)
- James E Johndrow
- Division of Basic Sciences, A1-162, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, P.O. Box 19024, Seattle, WA 98109, USA
| | | | | |
Collapse
|
21
|
Duchow HK, Brechbiel JL, Chatterjee S, Gavis ER. The nanos translational control element represses translation in somatic cells by a Bearded box-like motif. Dev Biol 2005; 282:207-17. [PMID: 15936341 DOI: 10.1016/j.ydbio.2005.03.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 03/15/2005] [Accepted: 03/15/2005] [Indexed: 11/23/2022]
Abstract
Developmental control of translation is frequently mediated by regulatory elements that reside within 3' untranslated regions (3' UTRs). Two stem-loops within the nanos 3' UTR translational control element (TCE) act independently to direct translational repression of maternal nanos mRNA in the ovary or embryo. We have previously shown that the nanos TCE can also function in select somatic sites. Using an ectopic expression screen, we now identify a new site of TCE function, the dorsal pouch epithelium. Analysis of TCE mutants reveals that TCE activity in the dorsal pouch does not depend on either of the stem-loops required for maternal TCE function, but instead requires a third feature-a sequence that closely matches the Bearded box, a regulatory motif found in the 3' UTRs of several Notch pathway genes. In addition, we identify pleiohomeotic mRNA as an endogenous candidate for regulation by Bearded box-like motifs in the dorsal pouch. Together, these results suggest that the TCE has appropriated a conserved regulatory motif to expand its function to somatic tissues.
Collapse
Affiliation(s)
- Heather K Duchow
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
22
|
Singh N, Zhu W, Hanes SD. Sap18 is required for the maternal gene bicoid to direct anterior patterning in Drosophila melanogaster. Dev Biol 2005; 278:242-54. [PMID: 15649476 DOI: 10.1016/j.ydbio.2004.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 11/05/2004] [Accepted: 11/09/2004] [Indexed: 10/26/2022]
Abstract
Development of the insect head is a complex process that in Drosophila requires the anterior determinant, Bicoid. Bicoid is present in an anterior-to-posterior concentration gradient, and binds DNA and stimulates transcription of head-specific genes. Many of these genes, including the gap-gene hunchback, are initially activated in a broad domain across the head primordium, but later retract so that their expression is cleared from the anterior-most segmented regions. Here, we show that retraction requires a Bicoid-interacting protein, Sap18, which is part of the Sin3/Rpd3 histone deacetylase complex. In sensitized-mutant backgrounds (e.g., bcdE1/+, removal of maternal sap18 results in embryos that are missing labrally derived parts of the cephalopharyngeal skeleton. These sap18 mutant embryos fail to repress hb expression, and show reduced anterior cap expression of the labral determinant cap 'n' collar. These phenotypes are enhanced by lowering the dose of rpd3, which encodes the catalytic subunit of the deacetylase complex. The results suggest a model where, in labral regions of the head, Bicoid is converted from an activator into a repressor by recruitment of a co-repressor to Bicoid-dependent promoters. Bicoid's activity, therefore, depends not only on its concentration gradient, but also on its interactions with modifier proteins within spatially restricted domains.
Collapse
Affiliation(s)
- Navjot Singh
- Molecular Genetics Program, Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY 12208, USA
| | | | | |
Collapse
|
23
|
Yin VP, Thummel CS. A balance between the diap1 death inhibitor and reaper and hid death inducers controls steroid-triggered cell death in Drosophila. Proc Natl Acad Sci U S A 2004; 101:8022-7. [PMID: 15150408 PMCID: PMC419550 DOI: 10.1073/pnas.0402647101] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Indexed: 11/18/2022] Open
Abstract
The steroid hormone ecdysone directs the massive destruction of obsolete larval tissues during Drosophila metamorphosis, providing a model system for defining the molecular mechanisms of steroid-regulated programmed cell death. Although earlier studies have identified an ecdysone triggered genetic cascade that immediately precedes larval tissue cell death, no death regulatory genes have been functionally linked to this death response. We show here that ecdysone-induced expression of the death activator genes reaper (rpr) and head involution defective (hid) is required for destruction of the larval midgut and salivary glands during metamorphosis, with hid playing a primary role in the salivary glands and rpr and hid acting in a redundant manner in the midguts. We also identify the Drosophila inhibitor of apoptosis 1 as a survival factor in the larval cell death pathway, delaying death until its inhibitory effect is overcome by rpr and hid. This study reveals functional interactions between rpr and hid in Drosophila cell death responses and provides evidence that the precise timing of larval tissue cell death during metamorphosis is achieved through a steroid-triggered shift in the balance between the Drosophila inhibitor of apoptosis 1 and the rpr and hid death activators.
Collapse
Affiliation(s)
- Viravuth P Yin
- Department of Human Genetics and Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112-5331, USA
| | | |
Collapse
|
24
|
Chang T, Shy D, Hartenstein V. Antagonistic relationship between Dpp and EGFR signaling in Drosophila head patterning. Dev Biol 2003; 263:103-13. [PMID: 14568549 DOI: 10.1016/s0012-1606(03)00448-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Drosophila eye field that gives rise to the visual system and dorsal head epidermis forms an unpaired anlage located in the dorsal head ectoderm. The eye field expresses and requires both Dpp and EGFR signaling for its development. As shown in previous studies, EGFR is required for cell maintenance in the developing visual system. Dpp initially switches on the early eye genes so and eya in the eye field. Consecutively, high levels of Dpp in the dorsal midline inhibit these genes and promote development of head epidermis. We show that Dpp negatively regulates EGFR signaling, thereby increasing the amount of cell death in the dorsal midline. By this mechanism, Dpp controls the formation of a bilateral visual system and indirectly modulates cell death, which is essential for normal head morphogenesis. Loss of either Dpp or its downstream target, Zen, abolishes head epidermis fate and leads to the misexpression of dp-ERK in the dorsal midline. The resulting morphological phenotype consists of cyclopia, reduction of cell death, and failure of head involution. Ectopic expression of activated EGFR inhibits the Dpp target race and thereby causes cyclopia and defective head involution. We discuss possible mechanisms of Dpp and EGFR interaction in the embryo.
Collapse
Affiliation(s)
- Ting Chang
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
25
|
Mergliano J, Minden JS. Caspase-independent cell engulfment mirrors cell death pattern in Drosophila embryos. Development 2003; 130:5779-89. [PMID: 14534140 DOI: 10.1242/dev.00824] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Programmed cell death plays an essential role during Drosophila embryonic development. A stereotypic series of cellular changes occur during apoptosis, most of which are initiated by a caspase cascade that is triggered by a trio of proteins, RPR, HID and GRIM. The final step in apoptosis is engulfment of the cell corpse. To monitor cell engulfment in vivo, we developed a fluorogenic beta-galactosidase substrate that is cleaved by an endogenous, lysosomal beta-galactosidase activity. The pattern of cell engulfment in wild-type embryos correlated well with the known pattern of apoptosis. Surprisingly, the pattern of cell engulfment persisted in apoptosis-deficient embryos. We provide evidence for a caspase-independent engulfment process that affects the majority of cells expected to die in developing Drosophila embryos.
Collapse
Affiliation(s)
- Jaime Mergliano
- Department of Biological Sciences and Science and Technology Center for Light Microscope Imaging and Biotechnology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
26
|
Zikova M, Da Ponte JP, Dastugue B, Jagla K. Patterning of the cardiac outflow region in Drosophila. Proc Natl Acad Sci U S A 2003; 100:12189-94. [PMID: 14519845 PMCID: PMC218734 DOI: 10.1073/pnas.2133156100] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Specification of bilateral cardiac primordia and formation of the linear heart tube are highly conserved from Drosophila to humans. However, subsequent heart morphogenesis involving nonmesodermal neural crest cells was thought to be specific for vertebrates. Here, we provide evidence that a group of nonmesodermal cells that we have named heart-anchoring cells (HANCs) contribute to heart morphogenesis in Drosophila. We show that the homeobox genes ladybird (lb) known to be involved in diversification of cardiac precursors are expressed in HANCs and required for their specification. Interestingly, the HANCs selectively contact the anterior cardiac cells, which express lb as well. Direct interaction between HANCs and cardiac cells is assisted by a pair of cardiac outflow muscles (COMs), each of which selectively attaches to both the lb-expressing cardiac cells and HANCs. COM muscles seem to ensure ventral bending of the heart tip and together with HANCs determine the spatial positioning of the cardiac outflow region. Experimentally depleted cardiac lb expression leads to the disruption of the contact between the tip of the heart and either the COM muscles or the HANC cells, indicating a pivotal morphogenetic role for the lb expression within the heart.
Collapse
Affiliation(s)
- Martina Zikova
- Institut National de la Santé et de la Recherche Médicale, Unité 384, Faculté de Médecine, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France
| | | | | | | |
Collapse
|
27
|
Urbach R, Technau GM, Breidbach O. Spatial and temporal pattern of neuroblasts, proliferation, and Engrailed expression during early brain development in Tenebrio molitor L. (Coleoptera). ARTHROPOD STRUCTURE & DEVELOPMENT 2003; 32:125-140. [PMID: 18088999 DOI: 10.1016/s1467-8039(03)00043-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2003] [Accepted: 04/28/2003] [Indexed: 05/25/2023]
Abstract
In insects, the knowledge of embryonic brain development is still fragmentary, and comparative data are scarce. In this study, we explored aspects of embryonic brain development in the coleopteran Tenebrio molitor. A detailed description is provided of the spatial and temporal pattern of the embryonic brain neuroblasts during 18-60% of embryonic development. Approximately 125 brain NBs have been identified in each hemisphere of the brain at about 40% of embryonic development. A subset of five neuroblasts, among them the two progenitors of the mushroom bodies and two progenitors of the larval antennal lobe, are morphologically identifiable by their larger size. As revealed by incorporation of BrdU, their mitotic behaviour is distinct from that of all other brain NBs, exhibiting an extended period of proliferation into postembryonic stages, and a significantly higher rate of division. To gain insight into the segmental organization of the T. molitor brain, Engrailed expression was examined in the head ectoderm and the deriving components of the CNS (including neuroblasts and their progeny) at different stages of embryonic development.
Collapse
Affiliation(s)
- Rolf Urbach
- Institute for Genetics, University of Mainz, D-55099 Saarstrasse 21, 55122 Mainz, Germany
| | | | | |
Collapse
|
28
|
Abstract
Epithelial morphogenesis comprises the various processes by which epithelia contribute to organ formation and body shape. These complex and diverse events play a central role in animal development and regeneration. Recently, the characterization of some of the molecular mechanisms involved in epithelial morphogenesis has provided an abundance of new information on the role and regulation of the cytoskeleton, cell-cell adhesion, and cell-matrix adhesion in these processes. In this review, we discuss our current understanding of the molecular mechanisms driving cell shape changes, cell intercalation, fusion of epithelia, ingression, egression, and cell migration. Our discussion is mostly focused on results from Drosophila and mammalian tissue culture but also draws on the insights gained from other organisms.
Collapse
Affiliation(s)
- Frieder Schock
- Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
29
|
Abstract
A very common and the best understood of the mechanisms of physiological cell death is apoptosis, resulting from the activation, through either of two primary pathways, of site-specific proteases called caspases. There are, however, many other routes to cell death, prominently including autophagy and proteasomal degradation of critical constituents of cells. These routes are frequently seen in experimental situations in which initiator or effector caspases are inhibited or blocked through genetic means, but they are also encountered during normal physiological and pathological processes. Most frequently, autophagic or proteasomal degradation is used to eliminate massive cytoplasm of very large cells, especially post-mitotic cells, and these pathways are prominent even though caspase genes, messages, and pro-enzymes are found in the cells. These forms of cell death are fully physiological and not simply a default pathway for a defective cell; and they are distinct from necrosis. We do not yet understand the extent to which the pathways are linked, what mechanisms trigger the caspase-independent deaths, and how the choices are made.
Collapse
Affiliation(s)
- Richard A Lockshin
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Jamaica, NY 11439, USA.
| | | |
Collapse
|
30
|
Dumstrei K, Wang F, Shy D, Tepass U, Hartenstein V. Interaction between EGFR signaling and DE-cadherin during nervous system morphogenesis. Development 2002; 129:3983-94. [PMID: 12163402 DOI: 10.1242/dev.129.17.3983] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dynamically regulated cell adhesion plays an important role during animal morphogenesis. Here we use the formation of the visual system in Drosophila embryos as a model system to investigate the function of the Drosophila classic cadherin, DE-cadherin, which is encoded by the shotgun (shg) gene. The visual system is derived from the optic placode which normally invaginates from the surface ectoderm of the embryo and gives rise to two separate structures, the larval eye (Bolwig’s organ) and the optic lobe. The optic placode dissociates and undergoes apoptotic cell death in the absence of DE-cadherin, whereas overexpression of DE-cadherin results in the failure of optic placode cells to invaginate and of Bolwig’s organ precursors to separate from the placode. These findings indicate that dynamically regulated levels of DE-cadherin are essential for normal optic placode development. It was shown previously that overexpression of DE-cadherin can disrupt Wingless signaling through titration of Armadillo out of the cytoplasm to the membrane. However, the observed defects are likely the consequence of altered DE-cadherin mediated adhesion rather than a result of compromising Wingless signaling, as overexpression of a DE-cadherin-α-catenin fusion protein, which lacks Armadillo binding sites, causes similar defects as DE-cadherin overexpression. We further studied the genetic interaction between DE-cadherin and the Drosophila EGF receptor homolog, EGFR. If EGFR function is eliminated, optic placode defects resemble those following DE-cadherin overexpression, which suggests that loss of EGFR results in an increased adhesion of optic placode cells. An interaction between EGFR and DE-cadherin is further supported by the finding that expression of a constitutively active EGFR enhances the phenotype of a weak shg mutation, whereas a mutation in rhomboid (rho) (an activator of the EGFR ligand Spitz) partially suppresses the shg mutant phenotype. Finally, EGFR can be co-immunoprecipitated with anti-DE-cadherin and anti-Armadillo antibodies from embryonic protein extracts. We propose that EGFR signaling plays a role in morphogenesis by modulating cell adhesion.
Collapse
Affiliation(s)
- Karin Dumstrei
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, 90095, USA
| | | | | | | | | |
Collapse
|
31
|
|
32
|
Lohmann I, McGinnis N, Bodmer M, McGinnis W. The Drosophila Hox gene deformed sculpts head morphology via direct regulation of the apoptosis activator reaper. Cell 2002; 110:457-66. [PMID: 12202035 DOI: 10.1016/s0092-8674(02)00871-1] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Hox proteins control morphological diversity along the anterior-posterior body axis of animals, but the cellular processes they directly regulate are poorly understood. We show that during early Drosophila development, the Hox protein Deformed (Dfd) maintains the boundary between the maxillary and mandibular head lobes by activating localized apoptosis. Dfd accomplishes this by directly activating the cell death promoting gene reaper (rpr). One other Hox gene, Abdominal-B (Abd-B), also regulates segment boundaries through the regional activation of apoptosis. Thus, one mechanism used by Drosophila Hox genes to modulate segmental morphology is to regulate programmed cell death, which literally sculpts segments into distinct shapes. This and other emerging evidence suggests that Hox proteins may often regulate the maintenance of segment boundaries.
Collapse
Affiliation(s)
- Ingrid Lohmann
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla 92093, USA
| | | | | | | |
Collapse
|
33
|
Gorski S, Marra M. Programmed cell death takes flight: genetic and genomic approaches to gene discovery in Drosophila. Physiol Genomics 2002; 9:59-69. [PMID: 12006672 DOI: 10.1152/physiolgenomics.00114.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Programmed cell death (PCD) is an essential and wide-spread physiological process that results in the elimination of cells. Genes required to carry out this process have been identified, and many of these remain the subjects of intense investigation. Here, we describe PCD, its functions, and some of the consequences when it goes awry. We review PCD in the model system, the fruit fly, Drosophila melanogaster, with a particular emphasis on cell death gene discovery resulting from both genetics and genomics-based approaches.
Collapse
Affiliation(s)
- S Gorski
- Genome Sequence Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4E6.
| | | |
Collapse
|
34
|
Abstract
In vertebrates (deuterostomes), brain patterning depends on signals from adjacent tissues. For example, holoprosencephaly, the most common brain anomaly in humans, results from defects in signaling between the embryonic prechordal plate (consisting of the dorsal foregut endoderm and mesoderm) and the brain. I have examined whether a similar mechanism of brain development occurs in the protostome Drosophila, and find that the foregut and mesoderm act to pattern the fly embryonic brain. When the foregut and mesoderm of Drosophila are ablated, brain patterning is disrupted. The loss of Hedgehog expressed in the foregut appears to mediate this effect, as it does in vertebrates. One mechanism whereby these defects occur is a disruption of normal apoptosis in the brain. These data argue that the last common ancestor of protostomes and deuterostomes had a prototype of the brains present in modern animals, and also suggest that the foregut and mesoderm contributed to the patterning of this ‘proto-brain’. They also argue that the foreguts of protostomes and deuterostomes, which have traditionally been assigned to different germ layers, are actually homologous.
Collapse
Affiliation(s)
- Damon T Page
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| |
Collapse
|
35
|
Ranganath RM, Nagashree NR. Role of programmed cell death in development. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 202:159-242. [PMID: 11061565 DOI: 10.1016/s0074-7696(01)02005-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Programmed cell death (PCD) is an integral part of both animal and plant development. In animals, model systems such as Caenorhabditis elegans, Drosophila melanogaster, and mice have shown a general cell death profile of induction, caspase mediation, cell death, and phagocytosis. Tremendous strides have been made in cell death research in animals in the past decade. The ordering of the C. elegans genes Ced-3, 4 and 9, identification of caspase-activated DNase that degrades nuclear DNA during PCD, identification of signal transduction modules involving caspases as well as the caspase-independent pathway, and the involvement of mitochondria are some of the findings of immense value in understanding animal PCDs. Similarly, the caspase inactivation mechanisms of infecting viruses to stall host cell death give a new dimension to the viral infection process. However, plant cell death profiles provide an entirely different scenario. The presence of a cell wall that cannot be phagocytosed, absence of the hallmarks of animal PCDs such as DNA laddering, formation of apoptotic bodies, a cell-death-specific nuclease, a biochemical machinery of killer enzymes such as caspases all point to novel ways of cell elimination. Large gaps in our understanding of plant cell death have prompted speculative inferences and comparisons with animal cell death mechanisms. This paper deals with both animals and plants for a holistic view on cell death in eukaryotes.
Collapse
Affiliation(s)
- R M Ranganath
- Department of Botany, Bangalore University, Jnanabharathi, India
| | | |
Collapse
|
36
|
Ntwasa M, Aapies S, Schiffmann DA, Gay NJ. Drosophila embryos lacking N-myristoyltransferase have multiple developmental defects. Exp Cell Res 2001; 262:134-44. [PMID: 11139338 DOI: 10.1006/excr.2000.5086] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lipid modification of proteins by the addition of myristic acid to the N-terminal is important in a number of critical cellular processes, for example, signal transduction and the modulation of membrane association by myristoyl switches. Myristic acid is added to proteins by the enzyme N-myristoyltransferase (NMT) and in this paper we detail the effects on embryonic development of a null mutation in the Drosophila NMT gene. Mutant embryos display a range of phenotypes, including failures of head involution, dorsal closure, and germ-band retraction, morphogenetic processes that require cellular movements. Embryos with milder phenotypes have more specific defects in the central nervous system, including thinning of the ventral nerve chord and, in some embryos, specific scission at parasegment 10. Staining of mutant embryos with phalloidin shows that the mutant embryos have a disrupted actin cytoskeleton and abnormal cell morphology. These phenotypes are strikingly similar to those caused by genes involved in dynamic rearrangement of the actin cytoskeleton. For example the myristoylated nonreceptor tyrosine kinases Dsrc42A and Dsrc64B were shown recently to be key regulators of dorsal closure. In addition, analysis of cell death reveals widespread ectopic apoptosis. Our findings are consistent with the hypothesis that the myristoyl switches and signaling pathways characterized at the biochemical level have important functions in fundamental morphogenetic processes.
Collapse
Affiliation(s)
- M Ntwasa
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | | | | | | |
Collapse
|
37
|
Abstract
Selective cell death provides developing tissues with the means to precisely sculpt emerging structures. By imposing patterned cell death across a tissue, boundaries can be created and tightened. As such, programmed cell death is becoming recognized as a major mechanism for patterning of a variety of complex structures. Typically, cell types are initially organized into a fairly loose pattern; selective death then removes cells between pattern elements to create correct structures. In this review, we examine the role of selective cell death across the course of Drosophila development, including the tightening of embryonic segmental boundaries, head maturation, refining adult structures such as the eye and the wing, and the ability of cell death to correct for pattern defects introduced by gene mutation. We also review what is currently known of the relationship between signals at the cell surface that are responsible for tissue patterning and the basal cell death machinery, an issue that remains poorly understood.
Collapse
Affiliation(s)
- J C Rusconi
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri, MO 63110, USA
| | | | | |
Collapse
|
38
|
Lisi S, Mazzon I, White K. Diverse domains of THREAD/DIAP1 are required to inhibit apoptosis induced by REAPER and HID in Drosophila. Genetics 2000; 154:669-78. [PMID: 10655220 PMCID: PMC1460939 DOI: 10.1093/genetics/154.2.669] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Significant amounts of apoptosis take place during Drosophila development. The proapoptotic genes reaper (rpr), grim, and head involution defective (hid) are required for virtually all embryonic apoptosis. The proteins encoded by these genes share a short region of homology at their amino termini. The Drosophila IAP homolog THREAD/DIAP1 (TH/DIAP1), encoded by the thread (th) gene, negatively regulates apoptosis during development. It has been proposed that RPR, GRIM, and HID induce apoptosis by binding and inactivating TH/DIAP1. The region of homology between the three proapoptotic proteins has been proposed to bind to the conserved BIR2 domain of TH/DIAP1. Here, we present an analysis of loss-of-function and gain-of-function alleles of th, which indicates that additional domains of TH/DIAP1 are necessary for its ability to inhibit death induced by RPR, GRIM, and HID. In addition, that analysis of loss-of-function mutations demonstrates that th is necessary to block apoptosis very early in embryonic development. This may reflect a requirement to block maternally provided RPR and HID, or it may indicate another function of the TH/DIAP1 protein.
Collapse
Affiliation(s)
- S Lisi
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | |
Collapse
|
39
|
Namba R, Minden JS. Fate mapping of Drosophila embryonic mitotic domain 20 reveals that the larval visual system is derived from a subdomain of a few cells. Dev Biol 1999; 212:465-76. [PMID: 10433835 DOI: 10.1006/dbio.1999.9349] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In an attempt to study the fates of cells in the dorsal head region of Drosophila embryos at gastrulation, we used the photoactivated gene expression system to mark small numbers of cells in selected mitotic domains. We found that mitotic domain 20, which is a cluster of approximately 30 cells on the dorsal posterior surface, gives rise to various ectodermal cell types in the head, including dorsal pouch epithelium, the optic lobe, and head sensory organs, including Bolwig's organ, the larval photoreceptor organ. We found that the optic lobe and larval photoreceptors share the same origin of a few adjacent cells near the center of mitotic domain 20, suggesting that within the mitotic domain, there is a subdomain from which the larval visual system is specified. In addition to the components of the larval visual system, this central region of mitotic domain 20 also generates a part of the eye-antennal disc placode; cells that gives rise to the adult visual system. We also observed that a significant amount of cell death occurred within this domain and used cell ablation experiments to determine the ability of the embryo to compensate for cell loss.
Collapse
Affiliation(s)
- R Namba
- Department of Biological Sciences and Center for Light Microscope Imaging and Biotechnology, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| | | |
Collapse
|
40
|
Daniel A, Dumstrei K, Lengyel JA, Hartenstein V. The control of cell fate in the embryonic visual system by atonal, tailless and EGFR signaling. Development 1999; 126:2945-54. [PMID: 10357938 DOI: 10.1242/dev.126.13.2945] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe here the role of the transcription factors encoding genes tailless (tll), atonal (ato), sine oculis (so), eyeless (ey) and eyes absent (eya), and EGFR signaling in establishing the Drosophila embryonic visual system. The embryonic visual system consists of the optic lobe primordium, which, during later larval life, develops into the prominent optic lobe neuropiles, and the larval photoreceptor (Bolwig's organ). Both structures derive from a neurectodermal placode in the embryonic head. Expression of tll is normally confined to the optic lobe primordium, whereas ato appears in a subset of Bolwig's organ cells that we call Bolwig's organ founders. Phenotypic analysis, using specific markers for Bolwig's organ and the optic lobe, of tll loss- and gain-of-function mutant embryos reveals that tll functions to drive cells to optic lobe as opposed to Bolwig's organ fate. Similar experiments indicate that ato has the opposite effect, namely driving cells to a Bolwig's organ fate. Since we can show that tll and ato do not regulate each other, we propose a model wherein tll expression restricts the ability of cells to respond to signaling arising from ato-expressing Bolwig's organ pioneers. Our data further suggest that the Bolwig's organ founder cells produce Spitz (the Drosophila TGFalpha homolog) signal, which is passed to the neighboring secondary Bolwig's organ cells where it activates the EGFR signaling cascade and maintains the fate of these secondary cells. The regulators of tll expression in the embryonic visual system remain elusive, as we were unable to find evidence for regulation by the ‘early eye genes’ so, eya and ey, or by EGFR signaling.
Collapse
Affiliation(s)
- A Daniel
- Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, CA 90095-1606, USA
| | | | | | | |
Collapse
|
41
|
Draizen TA, Ewer J, Robinow S. Genetic and hormonal regulation of the death of peptidergic neurons in the Drosophila central nervous system. JOURNAL OF NEUROBIOLOGY 1999; 38:455-65. [PMID: 10084681 DOI: 10.1002/(sici)1097-4695(199903)38:4<455::aid-neu2>3.0.co;2-f] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To understand the role apoptosis plays in nervous system development and to gain insight into the mechanisms by which steroid hormones regulate neuronal apoptosis, we investigated the death of a set of peptidergic neurons in the CNS of the fruitfly Drosophila melanogaster. Typically, apoptosis in Drosophila is induced by the expression of the genes reaper, grim, or head involution defective (hid). We provide genetic evidence that the death of these neurons requires reaper and grim gene function. Consistent with this genetic analysis, we demonstrate that these doomed neurons accumulate reaper and grim transcripts prior to the onset of apoptosis. These neurons also accumulate low levels of hid, although the genetic analysis suggests that hid may not play a major role in the induction of apoptosis in these neurons. We show that the death of these neurons is dependent upon the fall in the titer of the steroid hormone 20-hydroxyecdysone that occurs at the end of metamorphosis, and demonstrate that the accumulation of both reaper and grim transcripts is inhibited by this steroid hormone. These observations support the notion that 20E controls apoptosis by regulating the expression of genes that induce apoptosis.
Collapse
Affiliation(s)
- T A Draizen
- Department of Zoology, University of Hawaii, Honolulu 96822, USA
| | | | | |
Collapse
|