1
|
Xia Y, Zhang X, Zhang X, Zhu H, Zhong X, Song W, Yuan J, Sha Z, Li F. Gene structure, expression and function analysis of the MyoD gene in the Pacific white shrimp Litopenaeus vannamei. Gene 2024; 921:148523. [PMID: 38703863 DOI: 10.1016/j.gene.2024.148523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/14/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The Pacific white shrimp Litopenaeus vannamei is a representative species of decapod crustacean and an economically important marine aquaculture species worldwide. However, research on the genes involved in muscle growth and development in shrimp is still lacking. MyoD is recognized as a crucial regulator of myogenesis and plays an essential role in muscle growth and differentiation in various animals. Nonetheless, little information is available concerning the function of this gene among crustaceans. In this study, we identified a sequence of the MyoD gene (LvMyoD) with a conserved bHLH domain in the L. vannamei genome. Phylogenetic analysis revealed that both the overall protein sequence and specific functional sites of LvMyoD are highly conserved with those of other crustacean species and that they are evolutionarily closely related to vertebrate MyoD and Myf5. LvMyoD expression is initially high during early muscle development in shrimp and gradually decreases after 40 days post-larval development. In adults, the muscle-specific expression of LvMyoD was confirmed through RT-qPCR analysis. Knockdown of LvMyoD inhibited the growth of the shrimp in body length and weight. Histological observation and transcriptome sequencing of muscle samples after RNA interference (RNAi) revealed nuclear agglutination and looseness in muscle fibers. Additionally, we observed significant effects on the expression of genes involved in heat shock proteins, myosins, actins, protein synthesis, and glucose metabolism. These findings suggest that LvMyoD plays a critical role in regulating muscle protein synthesis and muscle cell differentiation. Overall, this study highlights the involvement of LvMyoD in myogenesis and muscle growth, suggesting that it is a potentially important regulatory target for shrimp breeding efforts.
Collapse
Affiliation(s)
- Yanting Xia
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Institute of Aquatic Biotechnology, Collage of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Xiaojun Zhang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Institute of Aquatic Biotechnology, Collage of Life Sciences, Qingdao University, Qingdao 266071, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Xiaoxi Zhang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Haochen Zhu
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Institute of Aquatic Biotechnology, Collage of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Xiaoyun Zhong
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Jianbo Yuan
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhenxia Sha
- Institute of Aquatic Biotechnology, Collage of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Fuhua Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
2
|
Poovathumkadavil P, Jagla K. Genetic Control of Muscle Diversification and Homeostasis: Insights from Drosophila. Cells 2020; 9:cells9061543. [PMID: 32630420 PMCID: PMC7349286 DOI: 10.3390/cells9061543] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
In the fruit fly, Drosophila melanogaster, the larval somatic muscles or the adult thoracic flight and leg muscles are the major voluntary locomotory organs. They share several developmental and structural similarities with vertebrate skeletal muscles. To ensure appropriate activity levels for their functions such as hatching in the embryo, crawling in the larva, and jumping and flying in adult flies all muscle components need to be maintained in a functionally stable or homeostatic state despite constant strain. This requires that the muscles develop in a coordinated manner with appropriate connections to other cell types they communicate with. Various signaling pathways as well as extrinsic and intrinsic factors are known to play a role during Drosophila muscle development, diversification, and homeostasis. In this review, we discuss genetic control mechanisms of muscle contraction, development, and homeostasis with particular emphasis on the contractile unit of the muscle, the sarcomere.
Collapse
|
3
|
Dobi KC, Schulman VK, Baylies MK. Specification of the somatic musculature in Drosophila. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:357-75. [PMID: 25728002 PMCID: PMC4456285 DOI: 10.1002/wdev.182] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/16/2015] [Accepted: 02/04/2015] [Indexed: 11/09/2022]
Abstract
The somatic muscle system formed during Drosophila embryogenesis is required for larvae to hatch, feed, and crawl. This system is replaced in the pupa by a new adult muscle set, responsible for activities such as feeding, walking, and flight. Both the larval and adult muscle systems are comprised of distinct muscle fibers to serve these specific motor functions. In this way, the Drosophila musculature is a valuable model for patterning within a single tissue: while all muscle cells share properties such as the contractile apparatus, properties such as size, position, and number of nuclei are unique for a particular muscle. In the embryo, diversification of muscle fibers relies first on signaling cascades that pattern the mesoderm. Subsequently, the combinatorial expression of specific transcription factors leads muscle fibers to adopt particular sizes, shapes, and orientations. Adult muscle precursors (AMPs), set aside during embryonic development, proliferate during the larval phases and seed the formation of the abdominal, leg, and flight muscles in the adult fly. Adult muscle fibers may either be formed de novo from the fusion of the AMPs, or are created by the binding of AMPs to an existing larval muscle. While less is known about adult muscle specification compared to the larva, expression of specific transcription factors is also important for its diversification. Increasingly, the mechanisms required for the diversification of fly muscle have found parallels in vertebrate systems and mark Drosophila as a robust model system to examine questions about how diverse cell types are generated within an organism.
Collapse
Affiliation(s)
- Krista C. Dobi
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA
| | - Victoria K. Schulman
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA
- Cell and Developmental Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Mary K. Baylies
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA
- Cell and Developmental Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| |
Collapse
|
4
|
Kumar RP, Dobi KC, Baylies MK, Abmayr SM. Muscle cell fate choice requires the T-box transcription factor midline in Drosophila. Genetics 2015; 199:777-91. [PMID: 25614583 PMCID: PMC4349071 DOI: 10.1534/genetics.115.174300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 01/11/2015] [Indexed: 11/18/2022] Open
Abstract
Drosophila Midline (Mid) is an ortholog of vertebrate Tbx20, which plays roles in the developing heart, migrating cranial motor neurons, and endothelial cells. Mid functions in cell-fate specification and differentiation of tissues that include the ectoderm, cardioblasts, neuroblasts, and egg chambers; however, a role in the somatic musculature has not been described. We identified mid in genetic and molecular screens for factors contributing to somatic muscle morphogenesis. Mid is expressed in founder cells (FCs) for several muscle fibers, and functions cooperatively with the T-box protein H15 in lateral oblique muscle 1 and the segment border muscle. Mid is particularly important for the specification and development of the lateral transverse (LT) muscles LT3 and LT4, which arise by asymmetric division of a single muscle progenitor. Mid is expressed in this progenitor and its two sibling FCs, but is maintained only in the LT4 FC. Both muscles were frequently missing in mid mutant embryos, and LT4-associated expression of the transcription factor Krüppel (Kr) was lost. When present, LT4 adopted an LT3-like morphology. Coordinately, mid misexpression caused LT3 to adopt an LT4-like morphology and was associated with ectopic Kr expression. From these data, we concluded that mid functions first in the progenitor to direct development of LT3 and LT4, and later in the FCs to influence whichever of these differentiation profiles is selected. Mid is the first T-box factor shown to influence LT3 and LT4 muscle identity and, along with the T-box protein Optomotor-blind-related-gene 1 (Org-1), is representative of a new class of transcription factors in muscle specification.
Collapse
Affiliation(s)
- Ram P Kumar
- Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Krista C Dobi
- Program in Developmental Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Mary K Baylies
- Program in Developmental Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Susan M Abmayr
- Stowers Institute for Medical Research, Kansas City, Missouri 64110 Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas 66160
| |
Collapse
|
5
|
Ettensohn CA. Encoding anatomy: Developmental gene regulatory networks and morphogenesis. Genesis 2013; 51:383-409. [PMID: 23436627 DOI: 10.1002/dvg.22380] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Charles A. Ettensohn
- Department of Biological Sciences; Carnegie Mellon University; Pittsburgh; Pennsylvania
| |
Collapse
|
6
|
de Joussineau C, Bataillé L, Jagla T, Jagla K. Diversification of muscle types in Drosophila: upstream and downstream of identity genes. Curr Top Dev Biol 2012; 98:277-301. [PMID: 22305167 DOI: 10.1016/b978-0-12-386499-4.00011-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Understanding gene regulatory pathways underlying diversification of cell types during development is one of the major challenges in developmental biology. Progressive specification of mesodermal lineages that are at the origin of body wall muscles in Drosophila embryos has been extensively studied during past years, providing an attractive framework for dissecting cell type diversification processes. In particular, it has been found that muscle founder cells that are at the origin of individual muscles display specific expression of transcription factors that control diversification of muscle types. These factors, encoded by genes collectively called muscle identity genes, are activated in discrete subsets of muscle founders. As a result, each founder cell is thought to carry a unique combinatorial code of identity gene expression. Considering this, to define temporally and spatially restricted expression of identity genes, a set of coordinated upstream regulatory inputs is required. But also, to realize the identity program and to form specific muscle types with distinct properties, an efficient battery of downstream identity gene targets needs to be activated. Here we review how the specificity of expression and action of muscle identity genes is acquired.
Collapse
Affiliation(s)
- Cyrille de Joussineau
- GReD INSERM UMR1103, CNRS UMR6293, University of Clermont-Ferrand, Clermont-Ferrand, France
| | | | | | | |
Collapse
|
7
|
Enriquez J, de Taffin M, Crozatier M, Vincent A, Dubois L. Combinatorial coding of Drosophila muscle shape by Collier and Nautilus. Dev Biol 2011; 363:27-39. [PMID: 22200594 DOI: 10.1016/j.ydbio.2011.12.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 12/09/2011] [Accepted: 12/10/2011] [Indexed: 11/28/2022]
Abstract
The diversity of Drosophila muscles correlates with the expression of combinations of identity transcription factors (iTFs) in muscle progenitors. Here, we address the question of when and how a combinatorial code is translated into muscle specific properties, by studying the roles of the Collier and Nautilus iTFs that are expressed in partly overlapping subsets of muscle progenitors. We show that the three dorso-lateral (DL) progenitors which express Nautilus and Collier are specified in a fixed temporal sequence and that each expresses additionally other, distinct iTFs. Removal of Collier leads to changes in expression of some of these iTFs and mis-orientation of several DL muscles, including the dorsal acute DA3 muscle which adopts a DA2 morphology. Detailed analysis of this transformation revealed the existence of two steps in the attachment of elongating muscles to specific tendon cells: transient attachment to alternate tendon cells, followed by a resolution step selecting the final sites. The multiple cases of triangular-shaped muscles observed in col mutant embryos indicate that transient binding of elongating muscle to exploratory sites could be a general feature of the developing musculature. In nau mutants, the DA3 muscle randomly adopts the attachment sites of the DA3 or DO5 muscles that derive from the same progenitor, resulting in a DA3, DO5-like or bifid DA3-DO5 orientation. In addition, nau mutant embryos display thinner muscle fibres. Together, our data show that the sequence of expression and combinatorial activities of Col and Nau control the pattern and morphology of DL muscles.
Collapse
Affiliation(s)
- Jonathan Enriquez
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
8
|
Tixier V, Bataillé L, Jagla K. Diversification of muscle types: recent insights from Drosophila. Exp Cell Res 2010; 316:3019-27. [PMID: 20673829 DOI: 10.1016/j.yexcr.2010.07.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 07/20/2010] [Accepted: 07/21/2010] [Indexed: 11/28/2022]
Abstract
Myogenesis is a highly conserved process ending up by the formation of contracting muscles. In Drosophila embryos, myogenesis gives rise to a segmentally repeated array of thirty distinct fibres, each of which represents an individual muscle. Since Drosophila offers a large range of genetic tools for easily testing gene functions, it has become one of the most studied and consequently best-described model organisms for muscle development. Over the last two decades, the Drosophila model system has enabled major advances in our understanding of how the initially equivalent mesodermal cells become competent for entering myogenic differentiation and how each distinct type of muscle is specified. Here we present an overview of Drosophila muscle development with a special focus on the diversification of muscle types and the genes that control acquisition of distinct muscle properties.
Collapse
Affiliation(s)
- Vanessa Tixier
- GReD, INSERM U931, CNRS UMR6247, Clermont University, Faculty of Medicine, 28 place Henri Dunant, Clermont-Ferrand, France
| | | | | |
Collapse
|
9
|
Ciglar L, Furlong EEM. Conservation and divergence in developmental networks: a view from Drosophila myogenesis. Curr Opin Cell Biol 2009; 21:754-60. [PMID: 19896355 DOI: 10.1016/j.ceb.2009.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/20/2009] [Accepted: 10/06/2009] [Indexed: 01/07/2023]
Abstract
Understanding developmental networks has recently been enhanced through the identification of a large number of conserved essential regulators. Interspecies comparisons of the transcriptional networks regulated by these factors are still at a rather early stage, with limited global data available. Here we use the accumulating phenotypic information from multiple species to provide initial insights into the wiring and rewiring of developmental networks, with particular emphasis on myogenesis, a highly conserved developmental process. This review highlights the most recent findings on the transcriptional program driving Drosophila myogenesis and compares this with vertebrates, revealing emerging themes that may be applicable to other developmental contexts.
Collapse
Affiliation(s)
- Lucia Ciglar
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | |
Collapse
|
10
|
ATAC is a double histone acetyltransferase complex that stimulates nucleosome sliding. Nat Struct Mol Biol 2008; 15:364-72. [DOI: 10.1038/nsmb.1397] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 02/01/2008] [Indexed: 12/22/2022]
|
11
|
Abstract
Myogenic differentiation in Drosophila melanogaster, as in many other organisms, involves the generation of multinucleate muscle fibers through the fusion of myoblasts. Prior to fusion, the myoblasts become specified as one of two distinct cell types. They then become competent to fuse and express genes associated with cell recognition and adhesion. Initially, cell-type- specific adhesion molecules mediate recognition and fusion between these two distinct populations of myoblasts. Intracellular proteins that are essential for the fusion process are then recruited to points of cell-cell contact at the membrane, where the cell surface molecules have become localized. Many of these cytosolic proteins contribute to reorganization of the cytoskeleton through activation of small guanosine triphosphatases and recruitment of actin nucleating proteins. Following the initial fusion event, the ultimate size of the syncytia is achieved through multiple rounds of fusion between the developing syncytia and mononucleate myoblasts. Ultrastructural changes associated with cell fusion include recruitment of electron-dense vesicles to points of cell-cell contact, resolution of these vesicles into fusion plaques, fusion pore formation, and membrane vesiculation. This chapter reviews our current understanding of the genes, pathways, and ultrastructural events associated with fusion in the Drosophila embryo, giving rise to multinucleate syncytia that will be used throughout larval life.
Collapse
Affiliation(s)
- Susan M Abmayr
- The Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | | |
Collapse
|
12
|
Dubois L, Enriquez J, Daburon V, Crozet F, Lebreton G, Crozatier M, Vincent A. Collier transcription in a single Drosophila muscle lineage: the combinatorial control of muscle identity. Development 2007; 134:4347-55. [PMID: 18003742 DOI: 10.1242/dev.008409] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Specification of muscle identity in Drosophila is a multistep process: early positional information defines competence groups termed promuscular clusters, from which muscle progenitors are selected, followed by asymmetric division of progenitors into muscle founder cells (FCs). Each FC seeds the formation of an individual muscle with morphological and functional properties that have been proposed to reflect the combination of transcription factors expressed by its founder. However, it is still unclear how early patterning and muscle-specific differentiation are linked. We addressed this question, using Collier (Col; also known as Knot) expression as both a determinant and read-out of DA3 muscle identity. Characterization of the col upstream region driving DA3 muscle specific expression revealed the existence of three separate phases of cis-regulation, correlating with conserved binding sites for different mesodermal transcription factors. Examination of col transcription in col and nautilus (nau) loss-of-function and gain-of-function conditions showed that both factors are required for col activation in the ;naïve' myoblasts that fuse with the DA3 FC, thereby ensuring that all DA3 myofibre nuclei express the same identity programme. Together, these results indicate that separate sets of cis-regulatory elements control the expression of identity factors in muscle progenitors and myofibre nuclei and directly support the concept of combinatorial control of muscle identity.
Collapse
Affiliation(s)
- Laurence Dubois
- Centre de Biologie du Développement, UMR 5547 CNRS/UPS, IFR 109, Institut d'Exploration Fonctionnelle des Génomes, 118 route de Narbonne, 31062 Toulouse cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Wei Q, Rong Y, Paterson BM. Stereotypic founder cell patterning and embryonic muscle formation in Drosophila require nautilus (MyoD) gene function. Proc Natl Acad Sci U S A 2007; 104:5461-6. [PMID: 17376873 PMCID: PMC1838484 DOI: 10.1073/pnas.0608739104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Indexed: 01/27/2023] Open
Abstract
nautilus is the only MyoD-related gene in Drosophila. Nautilus expression begins around stage 9 at full germ-band extension in a subset of mesodermal cells organized in a stereotypic pattern in each hemisegment. The muscle founder cell marker Duf-LacZ, produced by the enhancer trap line rP298LacZ, is coexpressed in numerous Nautilus-positive cells when founders first appear. Founders entrain muscle identity through the restricted expression of transcription factors such as S59, eve, and Kr, all of which are observed in subsets of the nautilus expressing founders. We inactivated the nautilus gene using homology-directed gene targeting and Gal4/UAS regulated RNAi to determine whether loss of nautilus gene activity affected founder cell function. Both methods produced a range of defects that included embryonic muscle disruption, reduced viability and female sterility, which could be rescued by hsp70-nautilus cDNA transgenes. Our results demonstrate Nautilus expression marks early founders that give rise to diverse muscle groups in the embryo, and that nautilus gene activity is required to seed the correct founder myoblast pattern that prefigures the muscle fiber arrangement during embryonic development.
Collapse
Affiliation(s)
- Qin Wei
- Laboratories of *Biochemistry and
| | - Yikang Rong
- Molecular and Cell Biology, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892
| | | |
Collapse
|
14
|
Amin NM, Hu K, Pruyne D, Terzic D, Bretscher A, Liu J. A Zn-finger/FH2-domain containing protein, FOZI-1, acts redundantly with CeMyoD to specify striated body wall muscle fates in theCaenorhabditis eleganspostembryonic mesoderm. Development 2007; 134:19-29. [PMID: 17138663 DOI: 10.1242/dev.02709] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Striated muscle development in vertebrates requires the redundant functions of multiple members of the MyoD family. Invertebrates such as Drosophila and Caenorhabditis elegans contain only one MyoD homolog in each organism. Earlier observations suggest that factors outside of the MyoD family might function redundantly with MyoD in striated muscle fate specification in these organisms. However, the identity of these factors has remained elusive. Here, we describe the identification and characterization of FOZI-1, a putative transcription factor that functions redundantly with CeMyoD(HLH-1) in striated body wall muscle (BWM) fate specification in the C. elegans postembryonic mesoderm. fozi-1 encodes a novel nuclear-localized protein with motifs characteristic of both transcription factors and actin-binding proteins. We show that FOZI-1 shares the same expression pattern as CeMyoD in the postembryonic mesodermal lineage, the M lineage, and that fozi-1-null mutants exhibit similar M lineage-null defects to those found in animals lacking CeMyoD in the M lineage (e.g. loss of a fraction of M lineage-derived BWMs). Interestingly, fozi-1-null mutants with a reduced level of CeMyoD lack most, if not all, M lineage-derived BWMs. Our results indicate that FOZI-1 and the Hox factor MAB-5 function redundantly with CeMyoD in the specification of the striated BWM fate in the C. elegans postembryonic mesoderm, implicating a remarkable level of complexity for the production of a simple striated musculature in C. elegans.
Collapse
Affiliation(s)
- Nirav M Amin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
15
|
Guelman S, Suganuma T, Florens L, Weake V, Swanson SK, Washburn MP, Abmayr SM, Workman JL. The essential gene wda encodes a WD40 repeat subunit of Drosophila SAGA required for histone H3 acetylation. Mol Cell Biol 2006; 26:7178-89. [PMID: 16980620 PMCID: PMC1592886 DOI: 10.1128/mcb.00130-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone acetylation provides a switch between transcriptionally repressive and permissive chromatin. By regulating the chromatin structure at specific promoters, histone acetyltransferases (HATs) carry out important functions during differentiation and development of higher eukaryotes. HAT complexes are present in organisms as diverse as Saccharomyces cerevisiae, humans, and flies. For example, the well-studied yeast SAGA is related to three mammalian complexes. We previously identified Drosophila melanogaster orthologues of yeast SAGA components Ada2, Ada3, Spt3, and Tra1 and demonstrated that they associate with dGcn5 in a high-molecular-weight complex. To better understand the function of Drosophila SAGA (dSAGA), we sought to affinity purify and characterize this complex in more detail. A proteomic approach led to the identification of an orthologue of the yeast protein Ada1 and the novel protein encoded by CG4448, referred to as WDA (will decrease acetylation). Embryos lacking both alleles of the wda gene exhibited reduced levels of histone H3 acetylation and could not develop into adult flies. Our results point to a critical function of dSAGA and histone acetylation during Drosophila development.
Collapse
|
16
|
Grimaldi A, Tettamanti G, Rinaldi L, Brivio MF, Castellani D, de Eguileor M. Muscle differentiation in tentacles of Sepia officinalis (Mollusca) is regulated by muscle regulatory factors (MRF) related proteins. Dev Growth Differ 2005; 46:83-95. [PMID: 15008857 DOI: 10.1111/j.1440-169x.2004.00725.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The tentacles of Sepia officinalis are muscular structures that can be quickly everted and 'super-elongated' to capture prey. The speed and super-elongation are achieved by the presence of both cross-striated and helical muscles. In the present study, the complex organization and differentiation of various fibers of the cuttlefish were examined from an early stage of development (stage 26), when the embryo is still inside the egg gel-coating, until the juvenile stage (two weeks after hatching). The muscles start to differentiate centrifugally from the area around the axial nervous system where two types of myoblasts can be recognized. Smooth fibers (referred to here as 'smooth-like' fibers because of their similarity to vertebrate smooth fibers) appear first, then bundles and layers of circomyarian helical and cross-striated fibers differentiate. In Sepia, two muscle-specific transcription factors (MRF), Myf5-like and MyoD-like, have been identified and they are differently expressed during development. Myf5 was detected at first in myoblasts, which give rise to helical smooth-like fibers, while MyoD was expressed later in the other population of myocytes from which circomyarian helical and cross-striated fibers derive. The effective role of these two MRF in tentacle muscle differentiation was confirmed by RNA interference experiments. Injection of double stranded (ds)RNA Myf5 inhibited differentiation of smooth-like fibers, whereas injection of dsRNA MyoD resulted in inhibition of cross-striated and circomyarian helical fibers.
Collapse
Affiliation(s)
- Annalisa Grimaldi
- Department of Structural and Functional Biology, University of Insubria, Via J. H. Dunant 3, 21100 Varese, Italy.
| | | | | | | | | | | |
Collapse
|
17
|
Abmayr SM, Balagopalan L, Galletta BJ, Hong SJ. Cell and molecular biology of myoblast fusion. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 225:33-89. [PMID: 12696590 DOI: 10.1016/s0074-7696(05)25002-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In organisms from Drosophila to mammals, the musculature is comprised of an elaborate array of distinct fibers that are generated by the fusion of committed myoblasts. These muscle fibers differ from each other in features that include location, pattern of innervation, site of attachment, and size. The sizes of the newly formed muscles of an embryo are controlled in large part by the number of cells that form the syncitial fiber. Over the past few decades, an extensive body of literature has described the process of myoblast fusion in vertebrates, relying primarily on the strengths of tissue culture model systems. More recently, genetic studies in Drosophila embryos have provided new insights into the process. Together, these studies define the steps necessary for myoblast differentiation, the acquisition of fusion competence, the recognition and adhesion between myoblasts, and the fusion of two lipid bilayers into one. In this review, we have attempted to combine insights from both Drosophila and vertebrate studies to trace the processes and molecules involved in myoblast fusion. Implicit in this approach is the assumption that fundamental aspects of myoblast fusion will be similar, independent of the organism in which it is occurring.
Collapse
MESH Headings
- Animals
- Cell Adhesion/physiology
- Cell Differentiation/physiology
- Cell Membrane/metabolism
- Drosophila melanogaster/embryology
- Drosophila melanogaster/metabolism
- Drosophila melanogaster/ultrastructure
- Embryo, Nonmammalian/embryology
- Embryo, Nonmammalian/metabolism
- Embryo, Nonmammalian/ultrastructure
- Humans
- Membrane Fusion/physiology
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/embryology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/ultrastructure
- Myoblasts, Skeletal/metabolism
- Myoblasts, Skeletal/ultrastructure
Collapse
Affiliation(s)
- Susan M Abmayr
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
18
|
Presgraves DC, Balagopalan L, Abmayr SM, Orr HA. Adaptive evolution drives divergence of a hybrid inviability gene between two species of Drosophila. Nature 2003; 423:715-9. [PMID: 12802326 DOI: 10.1038/nature01679] [Citation(s) in RCA: 315] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2002] [Accepted: 03/10/2003] [Indexed: 11/09/2022]
Abstract
Speciation--the splitting of one species into two--occurs by the evolution of any of several forms of reproductive isolation between taxa, including the intrinsic sterility and inviability of hybrids. Abundant evidence shows that these hybrid fitness problems are caused by incompatible interactions between loci: new alleles that become established in one species are sometimes functionally incompatible with alleles at interacting loci from another species. However, almost nothing is known about the genes involved in such hybrid incompatibilities or the evolutionary forces that drive their divergence. Here we identify a gene that causes epistatic inviability in hybrids between two fruitfly species, Drosophila melanogaster and D. simulans. Our population genetic analysis reveals that this gene--which encodes a nuclear pore protein--evolved by positive natural selection in both species' lineages. These results show that a lethal hybrid incompatibility has evolved as a by-product of adaptive protein evolution.
Collapse
Affiliation(s)
- Daven C Presgraves
- Department of Biology, University of Rochester, Rochester, New York 14627, USA.
| | | | | | | |
Collapse
|
19
|
Abstract
Somatic muscle formation is an unusual process as it requires the cells involved, the myoblasts, to relinquish their individual state and fuse with one another to form a syncitial muscle fiber. The potential use of myoblast fusion therapies to rebuild damaged muscles has generated continuing interest in elucidating the molecular basis of the fusion process. Yet, until recently, few of the molecular players involved in this process had been identified. Now, however, it has been possible to couple a detailed understanding of the cellular basis of the fusion process with powerful classical and molecular genetic strategies in the Drosophila embryo. We review the cellular studies, and the recent genetic and biochemical analyses that uncovered interacting extracellular molecules present on fusing myoblasts and the intracellular effectors that facilitate fusion. With the conservation of proteins and protein functions across species, it is likely that these findings in Drosophila will benefit understanding of the myoblast fusion process in higher organisms.
Collapse
Affiliation(s)
- Heather A Dworak
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
20
|
Kozopas KM, Nusse R. Direct flight muscles in Drosophila develop from cells with characteristics of founders and depend on DWnt-2 for their correct patterning. Dev Biol 2002; 243:312-25. [PMID: 11884040 DOI: 10.1006/dbio.2002.0572] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The direct flight muscles (DFMs) of Drosophila allow for the fine control of wing position necessary for flight. In DWnt-2 mutant flies, certain DFMs are either missing or fail to attach to the correct epithelial sites. Using a temperature-sensitive allele, we show that DWnt-2 activity is required only during pupation for correct DFM patterning. DWnt-2 is expressed in the epithelium of the wing hinge primordium during pupation. This expression is in the vicinity of the developing DFMs, as revealed by expression of the muscle founder cell-specific gene dumbfounded in DFM precursors. The observation that a gene necessary for embryonic founder cell function is expressed in the DFM precursors suggests that these cells may have a similar founder cell role. Although the expression pattern of DWnt-2 suggests that it could influence epithelial cells to differentiate into attachment sites for muscle, the expression of stripe, a transcription factor necessary for epithelial cells to adopt an attachment cell fate, is unaltered in the mutant. Ectopic expression of DWnt-2 in the wing hinge during pupation can also create defects in muscle patterning without alterations in stripe expression. We conclude that DWnt-2 promotes the correct patterning of DFMs through a mechanism that is independent of the attachment site differentiation initiated by stripe.
Collapse
Affiliation(s)
- Karen M Kozopas
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0005, USA.
| | | |
Collapse
|
21
|
Meedel TH, Lee JJ, Whittaker JR. Muscle development and lineage-specific expression of CiMDF, the MyoD-family gene of Ciona intestinalis. Dev Biol 2002; 241:238-46. [PMID: 11784108 DOI: 10.1006/dbio.2001.0511] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The expression pattern of CiMDF, the MyoD-family gene of Ciona intestinalis, was analyzed in unmanipulated and microsurgically derived partial embryos. CiMDF encodes two transcripts during development (coding for distinct proteins), the smaller of which, CiMDFa, was detected in maternal RNA. Zygotic activity of CiMDF initiated in cleaving embryos of 32-64 cells. Both CiMDFa and CiMDFb transcripts were detected at this time; however, CiMDFa accumulated more rapidly before declining in abundance such that, by the early tail-formation stage, CiMDFb was more prevalent. Microsurgical isolations of various lineage blastomeres from the eight-cell stage were used to analyze CiMDF expression in the two embryonic lineages that give rise to larval tail muscle-autonomously specified primary cells and conditionally specified secondary cells. CiMDFa and CiMDFb transcripts were detected in both lineages, suggesting that neither functioned in a lineage-specific manner. The data also demonstrated that CiMDF expression was autonomous in the primary lineage (i.e., cells derived from the B4.1 blastomeres) and correlated with histospecific differentiation of muscle. In the secondary lineage (i.e., cells derived from the A4.1 and b4.2 blastomeres), CiMDF expression was conditional and, as in the primary lineage, correlated with muscle differentiation. These experiments reveal similar patterns of CiMDF activity in the primary and secondary muscle lineages and imply a requirement for the expression of this gene in both lineages during larval tail muscle development.
Collapse
Affiliation(s)
- Thomas H Meedel
- Biology Department, Rhode Island College, 600 Mt. Pleasant Avenue, Providence, RI 02908, USA.
| | | | | |
Collapse
|
22
|
Martin BS, Ruiz-Gómez M, Landgraf M, Bate M. A distinct set of founders and fusion-competent myoblasts make visceral muscles in the Drosophila embryo. Development 2001; 128:3331-8. [PMID: 11546749 DOI: 10.1242/dev.128.17.3331] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The embryonic Drosophila midgut is enclosed by a latticework of longitudinal and circular visceral muscles. We find that these muscles are syncytial. Like the somatic muscles they are generated by the prior segregation of two populations of cells: fusion-competent myoblasts and founder myoblasts specialised to seed the formation of particular muscles. Visceral muscle founders are of two classes: those that seed circular muscles and those that seed longitudinal muscles. These specialisations are revealed in mutant embryos where myoblast fusion fails. In the absence of fusion, founders make mononucleate circular or longitudinal fibres, while their fusion-competent neighbours remain undifferentiated.
Collapse
Affiliation(s)
- B S Martin
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | | | | | |
Collapse
|
23
|
Hayes SA, Miller JM, Hoshizaki DK. serpent, a GATA-like transcription factor gene, induces fat-cell development in Drosophila melanogaster. Development 2001; 128:1193-200. [PMID: 11245585 DOI: 10.1242/dev.128.7.1193] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The GATA-like transcription factor gene serpent is necessary for embryonic fat-cell differentiation in Drosophila (Sam, S., Leise, W. and Hoshizaki, D. K. (1996) Mech. Dev. 60, 197–205) and has been proposed to function in a cell-fate choice between fat cell and somatic gonadal precursors (Moore, L. A., Broihier, H. T., Van Doren, M. and Lehmann, R. (1998) Development 125, 837–44; Riechmann, V., Irion, U., Wilson, R., Grosskortenhaus, R. and Leptin, M. (1997) Development 124, 2915–22). Here, we report that deregulated expression of serpent in the mesoderm induces the formation of ectopic fat cells and prevents the migration and coalescence of the somatic gonadal precursors. The ectopic fat cells do not arise from hyperproliferation of the primary fat-cell clusters but they do associate with the endogenous fat cells to form a fat body that is expanded in both the dorsal/ventral and anterior/posterior axes. Misexpression of serpent also affects the differentiation of muscle cells. Few body-wall muscle precursors are specified and there is a loss of most body-wall muscle fibers. The precursors of the visceral mesoderm are also absent and concomitantly the visceral muscle is absent. We suggest that the ectopic fat cells might originate from cells that have the potential, but do not normally, differentiate into fat cells or from cells that have acquired a fat-cell fate. In light of our results, we discuss the role of serpent in fat-cell specification and in cell fate choices.
Collapse
Affiliation(s)
- S A Hayes
- Department of Biological Sciences, University of Nevada, Las Vegas, Box 454004, Las Vegas, Nevada 89154-4004, USA
| | | | | |
Collapse
|
24
|
Balagopalan L, Keller CA, Abmayr SM. Loss-of-function mutations reveal that the Drosophila nautilus gene is not essential for embryonic myogenesis or viability. Dev Biol 2001; 231:374-82. [PMID: 11237466 DOI: 10.1006/dbio.2001.0162] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
nautilus (nau), the single Drosophila member of the bHLH-containing myogenic regulatory family of genes, is expressed in a subset of muscle precursors and differentiated fibers. It is capable of inducing muscle-specific transcription as well as myogenic transformation, and plays a role in the differentiation of a subset of muscle precursors into mature muscle fibers. In previous studies, the nau zygotic loss-of-function phenotype was determined using genetic deficiencies in which the gene is deleted. We note that this genetic loss-of-function phenotype differs from the loss-of-function phenotype determined using RNA interference (L. Misquitta and B. M. Paterson, 1999, Proc. Natl. Acad. Sci. USA 96, 1451-1456). The present study re-examines this loss-of-function phenotype using EMS-induced mutations that specifically alter the nau gene, and extends the genetic analysis to include the loss of both maternal and zygotic nau function. In brief, embryos lacking nau both maternally and zygotically are missing a distinct subset of muscle fibers, consistent with its apparent expression in a subset of muscle fibers. The muscle loss is tolerated, however, such that the loss of nau both maternally and zygotically does not result in lethality at any stage of development.
Collapse
Affiliation(s)
- L Balagopalan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
25
|
Zhang S, Bernstein SI. Spatially and temporally regulated expression of myosin heavy chain alternative exons during Drosophila embryogenesis. Mech Dev 2001; 101:35-45. [PMID: 11231057 DOI: 10.1016/s0925-4773(00)00549-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We used alternative exon-specific probes to determine the accumulation of transcripts encoding myosin heavy chain (MHC) isoforms in Drosophila melanogaster embryos. Six isoforms accumulate in body wall muscles. Transverse (external) muscles express a different major form than intermediate and internal muscles, suggesting different physiological properties. Cardioblasts express one of the somatic muscle transcripts; visceral muscles express at least two transcript types. The pharyngeal muscle accumulates a unique Mhc transcript, suggesting unique contractile abilities. Mhc transcription begins in stage 12 in visceral and somatic muscles, but as late as stage 15 in cardioblasts. This is the first study of myosin isoform localization during insect embryogenesis, and forms the basis for transgenic and biochemical experiments designed to determine how MHC domains regulate muscle physiology.
Collapse
Affiliation(s)
- S Zhang
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | | |
Collapse
|
26
|
Lee HH, Frasch M. Wingless effects mesoderm patterning and ectoderm segmentation events via induction of its downstream target sloppy paired. Development 2000; 127:5497-508. [PMID: 11076769 DOI: 10.1242/dev.127.24.5497] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inactivation of either the secreted protein Wingless (Wg) or the forkhead domain transcription factor Sloppy Paired (Slp) has been shown to produce similar effects in the developing Drosophila embryo. In the ectoderm, both gene products are required for the formation of the segmental portions marked by naked cuticle. In the mesoderm, Wg and Slp activities are crucial for the suppression of bagpipe (bap), and hence visceral mesoderm formation, and the promotion of somatic muscle and heart formation within the anterior portion of each parasegment. In this report, we show that, during these developmental processes, wg and slp act in a common pathway in which slp serves as a direct target of Wg signals that mediates Wg effects in both germ layers. We present evidence that the induction of slp by Wg involves binding of the Wg effector Pangolin (Drosophila Lef-1/TCF) to multiple binding sites within a Wg-responsive enhancer that is located in 5′ flanking regions of the slp1 gene. Based upon our genetic and molecular analysis, we conclude that Wg signaling induces striped expression of Slp in the mesoderm. Mesodermal Slp is then sufficient to abrogate the induction of bagpipe by Dpp/Tinman, which explains the periodic arrangement of trunk visceral mesoderm primordia in wild type embryos. Conversely, mesodermal Slp is positively required, although not sufficient, for the specification of somatic muscle and heart progenitors. We propose that Wg-induced slp provides striped mesodermal domains with the competence to respond to subsequent slp-independent Wg signals that induce somatic muscle and heart progenitors. We also propose that in wg-expressing ectodermal cells, slp is an integral component in an autocrine feedback loop of Wg signaling.
Collapse
Affiliation(s)
- H H Lee
- Department of Biochemistry and Molecular Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
27
|
Wei Q, Marchler G, Edington K, Karsch-Mizrachi I, Paterson BM. RNA interference demonstrates a role for nautilus in the myogenic conversion of Schneider cells by daughterless. Dev Biol 2000; 228:239-55. [PMID: 11112327 DOI: 10.1006/dbio.2000.9938] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Schneider SL2 cells activate the myogenic program in response to the ectopic expression of daughterless alone, as indicated by exit from the cell cycle, syncytia formation, and the presence of muscle myosin fibrils. Myogenic conversion can be potentiated by the coexpression of DMEF2 and nautilus with daughterless. In RT-PCR assays Schneider cells express two mesodermal markers, nautilus and DMEF2 mRNAs, as well as very low levels of daughterless mRNA but no twist. Full-length RT-PCR products for nautilus and DMEF2 encode immunoprecipitable proteins. We used RNA-i to demonstrate that both endogenous nautilus expression and DMEF2 expression are required for the myogenic conversion of Schneider cells by daughterless. Coexpression of twist blocks conversion by daughterless but twist dsRNA has no effect. Our results indicate that Schneider cells are of mesodermal origin and that myogenic conversion with ectopic expression of daughterless occurs by raising the levels of daughterless protein sufficiently to allow the formation of nautilus/daughterless heterodimers. The effectiveness of RNA-i is dependent upon protein half-life. Genes encoding proteins with relatively short half-lives (10 h), such as nautilus or HSF, are efficiently silenced, whereas more stable proteins, such as cytoplasmic actin or beta-galactosidase, are less amenable to the application of RNA-i. These results support the conclusion that nautilus is a myogenic factor in Drosophila tissue culture cells with a functional role similar to that of vertebrate MyoD. This is discussed with regard to the in vivo functions of nautilus.
Collapse
Affiliation(s)
- Q Wei
- Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
28
|
Ruiz-Gómez M, Coutts N, Price A, Taylor MV, Bate M. Drosophila dumbfounded: a myoblast attractant essential for fusion. Cell 2000; 102:189-98. [PMID: 10943839 DOI: 10.1016/s0092-8674(00)00024-6] [Citation(s) in RCA: 246] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aggregation and fusion of myoblasts to form myotubes is essential for myogenesis in many organisms. In Drosophila the formation of syncytial myotubes is seeded by founder myoblasts. Founders fuse with clusters of fusion-competent myoblasts. Here we identify the gene dumbfounded (duf) and show that it is required for myoblast aggregation and fusion. duf encodes a member of the immunoglobulin superfamily of proteins that is an attractant for fusion-competent myoblasts. It is expressed by founder cells and serves to attract clusters of myoblasts from which myotubes form by fusion.
Collapse
Affiliation(s)
- M Ruiz-Gómez
- Department of Zoology, University of Cambridge, United Kingdom.
| | | | | | | | | |
Collapse
|
29
|
Bour BA, Chakravarti M, West JM, Abmayr SM. Drosophila SNS, a member of the immunoglobulin superfamily that is essential for myoblast fusion. Genes Dev 2000. [DOI: 10.1101/gad.14.12.1498] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Drosophila sticks-and-stones (sns) locus was identified on the basis of its mutant phenotype, the complete absence of body wall muscles and corresponding presence of unfused myoblasts. The genetic location of the mutation responsible for this apparent defect in myoblast fusion was determined by recombination and deficiency mapping, and the corresponding wild-type gene was isolated in a molecular walk. Identification of the SNS coding sequence revealed a putative member of the immunoglobulin superfamily (IgSF) of cell adhesion molecules. As anticipated from this homology, SNS is enriched at the membrane and clusters at discrete sites, coincident with the occurrence of myoblast fusion. Both the sns transcript and the encoded protein are expressed in precursors of the somatic and visceral musculature of the embryo. Within the presumptive somatic musculature, SNS expression is restricted to the putative fusion-competent cells and is not detected in unfused founder cells. Thus, SNS represents the first known marker for this subgroup of myoblasts, and provides an opportunity to identify pathways specifying this cell type as well as transcriptional regulators of fusion-specific genes. To these ends, we demonstrate that the presence of SNS-expressing cells is absolutely dependent on Notch, and that expression of SNS does not require the myogenic regulatory protein MEF2.
Collapse
|
30
|
Knirr S, Azpiazu N, Frasch M. The role of the NK-homeobox gene slouch (S59) in somatic muscle patterning. Development 1999; 126:4525-35. [PMID: 10498687 DOI: 10.1242/dev.126.20.4525] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the Drosophila embryo, a distinct class of myoblasts, designated as muscle founders, prefigures the mature pattern of somatic body wall muscles. Each founder cell appears to be instrumental in generating a single larval muscle with a defined identity. The NK homeobox gene S59 was the first of a growing number of proposed ‘identity genes’ that have been found to be expressed in stereotyped patterns in specific subsets of muscle founders and their progenitor cells and are thought to control their developmental fates. In the present study, we describe the effects of gain- and loss-of-function experiments with S59. We find that a null mutation in the gene encoding S59, which we have named slouch (slou), disrupts the development of all muscles that are derived from S59-expressing founder cells. The observed phenotypes upon mutation and ectopic expression of slouch include transformations of founder cell fates, thus confirming that slouch (S59) functions as an identity gene in muscle development. These fate transformations occur between sibling founder cells as well as between neighboring founders that are not lineage-related. In the latter case, we show that slouch (S59) activity is required cell-autonomously to repress the expression of ladybird (lb) homeobox genes, thereby preventing specification along the lb pathway. Together, these findings provide new insights into the regulatory interactions that establish the somatic muscle pattern.
Collapse
Affiliation(s)
- S Knirr
- Department of Biochemistry and Molecular Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
31
|
Frasch M. Controls in patterning and diversification of somatic muscles during Drosophila embryogenesis. Curr Opin Genet Dev 1999; 9:522-9. [PMID: 10508697 DOI: 10.1016/s0959-437x(99)00014-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent genetic studies in Drosophila have provided important insights into the pathways determining the formation and diversification of body wall muscles. These pathways control a progressive subdivision of the mesoderm, ultimately leading to the specification of individual cells, the muscle founders, which are endowed with genetic programs capable of generating distinct muscle fibers. A network of activities of transcriptional regulators, signaling pathways, and lineage genes is beginning to emerge which controls successive steps of this muscle patterning and differentiation process.
Collapse
Affiliation(s)
- M Frasch
- Department of Biochemistry and Molecular Biology Mount Sinai School of Medicine Box 1020, New York, New York 10029, USA
| |
Collapse
|
32
|
Crozatier M, Vincent A. Requirement for the Drosophila COE transcription factor Collier in formation of an embryonic muscle: transcriptional response to notch signalling. Development 1999; 126:1495-504. [PMID: 10068642 DOI: 10.1242/dev.126.7.1495] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During Drosophila embryogenesis, mesodermal cells are recruited to form a stereotyped pattern of about 30 different larval muscles per hemisegment. The formation of this pattern is initiated by the specification of a special class of myoblasts, called founder cells, that are uniquely able to fuse with neighbouring myoblasts. We report here the role of the COE transcription factor Collier in the formation of a single muscle, muscle DA3([A])(DA4([T])). Col expression is first observed in two promuscular clusters (in segments A1-A7), the two corresponding progenitors and their progeny founder cells, but its transcription is maintained in only one of these four founder cells, the founder of muscle DA3([A]). This lineage-specific restriction depends on the asymmetric segregation of Numb during the progenitor cell division and involves the repression of col transcription by Notch signalling. In col mutant embryos, the DA3([A]) founder cells form but do not maintain col transcription and are unable to fuse with neighbouring myoblasts, leading to a loss-of-muscle DA3([A]) phenotype. In wild-type embryos, each of the DA3([A])-recruited myoblasts turns on col transcription, indicating that the conversion, by the DA3([A]) founder cell, of ‘naive’ myoblasts to express its distinctive pattern of gene expression involves activation of col itself. We find that muscles DA3([A]) and DO5([A]) (DA4([T]) and DO5([T])) derive from a common progenitor cell. Ectopic expression of Col is not sufficient, however, to switch the DO5([A]) to a DA3([A]) fate. Together these results lead us to propose that specification of the DA3([A]) muscle lineage requires both Col and at least one other transcription factor, supporting the hypothesis of a combinatorial code of muscle-specific gene regulation controlling the formation and diversification of individual somatic muscles.
Collapse
Affiliation(s)
- M Crozatier
- Centre de Biologie du Développement, UMR 5547 CNRS/UPS, France.
| | | |
Collapse
|
33
|
Misquitta L, Paterson BM. Targeted disruption of gene function in Drosophila by RNA interference (RNA-i): a role for nautilus in embryonic somatic muscle formation. Proc Natl Acad Sci U S A 1999; 96:1451-6. [PMID: 9990044 PMCID: PMC15483 DOI: 10.1073/pnas.96.4.1451] [Citation(s) in RCA: 268] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The expression of the MyoD gene homolog, nautilus (nau), in the Drosophila embryo defines a subset of mesodermal cells known as the muscle "pioneer" or "founder" cells. These cells are thought to establish the future muscle pattern in each hemisegment. Founders appear to recruit fusion-competent mesodermal cells to establish a particular muscle fiber type. In support of this concept every somatic muscle in the embryo is associated with one or more nautilus-positive cells. However, because of the lack of known (isolated) nautilus mutations, no direct test of the founder cell hypothesis has been possible. We now have utilized toxin ablation and genetic interference by double-stranded RNA (RNA interference or RNA-i) to determine both the role of the nautilus-expressing cells and the nautilus gene, respectively, in embryonic muscle formation. In the absence of nautilus-expressing cells muscle formation is severely disrupted or absent. A similar phenotype is observed with the elimination of the nautilus gene product by genetic interference upon injection of nautilus double-stranded RNA. These results define a crucial role for nautilus in embryonic muscle formation. The application of RNA interference to a variety of known Drosophila mutations as controls gave phenotypes essentially indistinguishable from the original mutation. RNA-i provides a powerful approach for the targeted disruption of a given genetic function in Drosophila.
Collapse
Affiliation(s)
- L Misquitta
- Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
34
|
Affiliation(s)
- E N Olson
- Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Boulevard, Dallas, Texas 75235-9148, USA.
| | | |
Collapse
|