1
|
Ho EK, Oatman HR, McFann SE, Yang L, Johnson HE, Shvartsman SY, Toettcher JE. Dynamics of an incoherent feedforward loop drive ERK-dependent pattern formation in the early Drosophila embryo. Development 2023; 150:dev201818. [PMID: 37602510 PMCID: PMC10482391 DOI: 10.1242/dev.201818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
Positional information in development often manifests as stripes of gene expression, but how stripes form remains incompletely understood. Here, we use optogenetics and live-cell biosensors to investigate the posterior brachyenteron (byn) stripe in early Drosophila embryos. This stripe depends on interpretation of an upstream ERK activity gradient and the expression of two target genes, tailless (tll) and huckebein (hkb), that exert antagonistic control over byn. We find that high or low doses of ERK signaling produce transient or sustained byn expression, respectively. Although tll transcription is always rapidly induced, hkb converts graded ERK inputs into a variable time delay. Nuclei thus interpret ERK amplitude through the relative timing of tll and hkb transcription. Antagonistic regulatory paths acting on different timescales are hallmarks of an incoherent feedforward loop, which is sufficient to explain byn dynamics and adds temporal complexity to the steady-state model of byn stripe formation. We further show that 'blurring' of an all-or-none stimulus through intracellular diffusion non-locally produces a byn stripe. Overall, we provide a blueprint for using optogenetics to dissect developmental signal interpretation in space and time.
Collapse
Affiliation(s)
- Emily K. Ho
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Harrison R. Oatman
- Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sarah E. McFann
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Liu Yang
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Heath E. Johnson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Stanislav Y. Shvartsman
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, NY 10010, USA
| | - Jared E. Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
2
|
Ho EK, Oatman HR, McFann SE, Yang L, Johnson HE, Shvartsman SY, Toettcher JE. Dynamics of an incoherent feedforward loop drive ERK-dependent pattern formation in the early Drosophila embryo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531972. [PMID: 36945584 PMCID: PMC10028984 DOI: 10.1101/2023.03.09.531972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Positional information in developing tissues often takes the form of stripes of gene expression that mark the boundaries of a particular cell type or morphogenetic process. How stripes form is still in many cases poorly understood. Here we use optogenetics and live-cell biosensors to investigate one such pattern: the posterior stripe of brachyenteron (byn) expression in the early Drosophila embryo. This byn stripe depends on interpretation of an upstream signal - a gradient of ERK kinase activity - and the expression of two target genes tailless (tll) and huckebein (hkb) that exert antagonistic control over byn . We find that high or low doses of ERK signaling produce either transient or sustained byn expression, respectively. These ERK stimuli also regulate tll and hkb expression with distinct dynamics: tll transcription is rapidly induced under both low and high stimuli, whereas hkb transcription converts graded ERK inputs into an output switch with a variable time delay. Antagonistic regulatory paths acting on different timescales are hallmarks of an incoherent feedforward loop architecture, which is sufficient to explain transient or sustained byn dynamics and adds temporal complexity to the steady-state model of byn stripe formation. We further show that an all-or-none stimulus can be 'blurred' through intracellular diffusion to non-locally produce a stripe of byn gene expression. Overall, our study provides a blueprint for using optogenetic inputs to dissect developmental signal interpretation in space and time.
Collapse
Affiliation(s)
- Emily K Ho
- Department of Molecular Biology Princeton University, Princeton NJ 08544
| | - Harrison R Oatman
- Program in Quantitative and Computational Biology Princeton University, Princeton NJ 08544
| | - Sarah E McFann
- Department of Chemical & Biological Engineering Princeton University, Princeton NJ 08544
| | - Liu Yang
- Lewis Sigler Institute for Integrative Genomics Princeton University, Princeton NJ 08544
| | - Heath E Johnson
- Department of Molecular Biology Princeton University, Princeton NJ 08544
| | - Stanislav Y Shvartsman
- Department of Molecular Biology Princeton University, Princeton NJ 08544
- Lewis Sigler Institute for Integrative Genomics Princeton University, Princeton NJ 08544
- Flatiron Institute, New York, NY 10010
| | - Jared E Toettcher
- Department of Molecular Biology Princeton University, Princeton NJ 08544
| |
Collapse
|
3
|
Li B, Zhang Z, Wan C. Identification of Microproteins in Hep3B Cells at Different Cell Cycle Stages. J Proteome Res 2022; 21:1052-1060. [PMID: 35199523 DOI: 10.1021/acs.jproteome.1c00926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microproteins are generated from small open reading frames and turn out to play various vital biological functions. As an essential biological event of eukaryotic cells, the cell cycle is involved in cell replication and division. For such a highly regulated event, microproteins associated with cell cycle regulation remained unclarified. Utilizing a combination of bottom-up and top-down proteomics, we analyzed microproteins at specific cell cycle stages of Hep3B cells. A total of 657 microproteins were identified under three cell cycle stages, including 151 in the G0/G1 stage, 163 in the S stage, and 132 in the G2/M stage. The annotation of these microproteins showed their cell cycle-specific functions, such as translation, nuclear assembly, chromatin organization, and the G2/M transition of the mitotic cell cycle. Meanwhile, more than 50% of identified microproteins were ncRNA-encoded. These nonannotated novel microproteins contain several function domains, such as the nucleoside diphosphate kinase domain, the high mobility group domain, and the DNA-binding domain. This suggested the potential functions of these novel microproteins in specific cell cycle stages. This study presented a large-scale profile of microproteins at different cell cycle stages from Hep3B and may provide new perspectives on the regulation mechanism of the cell cycle. Liquid chromatography-mass spectrometry data were deposited to ProteomeXchange using the identifier PXD030286.
Collapse
Affiliation(s)
- Bing Li
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Zheng Zhang
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Cuihong Wan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| |
Collapse
|
4
|
Optogenetic Rescue of a Patterning Mutant. Curr Biol 2020; 30:3414-3424.e3. [PMID: 32707057 DOI: 10.1016/j.cub.2020.06.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/13/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022]
Abstract
Animal embryos are patterned by a handful of highly conserved inductive signals. Yet, in most cases, it is unknown which pattern features (i.e., spatial gradients or temporal dynamics) are required to support normal development. An ideal experiment to address this question would be to "paint" arbitrary synthetic signaling patterns on "blank canvas" embryos to dissect their requirements. Here, we demonstrate exactly this capability by combining optogenetic control of Ras/extracellular signal-related kinase (ERK) signaling with the genetic loss of the receptor tyrosine-kinase-driven terminal signaling patterning in early Drosophila embryos. Blue-light illumination at the embryonic termini for 90 min was sufficient to rescue normal development, generating viable larvae and fertile adults from an otherwise lethal terminal signaling mutant. Optogenetic rescue was possible even using a simple, all-or-none light input that reduced the gradient of Erk activity and eliminated spatiotemporal differences in terminal gap gene expression. Systematically varying illumination parameters further revealed that at least three distinct developmental programs are triggered at different signaling thresholds and that the morphogenetic movements of gastrulation are robust to a 3-fold variation in the posterior pattern width. These results open the door to controlling tissue organization with simple optical stimuli, providing new tools to probe natural developmental processes, create synthetic tissues with defined organization, or directly correct the patterning errors that underlie developmental defects.
Collapse
|
5
|
|
6
|
Abstract
ERK controls gene expression in development, but mechanisms that link ERK activation to changes in transcription are not well understood. We used high-resolution analysis of signaling dynamics to study transcriptional interpretation of ERK signaling during Drosophila embryogenesis, at a stage when ERK induces transcription of intermediate neuroblasts defective (ind), a gene essential for patterning of the nerve cord. ERK induces ind by antagonizing its repression by Capicua (Cic), a transcription factor that acts as a sensor of receptor tyrosine kinases in animal development and human diseases. A recent study established that active ERK reduces the nuclear levels of Cic, but it remained unclear whether this is required for the induction of Cic target genes. We provide evidence that Cic binding sites within the regulatory DNA of ind control the spatial extent and the timing of ind expression. At the same time, we demonstrate that ERK induces ind before Cic levels in the nucleus are reduced. Based on this, we propose that ERK-dependent relief of gene repression by Cic is a two-step process, in which fast reduction of repressor activity is followed by slower changes in nuclear localization and overall protein levels. This may be a common feature of systems in which ERK induces genes by relief of transcriptional repression.
Collapse
|
7
|
Bickel RD, Cleveland HC, Barkas J, Jeschke CC, Raz AA, Stern DL, Davis GK. The pea aphid uses a version of the terminal system during oviparous, but not viviparous, development. EvoDevo 2013; 4:10. [PMID: 23552511 PMCID: PMC3639227 DOI: 10.1186/2041-9139-4-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/18/2013] [Indexed: 01/03/2023] Open
Abstract
Background In most species of aphid, female nymphs develop into either sexual or asexual adults depending on the length of the photoperiod to which their mothers were exposed. The progeny of these sexual and asexual females, in turn, develop in dramatically different ways. The fertilized oocytes of sexual females begin embryogenesis after being deposited on leaves (oviparous development) while the oocytes of asexual females complete embryogenesis within the mother (viviparous development). Compared with oviparous development, viviparous development involves a smaller transient oocyte surrounded by fewer somatic epithelial cells and a smaller early embryo that comprises fewer cells. To investigate whether patterning mechanisms differ between the earliest stages of the oviparous and viviparous modes of pea aphid development, we examined the expression of pea aphid orthologs of genes known to specify embryonic termini in other insects. Results Here we show that pea aphid oviparous ovaries express torso-like in somatic posterior follicle cells and activate ERK MAP kinase at the posterior of the oocyte. In addition to suggesting that some posterior features of the terminal system are evolutionarily conserved, our detection of activated ERK in the oocyte, rather than in the embryo, suggests that pea aphids may transduce the terminal signal using a mechanism distinct from the one used in Drosophila. In contrast with oviparous development, the pea aphid version of the terminal system does not appear to be used during viviparous development, since we did not detect expression of torso-like in the somatic epithelial cells that surround either the oocyte or the blastoderm embryo and we did not observe restricted activated ERK in the oocyte. Conclusions We suggest that while oviparous oocytes and embryos may specify posterior fate through an aphid terminal system, viviparous oocytes and embryos employ a different mechanism, perhaps one that does not rely on an interaction between the oocyte and surrounding somatic cells. Together, these observations provide a striking example of a difference in the fundamental events of early development that is both environmentally induced and encoded by the same genome.
Collapse
Affiliation(s)
- Ryan D Bickel
- Department of Biology, Bryn Mawr College, Bryn Mawr, PA 19010, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Duncan EJ, Benton MA, Dearden PK. Canonical terminal patterning is an evolutionary novelty. Dev Biol 2013; 377:245-61. [PMID: 23438815 DOI: 10.1016/j.ydbio.2013.02.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/08/2013] [Accepted: 02/14/2013] [Indexed: 10/27/2022]
Abstract
Patterning of the terminal regions of the Drosophila embryo is achieved by an exquisitely regulated signal that passes between the follicle cells of the ovary, and the developing embryo. This pathway, however, is missing or modified in other insects. Here we trace the evolution of this pathway by examining the origins and expression of its components. The three core components of this pathway: trunk, torso and torso-like have different evolutionary histories and have been assembled step-wise to form the canonical terminal patterning pathway of Drosophila and Tribolium. Trunk, torso and a gene unrelated to terminal patterning, prothoraciotrophic hormone (PTTH), show an intimately linked evolutionary history, with every holometabolous insect, except the honeybee, possessing both PTTH and torso genes. Trunk is more restricted in its phylogenetic distribution, present only in the Diptera and Tribolium and, surprisingly, in the chelicerate Ixodes scapularis, raising the possibility that trunk and torso evolved earlier than previously thought. In Drosophila torso-like restricts the activation of the terminal patterning pathway to the poles of the embryo. Torso-like evolved in the pan-crustacean lineage, but based on expression of components of the canonical terminal patterning system in the hemimetabolous insect Acyrthosiphon pisum and the holometabolous insect Apis mellifera, we find that the canonical terminal-patterning system is not active in these insects. We therefore propose that the ancestral function of torso-like is unrelated to terminal patterning and that torso-like has become co-opted into terminal patterning in the lineage leading to Coleoptera and Diptera. We also show that this co-option has not resulted in changes to the molecular function of this protein. Torso-like from the pea aphid, honeybee and Drosophila, despite being expressed in different patterns, are functionally equivalent. We propose that co-option of torso-like into restricting the activity of trunk and torso facilitated the final step in the evolution of this pathway; the capture of transcriptional control of target genes such as tailless and huckebein by this complex and novel patterning pathway.
Collapse
Affiliation(s)
- Elizabeth J Duncan
- Laboratory for Evolution and Development, Genetics Otago, Gravida, National Centre for Growth and Development, Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, Aotearoa, New Zealand.
| | | | | |
Collapse
|
9
|
Abstract
Signal transduction is the process of routing information inside cells when receiving stimuli from their environment that modulate the behavior and function. In such biological processes, the receptors, after receiving the corresponding signals, activate a number of biomolecules which eventually transduce the signal to the nucleus. The main objective of our work is to develop a theoretical approach which will help to better understand the behavior of signal transduction networks due to changes in kinetic parameters and network topology. By using an evolutionary algorithm, we designed a mathematical model which performs basic signaling tasks similar to the signaling process of living cells. We use a simple dynamical model of signaling networks of interacting proteins and their complexes. We study the evolution of signaling networks described by mass-action kinetics. The fitness of the networks is determined by the number of signals detected out of a series of signals with varying strength. The mutations include changes in the reaction rate and network topology. We found that stronger interactions and addition of new nodes lead to improved evolved responses. The strength of the signal does not play any role in determining the response type. This model will help to understand the dynamic behavior of the proteins involved in signaling pathways. It will also help to understand the robustness of the kinetics of the output response upon changes in the rate of reactions and the topology of the network.
Collapse
|
10
|
Strong negative feedback from Erk to Raf confers robustness to MAPK signalling. Mol Syst Biol 2011; 7:489. [PMID: 21613978 PMCID: PMC3130559 DOI: 10.1038/msb.2011.27] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 04/14/2011] [Indexed: 12/23/2022] Open
Abstract
This study shows that MAPK signalling is robust against protein level changes due to a strong negative feedback from Erk to Raf. Surprisingly, robustness is provided through a fast post-translational mechanism although variation of Erk levels occurs on a timescale of days. MAPK signalling is robust against variation in protein level. Robustness is mediated by a negative feedback to Raf. Loss of negative feedback due to mutation in B-Raf opens the door for targeted intervention.
Protein levels within signal transduction pathways vary strongly from cell to cell. For example, it has been reported that concentrations of the last kinase within the MAPK signalling module, Erk, varies about four-fold between clonal cells under the same conditions. In the present study, we analysed how signalling pathways can still process information quantitatively despite strong heterogeneity in protein levels. Mathematical analysis of isolated phosphorylation–dephosphorylation cycles predicts that phosphorylation of a signalling molecule is proportional to the protein concentration. We systematically perturbed the protein levels of Erk in human cell lines by siRNA. We found that the steady-state phosphorylation of Erk is very robust against perturbations of Erk protein level, suggesting that there are mechanisms that provide robustness to the pathway against protein fluctuations. Using mathematical modelling, we identified three potential mechanisms that may provide robustness against fluctuating protein levels: 1. Kinetic effects (saturation of the activating kinase Mek), 2. Transcriptional negative feedbacks, 3. Negative feedbacks on the post-translational level. By experimental analysis of the systems, which included analysis of Erk phosphorylation under Mek overexpression, measuring transcript levels of negative feedback regulators, and application of generic inhibitors of transcription and translation, we could exclude kinetic effects and transcriptional negative feedback as mechanisms of robustness. By analysing a panel of cell lines, we found that cells are robust as long as the signal passes through Raf-1. In contrast, cells where the pathway is activated by a mutation in B-Raf lose robustness. Detailed molecular analysis of the system shows that a single post-translational feedback to Raf mediates robustness. Thus, robustness is provided through a fast post-translational mechanism although variation of Erk levels occurs on a timescale of days. Protein levels within signal transduction pathways vary strongly from cell to cell. Here, we analysed how signalling pathways can still process information quantitatively despite strong heterogeneity in protein levels. We systematically perturbed the protein levels of Erk, the terminal kinase in the MAPK signalling pathway in a panel of human cell lines. We found that the steady-state phosphorylation of Erk is very robust against perturbations of Erk protein level. Although a multitude of mechanisms exist that may provide robustness against fluctuating protein levels, we found that one single feedback from Erk to Raf-1 accounts for the observed robustness. Surprisingly, robustness is provided through a fast post-translational mechanism although variation of Erk levels occurs on a timescale of days.
Collapse
|
11
|
Abstract
Gap genes are involved in segment determination during the early development of the fruit fly Drosophila melanogaster as well as in other insects. This review attempts to synthesize the current knowledge of the gap gene network through a comprehensive survey of the experimental literature. I focus on genetic and molecular evidence, which provides us with an almost-complete picture of the regulatory interactions responsible for trunk gap gene expression. I discuss the regulatory mechanisms involved, and highlight the remaining ambiguities and gaps in the evidence. This is followed by a brief discussion of molecular regulatory mechanisms for transcriptional regulation, as well as precision and size-regulation provided by the system. Finally, I discuss evidence on the evolution of gap gene expression from species other than Drosophila. My survey concludes that studies of the gap gene system continue to reveal interesting and important new insights into the role of gene regulatory networks in development and evolution.
Collapse
Affiliation(s)
- Johannes Jaeger
- Centre de Regulació Genòmica, Universtitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
12
|
Drosophila Raf's N terminus contains a novel conserved region and can contribute to torso RTK signaling. Genetics 2009; 184:717-29. [PMID: 20008569 DOI: 10.1534/genetics.109.111344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Drosophila Raf (DRaf) contains an extended N terminus, in addition to three conserved regions (CR1-CR3); however, the function(s) of this N-terminal segment remains elusive. In this article, a novel region within Draf's N terminus that is conserved in BRaf proteins of vertebrates was identified and termed conserved region N-terminal (CRN). We show that the N-terminal segment can play a positive role(s) in the Torso receptor tyrosine kinase pathway in vivo, and its contribution to signaling appears to be dependent on the activity of Torso receptor, suggesting this N-terminal segment can function in signal transmission. Circular dichroism analysis indicates that DRaf's N terminus (amino acids 1-117) including CRN (amino acids 19-77) is folded in vitro and has a high content of helical secondary structure as predicted by proteomics tools. In yeast two-hybrid assays, stronger interactions between DRaf's Ras binding domain (RBD) and the small GTPase Ras1, as well as Rap1, were observed when CRN and RBD sequences were linked. Together, our studies suggest that DRaf's extended N terminus may assist in its association with the upstream activators (Ras1 and Rap1) through a CRN-mediated mechanism(s) in vivo.
Collapse
|
13
|
Ashyraliyev M, Siggens K, Janssens H, Blom J, Akam M, Jaeger J. Gene circuit analysis of the terminal gap gene huckebein. PLoS Comput Biol 2009; 5:e1000548. [PMID: 19876378 PMCID: PMC2760955 DOI: 10.1371/journal.pcbi.1000548] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 09/28/2009] [Indexed: 12/24/2022] Open
Abstract
The early embryo of Drosophila melanogaster provides a powerful model system to study the role of genes in pattern formation. The gap gene network constitutes the first zygotic regulatory tier in the hierarchy of the segmentation genes involved in specifying the position of body segments. Here, we use an integrative, systems-level approach to investigate the regulatory effect of the terminal gap gene huckebein (hkb) on gap gene expression. We present quantitative expression data for the Hkb protein, which enable us to include hkb in gap gene circuit models. Gap gene circuits are mathematical models of gene networks used as computational tools to extract regulatory information from spatial expression data. This is achieved by fitting the model to gap gene expression patterns, in order to obtain estimates for regulatory parameters which predict a specific network topology. We show how considering variability in the data combined with analysis of parameter determinability significantly improves the biological relevance and consistency of the approach. Our models are in agreement with earlier results, which they extend in two important respects: First, we show that Hkb is involved in the regulation of the posterior hunchback (hb) domain, but does not have any other essential function. Specifically, Hkb is required for the anterior shift in the posterior border of this domain, which is now reproduced correctly in our models. Second, gap gene circuits presented here are able to reproduce mutants of terminal gap genes, while previously published models were unable to reproduce any null mutants correctly. As a consequence, our models now capture the expression dynamics of all posterior gap genes and some variational properties of the system correctly. This is an important step towards a better, quantitative understanding of the developmental and evolutionary dynamics of the gap gene network.
Collapse
Affiliation(s)
- Maksat Ashyraliyev
- Center for Mathematics and Computer Science, Centrum Wiskunde and Informatica, Amsterdam, The Netherlands
| | - Ken Siggens
- Laboratory for Development and Evolution, University Museum of Zoology, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Hilde Janssens
- EMBL/CRG Research Unit in Systems Biology, CRG–Centre de Regulació Genòmica, Universitat Pompeu Fabra, Barcelona, Spain
| | - Joke Blom
- Center for Mathematics and Computer Science, Centrum Wiskunde and Informatica, Amsterdam, The Netherlands
| | - Michael Akam
- Laboratory for Development and Evolution, University Museum of Zoology, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Johannes Jaeger
- Laboratory for Development and Evolution, University Museum of Zoology, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- EMBL/CRG Research Unit in Systems Biology, CRG–Centre de Regulació Genòmica, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
14
|
Miura GI, Roignant JY, Wassef M, Treisman JE. Myopic acts in the endocytic pathway to enhance signaling by the Drosophila EGF receptor. Development 2008; 135:1913-22. [PMID: 18434417 DOI: 10.1242/dev.017202] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Endocytosis of activated receptors can control signaling levels by exposing the receptors to novel downstream molecules or by instigating their degradation. Epidermal growth factor receptor (EGFR) signaling has crucial roles in development and is misregulated in many cancers. We report here that Myopic, the Drosophila homolog of the Bro1-domain tyrosine phosphatase HD-PTP, promotes EGFR signaling in vivo and in cultured cells. myopic is not required in the presence of activated Ras or in the absence of the ubiquitin ligase Cbl, indicating that it acts on internalized EGFR, and its overexpression enhances the activity of an activated form of EGFR. Myopic is localized to intracellular vesicles adjacent to Rab5-containing early endosomes, and its absence results in the enlargement of endosomal compartments. Loss of Myopic prevents cleavage of the EGFR cytoplasmic domain, a process controlled by the endocytic regulators Cbl and Sprouty. We suggest that Myopic promotes EGFR signaling by mediating its progression through the endocytic pathway.
Collapse
Affiliation(s)
- Grant I Miura
- Kimmel Center for Biology and Medicine of the Skirball Institute, NYU School of Medicine, Department of Cell Biology, 540 First Avenue, New York, NY 10016, USA
| | | | | | | |
Collapse
|
15
|
Bardwell L, Shah K. Analysis of mitogen-activated protein kinase activation and interactions with regulators and substrates. Methods 2006; 40:213-23. [PMID: 16884917 PMCID: PMC3017500 DOI: 10.1016/j.ymeth.2006.06.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 06/15/2006] [Accepted: 06/17/2006] [Indexed: 01/28/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are ubiquitous signal transduction modules in eukaryotes that are of great interest and importance. Here, we summarize some useful methods for the analysis of MAPK signaling, including methods to (1) detect MAPK activation in cells, with an emphasis on using phosphorylation-state-specific antibodies raised against mammalian phosphopeptide sequences to detect the activation of MAPKs in other species; (2) estimate the cellular concentrations of MAPKs and other proteins of interest; (3) detect and quantify the stable physical association of MAPKs with their substrates and regulators, and estimate the relevant dissociation constants; (4) delineate the MAPK-binding regions or domains of MAPK-interacting proteins, with particular emphasis on the identification and verification of MAPK-docking sites. These procedures are broadly applicable to many organisms, including both yeast and mammalian cells.
Collapse
Affiliation(s)
- Lee Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA.
| | | |
Collapse
|
16
|
Gelb BD, Tartaglia M. Noonan syndrome and related disorders: dysregulated RAS-mitogen activated protein kinase signal transduction. Hum Mol Genet 2006; 15 Spec No 2:R220-6. [PMID: 16987887 DOI: 10.1093/hmg/ddl197] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Noonan syndrome is a relatively common, genetically heterogeneous Mendelian trait with a pleiomorphic phenotype. Prior to the period covered in this review, missense mutations in PTPN11 had been found to account for nearly 50% of Noonan syndrome cases. That gene encodes SHP-2, a protein tyrosine kinase that plays diverse roles in signal transduction including signaling via the RAS-mitogen activated protein kinase (MAPK) pathway. Noonan syndrome-associated PTPN11 mutations are gain-of-function, with most disrupting SHP-2's activation-inactivation mechanism. Here, we review recent information that has elucidated further the types and effects of PTPN11 defects in Noonan syndrome and compare them to the related, but specific, missense PTPN11 mutations causing other diseases including LEOPARD syndrome and leukemias. These new data derive from biochemical and cell biological studies as well as animal modeling with fruit flies and chick embryos. The discovery of KRAS missense mutation as a minor cause of Noonan syndrome and the pathogenetic mechanisms of those mutants is discussed. Finally, the elucidation of gene defects underlying two phenotypically related disorders, Costello and cardio-facio-cutaneous syndromes is also reviewed. As these genes also encode proteins relevant for RAS-MAPK signal transduction, all of the syndromes discussed in this article now can be understood to constitute a class of disorders caused by dysregulated RAS-MAPK signaling.
Collapse
Affiliation(s)
- Bruce D Gelb
- Department of Pediatrics and Human Genetics, Mount Sinai School of Medicine, One Gustave Levy Place, Box 1040, New York, NY 10029, USA.
| | | |
Collapse
|
17
|
Werz C, Lee TV, Lee PL, Lackey M, Bolduc C, Stein DS, Bergmann A. Mis-specified cells die by an active gene-directed process, and inhibition of this death results in cell fate transformation in Drosophila. Development 2005; 132:5343-52. [PMID: 16280349 PMCID: PMC2760325 DOI: 10.1242/dev.02150] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Incorrectly specified or mis-specified cells often undergo cell death or are transformed to adopt a different cell fate during development. The underlying cause for this distinction is largely unknown. In many developmental mutants in Drosophila, large numbers of mis-specified cells die synchronously, providing a convenient model for analysis of this phenomenon. The maternal mutant bicoid is particularly useful model with which to address this issue because its mutant phenotype is a combination of both transformation of tissue (acron to telson) and cell death in the presumptive head and thorax regions. We show that a subset of these mis-specified cells die through an active gene-directed process involving transcriptional upregulation of the cell death inducer hid. Upregulation of hid also occurs in oskar mutants and other segmentation mutants. In hid bicoid double mutants, mis-specified cells in the presumptive head and thorax survive and continue to develop, but they are transformed to adopt a different cell fate. We provide evidence that the terminal torso signaling pathway protects the mis-specified telson tissue in bicoid mutants from hid-induced cell death, whereas mis-specified cells in the head and thorax die, presumably because equivalent survival signals are lacking. These data support a model whereby mis-specification can be tolerated if a survival pathway is provided, resulting in cellular transformation.
Collapse
Affiliation(s)
- Christian Werz
- The University of Texas M.D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology, 1515 Holcombe Boulevard, Unit 1000, Houston, TX 77030, USA
| | - Tom V. Lee
- The University of Texas M.D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology, 1515 Holcombe Boulevard, Unit 1000, Houston, TX 77030, USA
- The Genes and Development Graduate Program (http://www.mdanderson.org/genedev)
| | - Peter L. Lee
- The University of Texas M.D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology, 1515 Holcombe Boulevard, Unit 1000, Houston, TX 77030, USA
| | - Melinda Lackey
- The University of Texas M.D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology, 1515 Holcombe Boulevard, Unit 1000, Houston, TX 77030, USA
| | - Clare Bolduc
- The University of Texas M.D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology, 1515 Holcombe Boulevard, Unit 1000, Houston, TX 77030, USA
| | - David S. Stein
- The University of Texas at Austin, Patterson labs 532, Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, 2401 W24th and Speedway, Austin, TX 78712, USA
| | - Andreas Bergmann
- The University of Texas M.D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology, 1515 Holcombe Boulevard, Unit 1000, Houston, TX 77030, USA
- The Genes and Development Graduate Program (http://www.mdanderson.org/genedev)
- Author for correspondence (e-mail: )
| |
Collapse
|
18
|
Magie CR, Parkhurst SM. Rho1 regulates signaling events required for proper Drosophila embryonic development. Dev Biol 2005; 278:144-54. [PMID: 15649467 PMCID: PMC3125077 DOI: 10.1016/j.ydbio.2004.10.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 10/19/2004] [Accepted: 10/28/2004] [Indexed: 12/15/2022]
Abstract
The Rho small GTPase has been implicated in many cellular processes, including actin cytoskeletal regulation and transcriptional activation. The molecular mechanisms underlying Rho function in many of these processes are not yet clear. Here we report that in Drosophila, reduction of maternal Rho1 compromises signaling pathways consistent with defects in membrane trafficking events. These mutants fail to maintain expression of the segment polarity genes engrailed (en), wingless (wg), and hedgehog (hh), contributing to a segmentation phenotype. Formation of the Wg protein gradient involves the internalization of Wg into vesicles. The number of these Wg-containing vesicles is reduced in maternal Rho1 mutants, suggesting a defect in endocytosis. Consistent with this, stripes of cytoplasmic beta-catenin that accumulate in response to Wg signaling are narrower in these mutants relative to wild type. Additionally, the amount of extracellular Wg protein is reduced in maternal Rho1 mutants, indicating a defect in secretion. Signaling pathways downregulated by endocytosis, such as the epidermal growth factor receptor (EGFR) and Torso pathways, are hyperactivated in maternal Rho1 mutants, consistent with a general role for Rho1 in regulating signaling events governing proper patterning during Drosophila development.
Collapse
Affiliation(s)
- Craig R Magie
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, A1-162, PO Box 19024, Seattle, WA 98109-1024, USA
| | | |
Collapse
|
19
|
Li WX. Functions and mechanisms of receptor tyrosine kinase Torso signaling: lessons from Drosophila embryonic terminal development. Dev Dyn 2005; 232:656-72. [PMID: 15704136 PMCID: PMC3092428 DOI: 10.1002/dvdy.20295] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Torso receptor tyrosine kinase (RTK) is required for cell fate specification in the terminal regions (head and tail) of the early Drosophila embryo. Torso contains a split tyrosine kinase domain and belongs to the type III subgroup of the RTK superfamily that also includes the platelet-derived growth factor receptors, stem cell or steel factor receptor c-Kit proto-oncoprotein, colony-stimulating factor-1 receptor, and vascular endothelial growth factor receptor. The Torso pathway has been a model system for studying RTK signal transduction. Genetic and biochemical studies of Torso signaling have provided valuable insights into the biological functions and mechanisms of RTK signaling during early Drosophila embryogenesis.
Collapse
Affiliation(s)
- Willis X Li
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York 14642, USA.
| |
Collapse
|
20
|
Wilson R, Vogelsang E, Leptin M. FGF signalling and the mechanism of mesoderm spreading inDrosophilaembryos. Development 2005; 132:491-501. [PMID: 15634694 DOI: 10.1242/dev.01603] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
FGF signalling is needed for the proper establishment of the mesodermal cell layer in Drosophila embryos. The activation of the FGF receptor Heartless triggers the di-phosphorylation of MAPK in the mesoderm, which accumulates in a graded fashion with the highest levels seen at the dorsal edge of the mesoderm. We have examined the specific requirement for FGF signalling in the spreading process. We show that only the initial step of spreading, specifically the establishment of contact between the ectoderm and the mesoderm, depends upon FGF signalling, and that unlike the role of FGF signalling in the differentiation of heart precursors this function cannot be replaced by other receptor tyrosine kinases. The initiation of mesoderm spreading requires the FGF receptor to possess a functional kinase domain, but does not depend upon the activation of MAPK. Thus, the dispersal of the mesoderm at early stages is regulated by pathways downstream of the FGF receptor that are independent of the MAPK cascade. Furthermore, we demonstrate that the activation of MAPK by Heartless needs additional cues from the ectoderm. We propose that FGF signalling is required during the initial stages of mesoderm spreading to promote the efficient interaction of the mesoderm with the ectoderm rather than having a long range chemotactic function, and we discuss this in relation to the cellular mechanism of mesoderm spreading.
Collapse
Affiliation(s)
- Robert Wilson
- Institut für Genetik, Universität zu Köln, Weyertal 121, 50931 Köln, Germany
| | | | | |
Collapse
|
21
|
Identifying spatially similar gene expression patterns in early stage fruit fly embryo images: binary feature versus invariant moment digital representations. BMC Bioinformatics 2004; 5:202. [PMID: 15603586 PMCID: PMC545963 DOI: 10.1186/1471-2105-5-202] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Accepted: 12/16/2004] [Indexed: 12/02/2022] Open
Abstract
Background Modern developmental biology relies heavily on the analysis of embryonic gene expression patterns. Investigators manually inspect hundreds or thousands of expression patterns to identify those that are spatially similar and to ultimately infer potential gene interactions. However, the rapid accumulation of gene expression pattern data over the last two decades, facilitated by high-throughput techniques, has produced a need for the development of efficient approaches for direct comparison of images, rather than their textual descriptions, to identify spatially similar expression patterns. Results The effectiveness of the Binary Feature Vector (BFV) and Invariant Moment Vector (IMV) based digital representations of the gene expression patterns in finding biologically meaningful patterns was compared for a small (226 images) and a large (1819 images) dataset. For each dataset, an ordered list of images, with respect to a query image, was generated to identify overlapping and similar gene expression patterns, in a manner comparable to what a developmental biologist might do. The results showed that the BFV representation consistently outperforms the IMV representation in finding biologically meaningful matches when spatial overlap of the gene expression pattern and the genes involved are considered. Furthermore, we explored the value of conducting image-content based searches in a dataset where individual expression components (or domains) of multi-domain expression patterns were also included separately. We found that this technique improves performance of both IMV and BFV based searches. Conclusions We conclude that the BFV representation consistently produces a more extensive and better list of biologically useful patterns than the IMV representation. The high quality of results obtained scales well as the search database becomes larger, which encourages efforts to build automated image query and retrieval systems for spatial gene expression patterns.
Collapse
|
22
|
Anastasi S, Fiorentino L, Fiorini M, Fraioli R, Sala G, Castellani L, Alemà S, Alimandi M, Segatto O. Feedback inhibition by RALT controls signal output by the ErbB network. Oncogene 2003; 22:4221-34. [PMID: 12833145 DOI: 10.1038/sj.onc.1206516] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The ErbB-2 interacting protein receptor-associated late transducer (RALT) was previously identified as a feedback inhibitor of ErbB-2 mitogenic signals. We now report that RALT binds to ligand-activated epidermal growth factor receptor (EGFR), ErbB-4 and ErbB-2.ErbB-3 dimers. When ectopically expressed in 32D cells reconstituted with the above ErbB receptor tyrosine kinases (RTKs) RALT behaved as a pan-ErbB inhibitor. Importantly, when tested in either cell proliferation assays or biochemical experiments measuring activation of ERK and AKT, RALT affected the signalling activity of distinct ErbB dimers with different relative potencies. RALT deltaEBR, a mutant unable to bind to ErbB RTKs, did not inhibit ErbB-dependent activation of ERK and AKT, consistent with RALT exerting its suppressive activity towards these pathways at a receptor-proximal level. Remarkably, RALT deltaEBR retained the ability to suppress largely the proliferative activity of ErbB-2.ErbB-3 dimers over a wide range of ligand concentrations, indicating that RALT can intercept ErbB-2.ErbB-3 mitogenic signals also at a receptor-distal level. A suppressive function of RALT deltaEBR towards the mitogenic activity of EGFR and ErbB-4 was detected at low levels of receptor occupancy, but was completely overcome by saturating concentrations of ligand. We propose that quantitative and qualitative aspects of RALT signalling concur in defining identity, strength and duration of signals generated by the ErbB network.
Collapse
Affiliation(s)
- Sergio Anastasi
- Regina Elena Cancer Institute, Via Delle Messi d'Oro, 156, Rome 00158, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Overactivation of receptor tyrosine kinases (RTKs) has been linked to tumorigenesis. To understand how a hyperactivated RTK functions differently from wild-type RTK, we conducted a genome-wide systematic survey for genes that are required for signaling by a gain-of-function mutant Drosophila RTK Torso (Tor). We screened chromosomal deficiencies for suppression of a gain-of-function mutation tor (tor(GOF)), which led to the identification of 26 genomic regions that, when in half dosage, suppressed the defects caused by tor(GOF). Testing of candidate genes in these regions revealed many genes known to be involved in Tor signaling (such as those encoding the Ras-MAPK cassette, adaptor and structural molecules of RTK signaling, and downstream target genes of Tor), confirming the specificity of this genetic screen. Importantly, this screen also identified components of the TGFbeta (Dpp) and JAK/STAT pathways as being required for Tor(GOF) signaling. Specifically, we found that reducing the dosage of thickveins (tkv), Mothers against dpp (Mad), or STAT92E (aka marelle), respectively, suppressed tor(GOF) phenotypes. Furthermore, we demonstrate that in tor(GOF) embryos, dpp is ectopically expressed and thus may contribute to the patterning defects. These results demonstrate an essential requirement of noncanonical signaling pathways for a persistently activated RTK to cause pathological defects in an organism.
Collapse
Affiliation(s)
- Jinghong Li
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | |
Collapse
|
24
|
Affiliation(s)
- Marc Furriols
- Institut de Biologia Molecular de Barcelona (CSIC), C/ Jordi Girona 18-26, E-08034 Barcelona, Spain
| | | |
Collapse
|
25
|
Fiorini M, Ballarò C, Sala G, Falcone G, Alemà S, Segatto O. Expression of RALT, a feedback inhibitor of ErbB receptors, is subjected to an integrated transcriptional and post-translational control. Oncogene 2002; 21:6530-9. [PMID: 12226756 DOI: 10.1038/sj.onc.1205823] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2002] [Revised: 06/19/2002] [Accepted: 06/28/2002] [Indexed: 11/08/2022]
Abstract
Over-expression studies have demonstrated that RALT (receptor associated late transducer) is a feedback inhibitor of ErbB-2 mitogenic and transforming signals. In growth-arrested cells, expression of endogenous RALT is induced by mitogenic stimuli, is high throughout mid to late G1 and returns to baseline as cells move into S phase. Here, we show that physiological levels of RALT effectively suppress ErbB-2 mitogenic signals. We also investigate the regulatory mechanisms that preside to the control of RALT expression. We demonstrate that pharmacological ablation of extracellular signal-regulated kinase (ERK) activation leads to blockade of RALT expression, unlike genetic and/or pharmacological interference with the activities of PKC, Src family kinases, p38 SAPK and PI-3K. Tamoxifen-dependent activation of an inducible Raf : ER chimera was sufficient to induce RALT expression. Thus, activation of the Ras-Raf-ERK pathway is necessary and sufficient to drive RALT expression. The RALT protein is labile and was found to accumulate robustly upon pharmacological inhibition of the proteasome. We were able to detect ubiquitin-conjugated RALT species in living cells, suggesting that ubiquitinylation targets RALT for proteasome-dependent degradation. Such an integrated transcriptional and post-translational control is likely to provide RALT with the ability to fluctuate timely in order to tune ErbB signals.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antineoplastic Agents, Hormonal/pharmacology
- Blotting, Northern
- Carrier Proteins/antagonists & inhibitors
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Cycle
- Cell Division
- Cell Transformation, Neoplastic
- Cells, Cultured
- Cysteine Proteinase Inhibitors/pharmacology
- Enzyme Activation
- Epithelial Cells/metabolism
- Feedback, Physiological
- Fibroblasts/metabolism
- Gene Expression Regulation
- Humans
- Mice
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinases/metabolism
- Mitogens/pharmacology
- Phosphorylation
- Protein Binding
- Protein Biosynthesis/physiology
- Proto-Oncogene Proteins c-raf/genetics
- Proto-Oncogene Proteins c-raf/metabolism
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/chemistry
- Receptor, ErbB-2/metabolism
- Signal Transduction
- Tamoxifen/pharmacology
- Transcription, Genetic/physiology
- Tumor Suppressor Proteins
- ras Proteins/metabolism
- src Homology Domains
Collapse
Affiliation(s)
- Monia Fiorini
- Laboratory of Immunology, Istituto Regina Elena, 00156 Rome, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Li WX, Agaisse H, Mathey-Prevot B, Perrimon N. Differential requirement for STAT by gain-of-function and wild-type receptor tyrosine kinase Torso in Drosophila. Development 2002; 129:4241-8. [PMID: 12183376 PMCID: PMC3090254 DOI: 10.1242/dev.129.18.4241] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Malignant transformation frequently involves aberrant signaling from receptor tyrosine kinases (RTKs). These receptors commonly activate Ras/Raf/MEK/MAPK signaling but when overactivated can also induce the JAK/STAT pathway, originally identified as the signaling cascade downstream of cytokine receptors. Inappropriate activation of STAT has been found in many human cancers. However, the contribution of the JAK/STAT pathway in RTK signaling remains unclear. We have investigated the requirement of the JAK/STAT pathway for signaling by wild-type and mutant forms of the RTK Torso (Tor) using a genetic approach in Drosophila. Our results indicate that the JAK/STAT pathway plays little or no role in signaling by wild-type Tor. In contrast, we find that STAT, encoded by marelle (mrl; DStat92E), is essential for the gain-of-function mutant Tor (TorGOF) to activate ectopic gene expression. Our findings indicate that the Ras/Raf/MEK/MAPK signaling pathway is sufficient to mediate the normal functions of wild-type RTK, whereas the effects of gain-of-function mutant RTK additionally require STAT activation.
Collapse
Affiliation(s)
- Willis X Li
- Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
27
|
Chen YJ, Chiang CS, Weng LC, Lengyel JA, Liaw GJ. Tramtrack69 is required for the early repression of tailless expression. Mech Dev 2002; 116:75-83. [PMID: 12128207 DOI: 10.1016/s0925-4773(02)00143-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During embryogenesis, the activated Torso receptor tyrosine kinase (TOR RTK) pathway activates tailless (tll) expression by a relief-of-repression mechanism. Various lines of evidence have suggested that multiple factors are required for this repression. We show that Tramtrack69 (TTK69) binds to two sites within tll cis-regulatory DNA, TC2 and TC5, and that TTK69 is phosphorylated by mitogen activated protein kinase. In embryos lacking maternal ttk69 activity, the expression of both endogenous tll and lacZ driven by the tll minimal regulatory region (tll-MRR) are expanded. Further, in wild-type embryos, the tll-MRR mutated in TC5 drives uniform lacZ expression before late stage 4. We conclude that TTK69 is required for early (before the end of stage 4) repression of tll transcription.
Collapse
Affiliation(s)
- Yueh-Jung Chen
- Institute of Genetics, National Yang-Ming University, Shih-Pai, Taipei 112, Taiwan, ROC
| | | | | | | | | |
Collapse
|
28
|
Lloyd TE, Atkinson R, Wu MN, Zhou Y, Pennetta G, Bellen HJ. Hrs regulates endosome membrane invagination and tyrosine kinase receptor signaling in Drosophila. Cell 2002; 108:261-9. [PMID: 11832215 DOI: 10.1016/s0092-8674(02)00611-6] [Citation(s) in RCA: 369] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Signaling through tyrosine kinase receptors (TKRs) is thought to be modulated by receptor-mediated endocytosis and degradation of the receptor in the lysosome. However, factors that regulate endosomal sorting of TKRs are largely unknown. Here, we demonstrate that Hrs (Hepatocyte growth factor-regulated tyrosine kinase substrate) is one such factor. Electron microscopy studies of hrs mutant larvae reveal an impairment in endosome membrane invagination and formation of multivesicular bodies (MVBs). hrs mutant animals fail to degrade active epidermal growth factor (EGF) and Torso TKRs, leading to enhanced signaling and altered embryonic patterning. These data suggest that Hrs and MVB formation function to downregulate TKR signaling.
Collapse
Affiliation(s)
- Thomas E Lloyd
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
29
|
Smith RK, Carroll PM, Allard JD, Simon MA. MASK, a large ankyrin repeat and KH domain-containing protein involved inDrosophilareceptor tyrosine kinase signaling. Development 2002; 129:71-82. [PMID: 11782402 DOI: 10.1242/dev.129.1.71] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The receptor tyrosine kinases Sevenless (SEV) and the Epidermal growth factor receptor (EGFR) are required for the proper development of the Drosophila eye. The protein tyrosine phosphatase Corkscrew (CSW) is a common component of many RTK signaling pathways, and is required for signaling downstream of SEV and EGFR. In order to identify additional components of these signaling pathways, mutations that enhanced the phenotype of a dominant negative form of Corkscrew were isolated. This genetic screen identified the novel signaling molecule MASK, a large protein that contains two blocks of ankyrin repeats as well as a KH domain. MASK genetically interacts with known components of these RTK signaling pathways. In the developing eye imaginal disc, loss of MASK function generates phenotypes similar to those generated by loss of other components of the SEV and EGFR pathways. These phenotypes include compromised photoreceptor differentiation, cell survival and proliferation. Although MASK is localized predominantly in the cellular cytoplasm, it is not absolutely required for MAPK activation or nuclear translocation. Based on our results, we propose that MASK is a novel mediator of RTK signaling, and may act either downstream of MAPK or transduce signaling through a parallel branch of the RTK pathway.
Collapse
Affiliation(s)
- Rachel K Smith
- Department of Biological Sciences, Stanford University, 385 Serra Mall, Stanford, CA 94305-5020, USA
| | | | | | | |
Collapse
|
30
|
Abstract
We wanted to investigate the relationship between receptor tyrosine kinase (RTK) activated signaling pathways and the induction of cell migration. Using Drosophila tracheal and mesodermal cell migration as model systems, we find that the intracellular domain of the fibroblast growth factor receptors (FGFRs) Breathless (Btl) and Heartless (Htl) can be functionally replaced by the intracellular domains of Torso (Tor) and epidermal growth factor receptor (EGFR). These hybrid receptors can also rescue cell migration in the absence of Downstream of FGFR (Dof), a cytoplasmic protein essential for FGF signaling. These results demonstrate that tracheal and mesodermal cells respond during a specific time window to a receptor tyrosine kinase (RTK) signal with directed migration, independent of the presence or absence of Dof. We discuss our findings in the light of the recent findings that RTKs generate a generic signal that is interpreted in responding cells according to their developmental history.
Collapse
Affiliation(s)
- C Dossenbach
- Abteilung Zellbiologie, Biozentrum der Universität Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | | |
Collapse
|
31
|
Radke K, Johnson K, Guo R, Davidson A, Ambrosio L. Drosophila-raf acts to elaborate dorsoventral pattern in the ectoderm of developing embryos. Genetics 2001; 159:1031-44. [PMID: 11729151 PMCID: PMC1461885 DOI: 10.1093/genetics/159.3.1031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the early Drosophila embryo the activity of the EGF-receptor (Egfr) is required to instruct cells to adopt a ventral neuroectodermal fate. Using a gain-of-function mutation we showed that D-raf acts to transmit this and other late-acting embryonic Egfr signals. A novel role for D-raf was also identified in lateral cell development using partial loss-of-function D-raf mutations. Thus, we provide evidence that zygotic D-raf acts to specify cell fates in two distinct pathways that generate dorsoventral pattern within the ectoderm. These functional requirements for D-raf activity occur subsequent to its maternal role in organizing the anterioposterior axis. The consequences of eliminating key D-raf regulatory domains and specific serine residues in the transmission of Egfr and lateral epidermal signals were also addressed here.
Collapse
Affiliation(s)
- K Radke
- Signal Transduction Training Group, Department of Zoology and Genetics, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | |
Collapse
|
32
|
Halfar K, Rommel C, Stocker H, Hafen E. Ras controls growth, survival and differentiation in the Drosophila eye by different thresholds of MAP kinase activity. Development 2001; 128:1687-96. [PMID: 11290305 DOI: 10.1242/dev.128.9.1687] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ras mediates a plethora of cellular functions during development. In the developing eye of Drosophila, Ras performs three temporally separate functions. In dividing cells, it is required for growth but is not essential for cell cycle progression. In postmitotic cells, it promotes survival and subsequent differentiation of ommatidial cells. In the present paper, we have analyzed the different roles of Ras during eye development by using molecularly defined complete and partial loss-of-function mutations of Ras. We show that the three different functions of Ras are mediated by distinct thresholds of MAPK activity. Low MAPK activity prolongs cell survival and permits differentiation of R8 photoreceptor cells while high or persistent MAPK activity is sufficient to precociously induce R1-R7 photoreceptor differentiation in dividing cells.
Collapse
Affiliation(s)
- K Halfar
- Zoologisches Institut, Universität Zürich, Winterthurerstrasse 190, Switzerland
| | | | | | | |
Collapse
|
33
|
Lorenzen JA, Baker SE, Denhez F, Melnick MB, Brower DL, Perkins LA. Nuclear import of activated D-ERK by DIM-7, an importin family member encoded by the gene moleskin. Development 2001; 128:1403-14. [PMID: 11262240 DOI: 10.1242/dev.128.8.1403] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The initiation of gene expression in response to Drosophila receptor tyrosine kinase signaling requires the nuclear import of the MAP kinase, D-ERK. However, the molecular details of D-ERK translocation are largely unknown. In this regard, we have identified D-Importin-7 (DIM-7), the Drosophila homolog of vertebrate importin 7, and its gene moleskin. DIM-7 exhibits a dynamic nuclear localization pattern that overlaps the spatial and temporal profile of nuclear, activated D-ERK. Co-immunoprecipitation experiments show that DIM-7 associates with phosphorylated D-ERK in Drosophila S2 cells. Furthermore, moleskin mutations enhance hypomorphic and suppress hypermorphic D-ERK mutant phenotypes. Deletion or mutation of moleskin dramatically reduces the nuclear localization of activated D-ERK. Directly linking DIM-7 to its nuclear import, this defect can be rescued by the expression of wild-type DIM-7. Mutations in the Drosophila Importin (β) homolog Ketel, also reduce the nuclear localization of activated D-ERK. Together, these data indicate that DIM-7 and Ketel are components of the nuclear import machinery for activated D-ERK.
Collapse
Affiliation(s)
- J A Lorenzen
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
34
|
Fiorini M, Alimandi M, Fiorentino L, Sala G, Segatto O. Negative regulation of receptor tyrosine kinase signals. FEBS Lett 2001; 490:132-41. [PMID: 11223028 DOI: 10.1016/s0014-5793(01)02116-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In Metazoans a number of cellular functions are controlled by receptor tyrosine kinases (RTKs) during development and in postnatal life. The execution of these programs requires that signals of adequate strength are delivered for the appropriate time within precise spatial boundaries. Several RTK inhibitors have been identified in invertebrate and mammalian organisms. Because they are involved in tuning and termination of receptor signals, negative regulators of RTK activity fulfill a fundamental function in the control of receptor signaling.
Collapse
Affiliation(s)
- M Fiorini
- Laboratory of Immunology, Regina Elena Cancer Institute, Rome, Italy
| | | | | | | | | |
Collapse
|
35
|
Firth L, Manchester J, Lorenzen JA, Baron M, Perkins LA. Identification of genomic regions that interact with a viable allele of the Drosophila protein tyrosine phosphatase corkscrew. Genetics 2000; 156:733-48. [PMID: 11014820 PMCID: PMC1461264 DOI: 10.1093/genetics/156.2.733] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Signaling by receptor tyrosine kinases (RTKs) is critical for a multitude of developmental decisions and processes. Among the molecules known to transduce the RTK-generated signal is the nonreceptor protein tyrosine phosphatase Corkscrew (Csw). Previously, Csw has been demonstrated to function throughout the Drosophila life cycle and, among the RTKs tested, Csw is essential in the Torso, Sevenless, EGF, and Breathless/FGF RTK pathways. While the biochemical function of Csw remains to be unambiguously elucidated, current evidence suggests that Csw plays more than one role during transduction of the RTK signal and, further, the molecular mechanism of Csw function differs depending upon the RTK in question. The isolation and characterization of a new, spontaneously arising, viable allele of csw, csw(lf), has allowed us to undertake a genetic approach to identify loci required for Csw function. The rough eye and wing vein gap phenotypes exhibited by adult flies homo- or hemizygous for csw(lf) has provided a sensitized background from which we have screened a collection of second and third chromosome deficiencies to identify 33 intervals that enhance and 21 intervals that suppress these phenotypes. We have identified intervals encoding known positive mediators of RTK signaling, e.g., drk, dos, Egfr, E(Egfr)B56, pnt, Ras1, rolled/MAPK, sina, spen, Src64B, Star, Su(Raf)3C, and vein, as well as known negative mediators of RTK signaling, e.g., aos, ed, net, Src42A, sty, and su(ve). Of particular interest are the 5 lethal enhancing intervals and 14 suppressing intervals for which no candidate genes have been identified.
Collapse
Affiliation(s)
- L Firth
- Department of Biological Sciences, University of Manchester, Manchester M13 9PT, England
| | | | | | | | | |
Collapse
|
36
|
Fiorentino L, Pertica C, Fiorini M, Talora C, Crescenzi M, Castellani L, Alemà S, Benedetti P, Segatto O. Inhibition of ErbB-2 mitogenic and transforming activity by RALT, a mitogen-induced signal transducer which binds to the ErbB-2 kinase domain. Mol Cell Biol 2000; 20:7735-50. [PMID: 11003669 PMCID: PMC86354 DOI: 10.1128/mcb.20.20.7735-7750.2000] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The product of rat gene 33 was identified as an ErbB-2-interacting protein in a two-hybrid screen employing the ErbB-2 juxtamembrane and kinase domains as bait. This interaction was reproduced in vitro with a glutathione S-transferase fusion protein spanning positions 282 to 395 of the 459-residue gene 33 protein. Activation of ErbB-2 catalytic function was required for ErbB-2-gene 33 physical interaction in living cells, whereas ErbB-2 autophosphorylation was dispensable. Expression of gene 33 protein was absent in growth-arrested NIH 3T3 fibroblasts but was induced within 60 to 90 min of serum stimulation or activation of the ErbB-2 kinase and decreased sharply upon entry into S phase. New differentiation factor stimulation of mitogen-deprived mammary epithelial cells also caused accumulation of gene 33 protein, which could be found in a complex with ErbB-2. Overexpression of gene 33 protein in mouse fibroblasts inhibited (i) cell proliferation driven by ErbB-2 but not by serum, (ii) cell transformation induced by ErbB-2 but not by Ras or Src, and (iii) sustained activation of ERK 1 and 2 by ErbB-2 but not by serum. The gene 33 protein may convey inhibitory signals downstream to ErbB-2 by virtue of its association with SH3-containing proteins, including GRB-2, which was found to associate with gene 33 protein in living cells. These data indicate that the gene 33 protein is a feedback inhibitor of ErbB-2 mitogenic function and a suppressor of ErbB-2 oncogenic activity. We propose that the gene 33 protein be renamed with the acronym RALT (receptor-associated late transducer).
Collapse
Affiliation(s)
- L Fiorentino
- Laboratories of Immunology, Regina Elena Cancer Institute, 00158 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Schroder R, Eckert C, Wolff C, Tautz D. Conserved and divergent aspects of terminal patterning in the beetle Tribolium castaneum. Proc Natl Acad Sci U S A 2000; 97:6591-6. [PMID: 10823887 PMCID: PMC18669 DOI: 10.1073/pnas.100005497] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To infer similarities and differences in terminal pattern formation in insects, we analyzed several of the key genes of this process in the beetle Tribolium castaneum. We cloned two genes of the terminal pattern cascade, namely tailless (tll) and forkhead (fkh), from Tribolium and studied their expression patterns. In addition, we analyzed the pattern of MAP kinase activation at blastoderm stage as a possible signature for torso-dependent signaling. Further, we analyzed the late expression of the previously cloned Tribolium caudal (Tc-cad) gene. Finally, we used the upstream region of Tc-tll to drive a reporter gene construct in Drosophila. We find that this construct is activated at the terminal regions in Drosophila, suggesting that the torso-dependent pathway is conserved between the species. We show that most of the expression patterns of the genes studied here are similar in Drosophila and Tribolium, suggesting conserved functions. There is, however, one exception, namely the early function of Tc-tll at the posterior pole. In Drosophila, the posterior tll expression is involved in the direct regulation of the target genes of the terminal pathway. In Tribolium, posterior Tc-tll expression occurs only for a short time and ceases before the target genes known from Drosophila are activated. Thus, we infer that Tc-tll does not function as a direct regulator of segmentation genes at the posterior end. It is more likely to be involved in the early specification of a group of "terminal" cells, which begin to differentiate only at a later stage of embryogenesis, when much of the abdominal segmentation process is complete. Thus, there appears to have been a major shift in tll function during the evolutionary transition from short germ to long germ embryogenesis.
Collapse
Affiliation(s)
- R Schroder
- Zoologisches Institut der Universität München, Luisenstrasse 14, D-80333 Munich, Germany
| | | | | | | |
Collapse
|
38
|
Affiliation(s)
- N Perrimon
- Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|