1
|
Arima K, Shiotsugu J, Niu R, Khandpur R, Martinez M, Shin Y, Koide T, Cho KWY, Kitayama A, Ueno N, Chandraratna RAS, Blumberg B. Global analysis of RAR-responsive genes in the Xenopus neurula using cDNA microarrays. Dev Dyn 2005; 232:414-31. [PMID: 15614783 DOI: 10.1002/dvdy.20231] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Retinoid signaling is important for patterning the vertebrate hindbrain and midaxial regions. We recently showed that signaling through retinoic acid receptors (RARs) is essential for anteroposterior patterning along the entire body axis. To further investigate the mechanisms through which RARs act, we used microarray analysis to investigate the effects of modulating RAR activity on target gene expression. We identified 334 up-regulated genes (92% of which were validated), including known RA-responsive genes, known genes that have never been proposed as RA targets and many hypothetical and unidentified genes (n = 166). Sixty-seven validated down-regulated genes were identified, including known RA-responsive genes and anterior marker genes. The expression patterns of selected up-regulated genes (n = 45) were examined at neurula stages using whole-mount in situ hybridization. We found that most of these genes were expressed in the neural tube and many were expressed in anterior tissues such as neural crest, brain, eye anlagen, and cement gland. Some were expressed in tissues such as notochord, somites, pronephros, and blood islands, where retinoic acid (RA) plays established roles in organogenesis. Members of this set of newly identified RAR target genes are likely to play important roles in neural patterning and organogenesis under the control of RAR signaling pathways, and their further characterization will expand our understanding of RA signaling during development.
Collapse
Affiliation(s)
- Kayo Arima
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Shoji H, Ikenaka K, Nakakita SI, Hayama K, Hirabayashi J, Arata Y, Kasai KI, Nishi N, Nakamura T. Xenopus galectin-VIIa binds N-glycans of members of the cortical granule lectin family (xCGL and xCGL2). Glycobiology 2005; 15:709-20. [PMID: 15761024 DOI: 10.1093/glycob/cwi051] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We have identified members of the Xenopus cortical granule lectin (xCGL) family as candidate target glycoproteins of Xenopus galectin-VIIa (xgalectin-VIIa) in Xenopus embryos. In addition to the original xCGL, we also identified a novel member of the xCGL family, xCGL2. Expression of the mRNAs of xCGL and xCGL2, as well as that of xgalectin-VIIa, was observed throughout early embryogenesis. Two and three potential N-glycosylation sites were deduced from the amino acid sequences of xCGL and xCGL2, respectively, and xgalectin-VIIa recognizes N-glycans linked to a common site in xCGL and xCGL2 and also recognizes N-glycans linked to a site specific to xCGL2. However, interaction between xgalectin-Ia and xCGLs was not detectable. We also obtained consistent results on surface plasmon resonance analysis involving xCGLs as ligands and xgalectins as analytes. The Kd value of the interaction between xgalectin-VIIa and xCGLs was calculated to be 35.9 nM. The structures of the N-glycans of xCGLs, which were recognized by xgalectin-VIIa, were analyzed by the two-dimensional sugar map method, and three kinds of N-acetyllactosamine type, biantennary N-glycans were identified as the major neutral N-glycans. The binding specificity of oligosaccharides for xgalectin-VIIa was analyzed by frontal affinity chromatography (FAC). The oligosaccharide specificity pattern of xgalectin-VIIa was similar to that of the human homolog galectin-3, and it was also shown that the N-acetyllactosamine type, biantennary N-glycans exhibit high affinity for xgalectin-VIIa (Kd = 11 microM). These results suggest that xgalectin-VIIa interacts with xCGLs through binding to N-acetyllactosamine type N-glycans and that this interaction might make it possible to organize a lectin network involving members of different lectin families.
Collapse
Affiliation(s)
- Hiroki Shoji
- Department of Endocrinology, Kagawa University, 1750-1 Ikenobe, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Yasuda S, Morokawa N, Wong GW, Rossi A, Madhusudhan MS, Sali A, Askew YS, Adachi R, Silverman GA, Krilis SA, Stevens RL. Urokinase-type plasminogen activator is a preferred substrate of the human epithelium serine protease tryptase epsilon/PRSS22. Blood 2005; 105:3893-901. [PMID: 15701722 PMCID: PMC1895090 DOI: 10.1182/blood-2003-10-3501] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tryptase epsilon is a member of the chromosome 16p13.3 family of human serine proteases that is preferentially expressed by epithelial cells. Recombinant pro-tryptase epsilon was generated to understand how the exocytosed zymogen might be activated outside of the epithelial cell, as well as to address its possible role in normal and diseased states. Using expression/site-directed mutagenesis approaches, we now show that Lys20, Cys90, and Asp92 in the protease's substrate-binding cleft regulate its enzymatic activity. We also show that Arg(-1) in the propeptide domain controls its ability to autoactivate. In vitro studies revealed that recombinant tryptase epsilon possesses a restricted substrate specificity. Once activated, tryptase epsilon cannot be inhibited effectively by the diverse array of protease inhibitors present in normal human plasma. Moreover, this epithelium protease is not highly susceptible to alpha1-antitrypsin or secretory leukocyte protease inhibitor, which are present in the lung. Recombinant tryptase epsilon could not cleave fibronectin, vitronectin, laminin, single-chain tissue-type plasminogen activator, plasminogen, or any prominent serum protein. Nevertheless, tryptase epsilon readily converted single-chain pro-urokinase-type plasminogen activator (pro-uPA/scuPA) into its mature, enzymatically active protease. Tryptase epsilon also was able to induce pro-uPA-expressing smooth muscle cells to increase their migration through a basement membrane-like extracellular matrix. The ability to activate uPA in the presence of varied protease inhibitors suggests that tryptase epsilon plays a prominent role in fibrinolysis and other uPA-dependent reactions in the lung.
Collapse
Affiliation(s)
- Shinsuke Yasuda
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Shoji H, Nishi N, Hirashima M, Nakamura T. Characterization of the Xenopus galectin family. Three structurally different types as in mammals and regulated expression during embryogenesis. J Biol Chem 2003; 278:12285-93. [PMID: 12538594 DOI: 10.1074/jbc.m209008200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We have isolated six novel galectin cDNAs from a Xenopus laevis kidney cDNA library. The newly identified X. laevis galectins (xgalectins) comprise one proto type (xgalectin-Vb), one chimera type (xgalectin-VIIa), and four tandem repeat types (xgalectin-IIb, -IIIb, -VIa, and -VIIIa). Thus, together with those mentioned in our previous work (Shoji, H., Nishi, N., Hirashima, M., and Nakamura, T. (2002) Glycobiology 12, 163-172), the 12 xgalectins are classified into three types based on their domain structures, as in mammals. The xgalectins whose counterparts in other species have not been identified (xgalectin-IVa, -Vb, and -VIa) were confirmed to possess lactose-binding activity by expression of their recombinant forms. This shows that they truly function as animal lectins. The protein purification study revealed that the major xgalectins in kidney are xgalectin-Ib, -IIa, -IIb, -IIIa, and -VIIa. The mRNAs of xgalectin-IIb, -IIIb, -Vb, and -VIa were localized to specific adult tissues, whereas those of xgalectin-VIIa and -VIIIa were broadly distributed. The temporal expression patterns of the mRNAs of the 12 xgalectins during embryogenesis were analyzed and categorized into three groups: 1) mRNA observed to exist throughout embryogenesis, i.e. maternal mRNA also exists (xgalectin-Ia, -IIa, -IIIa, -IIIb, -Va, -VIIa, and -VIIIa); 2) mRNA observed from the gastrula stage (xgalectin-VIa); and 3) mRNA observed from the tail bud or the tadpole stage (xgalectin-Ib, -IIb, -IVa, and -Vb). The mRNA of the most abundant xgalectin in embryos, xgalectin-VIIa, was localized to the surface layer of embryos, the epidermis, the cement gland, and various placodes. Xgalectin-VIIa protein was also observed to exist throughout embryogenesis by Western blot analysis with specific antiserum. These results show that the expression of each member is spatiotemporally regulated from eggs to adulthood, suggesting that galectins play multiple roles not only in adults, but also in development.
Collapse
Affiliation(s)
- Hiroki Shoji
- Department of Endocrinology, Kagawa Medical University, 1750-1 Miki, Kagawa 761-0793, Japan
| | | | | | | |
Collapse
|
5
|
Bhagwandin VJ, Hau LWT, Mallen-St Clair J, Wolters PJ, Caughey GH. Structure and activity of human pancreasin, a novel tryptic serine peptidase expressed primarily by the pancreas. J Biol Chem 2003; 278:3363-71. [PMID: 12441343 DOI: 10.1074/jbc.m209353200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a search for genes encoding the serine peptidases prostasin and testisin, which are expressed mainly in prostate and testis, respectively, we identified a related, novel gene. Sequencing of cDNA allowed us to deduce the full amino acid sequence of the human gene product, which we term "pancreasin" because it is transcribed strongly in the pancreas. The idiosyncratic 6-exon organization of the gene is shared by a small group of tryptic proteases, including prostasin, testisin, and gamma-tryptase. Like the other genes, the pancreasin gene resides on chromosome 16p. Pancreasin cDNA predicts a 290-residue, N-glycosylated, serine peptidase with a typical signal peptide, a 12-residue activation peptide cleaved by tryptic hydrolysis, and a 256-amino acid catalytic domain. Unlike prostasin and other close relatives, human pancreasin and a nearly identical chimpanzee homologue lack a carboxyl-terminal membrane anchor, although this is present in 328-residue mouse pancreasin, the cDNA of which we also cloned and sequenced. In marked contrast to prostasin, which is 43% identical in the catalytic domain, human pancreasin is transcribed strongly in pancreas (and in the pancreatic ductal adenocarcinoma line, HPAC) but weakly or not at all in kidney and prostate. Antibodies raised against pancreasin detect cytoplasmic expression in HPAC cells. Recombinant, epitope-tagged pancreasin expressed in Chinese hamster ovary cells is glycosylated and secreted as an active tryptic peptidase. Pancreasin's preferences for hydrolysis of extended peptide substrates feature a strong preference for P1 Arg and differ from those of trypsin. Pancreasin is inhibited by benzamidine and leupeptin but resists several classic inhibitors of trypsin. Thus, pancreasin is a secreted, tryptic serine protease of the pancreas with novel physical and enzymatic properties. These studies provide a rationale for exploring the natural targets and roles of this enzyme.
Collapse
Affiliation(s)
- Vikash J Bhagwandin
- Cardiovascular Research Institute and Department of Medicine, University of California at San Francisco, California 94143-0911, USA
| | | | | | | | | |
Collapse
|
6
|
Muñoz-Sanjuán I, H-Brivanlou A. Early posterior/ventral fate specification in the vertebrate embryo. Dev Biol 2001; 237:1-17. [PMID: 11518501 DOI: 10.1006/dbio.2001.0350] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the central questions in developmental biology is that of how one cell can give rise to all specialized cell types and organs in the organism. Within the embryo, all tissues are composed of cells derived from one or more of the three germ layers, the ectoderm, the mesoderm, and the endoderm. Understanding the molecular events that underlie both the specification and patterning of the germ layers has been a long-standing interest for developmental biologists. Recent years have seen a rapid advancement in the elucidation of the molecular players implicated in patterning the vertebrate embryo. In this review, we will focus solely on the ventral and posterior fate acquisition in the ventral-lateral domains of the pregastrula embryo. We will address the embryonic origins of various tissues and will present embryological and experimental evidence to illustrate how "classically defined" ventral and posterior structures develop in all three germ layers. We will discuss the status of our current knowledge by focusing on the African frog Xenopus laevis, although we will also gather evidence from other vertebrates, where available. In particular, genetic studies in the zebrafish and mouse have been very informative in addressing the requirement for individual genes in these processes. The amphibian system has enjoyed great interest since the early days of experimental embryology, and constitutes the best understood system in terms of early patterning signals and axis specification. We want to draw interest to the embryological origins of cells that will develop into what we have collectively termed "posterior" and "ventral" cells/tissues, and we will address the involvement of the major signaling pathways implicated in posterior/ventral fate specification. Particular emphasis is given as to how these signaling pathways are integrated during early development for the specification of posterior and ventral fates.
Collapse
Affiliation(s)
- I Muñoz-Sanjuán
- Laboratory of Vertebrate Embryology, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
7
|
Grammer TC, Liu KJ, Mariani FV, Harland RM. Use of large-scale expression cloning screens in the Xenopus laevis tadpole to identify gene function. Dev Biol 2000; 228:197-210. [PMID: 11112324 DOI: 10.1006/dbio.2000.9945] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have conducted an expression cloning screen of approximately 50, 000 cDNAs from a tadpole stage Xenopus laevis cDNA library to functionally identify genes affecting a wide range of cellular and developmental processes. Fifty-seven cDNAs were isolated for their ability to alter gross tadpole morphology or the expression patterns of tissue-specific markers. Thirty-seven of the cDNAs have not been previously described for Xenopus, and 15 of these show little or no similarity to sequences in the NCBI database. The screen and the identified genes are presented in this paper to demonstrate the power, ease, speed, and flexibility of expression cloning in the X. laevis embryo. Future screens such as this one can be done on a larger scale and will complement the sequence-based screens and genome-sequencing projects which are producing a large body of novel genes without ascribed functions.
Collapse
Affiliation(s)
- T C Grammer
- Department of Molecular and Cell Biology, University of California at Berkeley, 401 Barker Hall, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
8
|
Takabatake T, Takahashi TC, Takabatake Y, Yamada K, Ogawa M, Takeshima K. Distinct expression of two types of Xenopus Patched genes during early embryogenesis and hindlimb development. Mech Dev 2000; 98:99-104. [PMID: 11044611 DOI: 10.1016/s0925-4773(00)00436-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Patched (Ptc) is a putative twelve transmembrane domain protein that is both a Hedgehog (Hh) receptor and transcriptional target of Hh. In this study, we isolated Xenopus Ptc cDNAs, Ptc-1 and Ptc-2, and carried out comparative analyses on their expression patterns. The putative Ptc-2 protein has a long C-terminal extension that has similarities in both length and sequence to those of Ptc-1 proteins in mouse, chick and human. In both early embryogenesis and hindlimb development, Ptc-2 expression is restricted to cells that receive a Hh signal, a pattern similar to that of Gli-1. Ptc-1, however, shows a broader distribution, mainly non-overlapping with that of Ptc-2. Despite the difference in their expression patterns, both are induced in animal cap explants synergistically by Shh and Noggin, showing a conserved regulation in their activation mechanisms.
Collapse
Affiliation(s)
- T Takabatake
- Radioisotope Research Center, Nagoya University, Furo-cho, Chikusa-ku, 464-8602, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Yamada K, Takabatake T, Takeshima K. Isolation and characterization of three novel serine protease genes from Xenopus laevis. Gene 2000; 252:209-16. [PMID: 10903452 DOI: 10.1016/s0378-1119(00)00225-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Three novel cDNAs encoding serine proteases, that may play a role in early vertebrate development, have been identified from Xenopus laevis. These Xenopus cDNAs encode trypsin-like serine proteases and are designated Xenopus embryonic serine protease (Xesp)-1, Xesp-2, and XMT-SP1, a homolog of human MT-SP1. Xesp-1 is likely to be a secreted protein that functions in the extracellular space. Xesp-2 and XMP-SP1 are likely to be type II membrane proteases with multidomain structures. Xesp-2 has eight low density lipoprotein receptor (LDLR) domains and one scavenger receptor cysteine-rich (SRCR) domain, and XMT-SP1 has four LDLR domains and two CUB domains. The temporal expressions of these serine protease genes show distinct and characteristic patterns during embryogenesis, and they are differently distributed in adult tissues. Overexpression of Xesp-1 caused no significant defect in embryonic development, but overexpression of Xesp-2 or XMT-SP1 caused defective gastrulation or apoptosis, respectively. These results suggest that these proteases may play important roles during early Xenopus development, such as regulation of cell movement in gastrulae.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Apoptosis/drug effects
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Embryo, Nonmammalian/drug effects
- Embryo, Nonmammalian/enzymology
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- In Situ Hybridization
- In Situ Nick-End Labeling
- Isoenzymes/genetics
- Male
- Molecular Sequence Data
- RNA, Messenger/administration & dosage
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Serine Endopeptidases/genetics
- Tissue Distribution
- Xenopus laevis/embryology
- Xenopus laevis/genetics
Collapse
Affiliation(s)
- K Yamada
- Graduate School of Human Informatics, Nagoya University, Furo-cho, Chikusa-ku, 464-8601, Nagoya, Japan
| | | | | |
Collapse
|
10
|
Takabatake Y, Takabatake T, Takeshima K. Conserved and divergent expression of T-box genes Tbx2-Tbx5 in Xenopus. Mech Dev 2000; 91:433-7. [PMID: 10704879 DOI: 10.1016/s0925-4773(99)00329-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We report here the identification of four members of T-box family genes, Xltbx2-Xltbx5, in Xenopus. Two of them are probable pseudovariant genes of XTbx5 and ET, a putative Xenopus ortholog of Tbx3. We compared their expression patterns in both embryos and limbs. In embryos, expression of Xltbx2 and Xltbx3 showed novel diversities, such as Xltbx2 in the neural crest cells and Xltbx3 in the ventral spinal cord, together with mutual similarities in the following regions: dorsal retina, proctoderm, lateral line organ, cement gland and cranial ganglia. The patterns in limbs were highly conserved with mouse and chick orthologs, including the limb-type specific expression of Xltbx4 and Xltbx5. In addition, RT-PCR analysis showed that they are expressed weakly even in adult limbs as previously reported in the newt.
Collapse
Affiliation(s)
- Y Takabatake
- Graduate School of Human Informatics, Nagoya University, Chikusa, Nagoya, Japan
| | | | | |
Collapse
|