1
|
Khong H, Hattley KB, Suzuki Y. The BTB transcription factor, Abrupt, acts cooperatively with Chronologically inappropriate morphogenesis (Chinmo) to repress metamorphosis and promotes leg regeneration. Dev Biol 2024; 509:70-84. [PMID: 38373692 DOI: 10.1016/j.ydbio.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Many insects undergo the process of metamorphosis when larval precursor cells begin to differentiate to create the adult body. The larval precursor cells retain stem cell-like properties and contribute to the regenerative ability of larval appendages. Here we demonstrate that two Broad-complex/Tramtrack/Bric-à-brac Zinc-finger (BTB) domain transcription factors, Chronologically inappropriate morphogenesis (Chinmo) and Abrupt (Ab), act cooperatively to repress metamorphosis in the flour beetle, Tribolium castaneum. Knockdown of chinmo led to precocious development of pupal legs and antennae. We show that although topical application of juvenile hormone (JH) prevents the decrease in chinmo expression in the final instar, chinmo and JH act in distinct pathways. Another gene encoding the BTB domain transcription factor, Ab, was also necessary for the suppression of broad (br) expression in T. castaneum in a chinmo RNAi background, and simultaneous knockdown of ab and chinmo led to the precocious onset of metamorphosis. Furthermore, knockdown of ab led to the loss of regenerative potential of larval legs independently of br. In contrast, chinmo knockdown larvae exhibited pupal leg regeneration when a larval leg was ablated. Taken together, our results show that both ab and chinmo are necessary for the maintenance of the larval tissue identity and, apart from its role in repressing br, ab acts as a crucial regulator of larval leg regeneration. Our findings indicate that BTB domain proteins interact in a complex manner to regulate larval and pupal tissue homeostasis.
Collapse
Affiliation(s)
- Hesper Khong
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA, 02481, USA
| | - Kayli B Hattley
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA, 02481, USA
| | - Yuichiro Suzuki
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA, 02481, USA.
| |
Collapse
|
2
|
Saito M, Fujimoto S, Kawasaki H. Ecdysone and gene expressions for chromatin remodeling, histone modification, and Broad Complex in relation to pupal commitment in Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22076. [PMID: 38288490 DOI: 10.1002/arch.22076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/28/2023] [Accepted: 12/08/2023] [Indexed: 02/01/2024]
Abstract
In the present study, we tried to clarify when and how pupal commitment (PT) better to use PC occurs and what is involved in the PT of Bombyx mori. To clarify this, we examined the responsiveness of a wing disc to ecdysone, referring to metamorphosis-related BR-C, development-related Myc and Wnt, and chromatin remodeling-related genes at around the predicted PT stage of the Bombyx wing disc. Wing disc responsiveness to juvenile hormone (JH) and ecdysone was examined using Methoprene and 20-hydroxyecdysone (20E) in vitro. The body weight of B. mori increased after the last larval ecdysis, peaked at Day 5 of the fifth larval instar (D5L5), and then decreased. The responsiveness of the wing disc to JH decreased after the last larval ecdysis up to D3L5. Bmbr-c (the Broad Complex of B. mori) showed enhanced expression in D4L5 wing discs with 20E treatment. Some chromatin remodeler and histone modifier genes (Bmsnr1, Bmutx, and Bmtip60) showed upregulation after being cultured with 20E in D4L5 wing discs. A low concentration of 20E is suggested to induce responsiveness to 20E in D4L5 wing discs. Bmbr-c, Bmsnr1, Bmutx, and Bmtip60 were upregulated after being cultured with a low concentration of 20E in D4L5 wing discs. The expression of Bmmyc and Bmwnt1 did not show a change after being cultured with or without 20E in D4L5 wing discs, while enhanced expression was observed with 20E in D5L5 wing discs. From the present results, we concluded that PT of the wing disc of B. mori occurred beginning on D4L5 with the secretion of low concentrations of ecdysteroids. Bmsnr1, Bmutx, Bmtip60, and BR-C are also involved.
Collapse
Affiliation(s)
- Maki Saito
- Department of Bioproductive Science, Faculty of Agriculture, Takasaki University of Health and Welfare, Gunma, Japan
| | - Shota Fujimoto
- Department of Bioproductive Science, Faculty of Agriculture, Takasaki University of Health and Welfare, Gunma, Japan
| | - Hideki Kawasaki
- Department of Bioproductive Science, Faculty of Agriculture, Takasaki University of Health and Welfare, Gunma, Japan
- Faculty of Agriculture, Utsunomiya University, Tochigi, Japan
| |
Collapse
|
3
|
Wang P, Cui Q, Wang X, Liu Y, Zhang Y, Huang X, Jiang S, Jiang M, Bi L, Li B, Wei W, Pan Z. The inhibition of ecdysone signal pathway was the key of pyriproxyfen poisoning for silkworm, Bombyx mori. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 189:105307. [PMID: 36549814 DOI: 10.1016/j.pestbp.2022.105307] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/09/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Pyriproxyfen is a juvenile hormone-like pesticide. Once intake occurs, it leads to a series of poisoning characters consequences in silkworm, Bombyx mori (ID: 7091, Lepidoptera), such as non- cocooning, non-pupation, production of low-active eggs, and extended stages. However, the poisoning mechanism is still unclear. Here, silkworms were fed mulberry leaves soaked with different pyriproxyfen concentrations, and the heads were dissected for transcriptome analysis, while the hemolymph was used for determinations of ecdysone and juvenile hormone titers. As a result, after conjoint analysis of 3 feeding groups and a control group, 555 differentially expressed genes (DEGs) were obtained, which were mainly involved in hormone metabolism, glycometabolism and protein metabolism. Meanwhile, 119 genes were significantly correlated with the pyriproxyfen concentrations, and they were mainly involved in drug metabolism and glycometabolism. The ecdysone titers in several feeding groups were significantly lower than those of the control group, while juvenile hormone was not detected in all groups, including the control and feeding groups. Correspondingly, due to activation of the juvenile hormone signaling pathway by pyriproxyfen, key genes in the ecdysone synthesis pathway were downregulated, and a large number of downstream genes were up- or downregulated. In addition, nearly all genes in the detoxification pathway were upregulated. These results suggested that, affected by the juvenile hormone signaling pathway, ecdysone titers decreased and further affected a series of downstream processes, and this was the key reason for pyriproxyfen poisoning in silkworm, B. mori, which could lay a foundation for the study of pyriproxyfen resistance in silkworm.
Collapse
Affiliation(s)
- Pingyang Wang
- Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Nanning, Guangxi 530007, PR China.
| | - Qiuying Cui
- Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Nanning, Guangxi 530007, PR China
| | - Xia Wang
- Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Nanning, Guangxi 530007, PR China
| | - Yanwei Liu
- Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Nanning, Guangxi 530007, PR China
| | - Yuli Zhang
- Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Nanning, Guangxi 530007, PR China
| | - Xuhua Huang
- Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Nanning, Guangxi 530007, PR China
| | - Shidong Jiang
- Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Nanning, Guangxi 530007, PR China
| | - Mangui Jiang
- Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Nanning, Guangxi 530007, PR China
| | - Lihui Bi
- Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Nanning, Guangxi 530007, PR China
| | - Biao Li
- Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Nanning, Guangxi 530007, PR China
| | - Wei Wei
- Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Nanning, Guangxi 530007, PR China
| | - Zhixin Pan
- Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Nanning, Guangxi 530007, PR China.
| |
Collapse
|
4
|
Sun YY, Fu DY, Liu B, Wang LJ, Chen H. Roles of Krüppel Homolog 1 and Broad-Complex in the Development of Dendroctonus armandi (Coleoptera: Scolytinae). Front Physiol 2022; 13:865442. [PMID: 35464080 PMCID: PMC9019567 DOI: 10.3389/fphys.2022.865442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
In insects, metamorphosis is controlled by juvenile hormone (JH) and 20-hydroxyecdysone (20E). Krüppel homolog 1 (Kr-h1), a key JH-early inducible gene, is responsible for the suppression of metamorphosis and the regulation of the Broad-Complex (Br-C) gene, which is induced by 20E and functions as a “pupal specifier”. In this study, we identified and characterized the expression patterns and tissue distribution of DaKr-h1 and DaBr-C at various developmental stages of Dendroctonus armandi. The expression of the two genes was induced by JH analog (JHA) methoprene and 20E, and their functions were investigated by RNA interference. DaKr-h1 and DaBr-C were predominantly expressed in the heads of larvae and were significantly downregulated during the molting stage. In contrast, the DaKr-h1 transcript level was highest in the adult anterior midgut. DaBr-C was mainly expressed in female adults, with the highest transcript levels in the ovaries. In the larval and pupal stages, both JHA and 20E significantly induced DaKr-h1, but only 20E significantly induced DaBr-C, indicating the importance of hormones in metamorphosis. DaKr-h1 knockdown in larvae upregulated DaBr-C expression, resulting in precocious metamorphosis from larvae to pupae and the formation of miniature pupae. DaKr-h1 knockdown in pupae suppressed DaBr-C expression, increased emergence, caused abnormal morphology, and caused the formation of small-winged adults. These results suggest that DaKr-h1 is required for the metamorphosis of D. armandi. Our findings provide insight into the roles of DaKr-h1 and DaBr-C in JH-induced transcriptional repression and highlight DaKr-h1 as a potential target for metamorphosis suppression in D. armandi.
Collapse
Affiliation(s)
- Ya-Ya Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Dan-Yang Fu
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Bin Liu
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Lin-Jun Wang
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Hui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- *Correspondence: Hui Chen,
| |
Collapse
|
5
|
Girón-Calva PS, Lopez C, Albacete A, Albajes R, Christou P, Eizaguirre M. β-carotene and Bacillus thuringiensis insecticidal protein differentially modulate feeding behaviour, mortality and physiology of European corn borer (Ostrinia nubilalis). PLoS One 2021; 16:e0246696. [PMID: 33591990 PMCID: PMC7886157 DOI: 10.1371/journal.pone.0246696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/23/2021] [Indexed: 11/18/2022] Open
Abstract
Maize with enhanced β-carotene production was engineered to counteract pervasive vitamin A deficiency in developing countries. Second-generation biofortified crops are being developed with additional traits that confer pest resistance. These include crops that can produce Bacillus thuringiensis Berliner (Bt) insecticidal proteins. Currently, it is unknown whether β-carotene can confer fitness benefits through to insect pests, specifically through altering Ostrinia nubilalis foraging behaviour or development in the presence of Bt insecticidal toxin. Therefore the effects of dietary β-carotene plus Bt insecticidal protein on feeding behaviour, mortality, and physiology in early and late instars of O. nubilalis larvae were investigated. The results of two-choice experiments showed that irrespective of β-carotene presence, at day five 68%-90% of neonates and 69%-77% of fifth-instar larvae avoided diets with Cry1A protein. Over 65% of neonate larvae preferred to feed on diets with β-carotene alone compared to 39% of fifth-instar larvae. Higher mortality (65%-97%) in neonates fed diets supplemented with β-carotene alone and in combination with Bt protein was found, whereas <36% mortality was observed when fed diets without supplemented β-carotene or Bt protein. Diets with both β-carotene and Bt protein extended 25 days the larval developmental duration from neonate to fifth instar (compared to Bt diets) but did not impair larval or pupal weight. Juvenile hormone and 20-hydroxyecdysone regulate insect development and their levels were at least 3-fold higher in larvae fed diets with β-carotene for 3 days. Overall, these results suggest that the effects of β-carotene and Bt protein on O. nubilalis is dependent on larval developmental stage. This study is one of the first that provides insight on how the interaction of novel traits may modulate crop susceptibility to insect pests. This understanding will in turn inform the development of crop protection strategies with greater efficacy.
Collapse
Affiliation(s)
- Patricia Sarai Girón-Calva
- Department of Plant Production and Forestry Sciences, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Carmen Lopez
- Department of Plant Production and Forestry Sciences, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Alfonso Albacete
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, Murcia, Spain
| | - Ramon Albajes
- Department of Plant Production and Forestry Sciences, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Paul Christou
- Department of Plant Production and Forestry Sciences, University of Lleida-Agrotecnio Center, Lleida, Spain
- ICREA, Catalan Institute for Research and Advanced Studies, Barcelona, Spain
| | - Matilde Eizaguirre
- Department of Plant Production and Forestry Sciences, University of Lleida-Agrotecnio Center, Lleida, Spain
- * E-mail:
| |
Collapse
|
6
|
Riddiford LM. Rhodnius, Golden Oil, and Met: A History of Juvenile Hormone Research. Front Cell Dev Biol 2020; 8:679. [PMID: 32850806 PMCID: PMC7426621 DOI: 10.3389/fcell.2020.00679] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Juvenile hormone (JH) is a unique sesquiterpenoid hormone which regulates both insect metamorphosis and insect reproduction. It also may be utilized by some insects to mediate polyphenisms and other life history events that are environmentally regulated. This article details the history of the research on this versatile hormone that began with studies by V. B. Wigglesworth on the "kissing bug" Rhodnius prolixus in 1934, through the discovery of a natural source of JH in the abdomen of male Hyalophora cecropia moths by C. M. Williams that allowed its isolation ("golden oil") and identification, to the recent research on its receptor, termed Methoprene-tolerant (Met). Our present knowledge of cellular actions of JH in metamorphosis springs primarily from studies on Rhodnius and the tobacco hornworm Manduca sexta, with recent studies on the flour beetle Tribolium castaneum, the silkworm Bombyx mori, and the fruit fly Drosophila melanogaster contributing to the molecular understanding of these actions. Many questions still need to be resolved including the molecular basis of competence to metamorphose, differential tissue responses to JH, and the interaction of nutrition and other environmental signals regulating JH synthesis and degradation.
Collapse
Affiliation(s)
- Lynn M Riddiford
- Department of Biology, Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| |
Collapse
|
7
|
Chafino S, Ureña E, Casanova J, Casacuberta E, Franch-Marro X, Martín D. Upregulation of E93 Gene Expression Acts as the Trigger for Metamorphosis Independently of the Threshold Size in the Beetle Tribolium castaneum. Cell Rep 2020; 27:1039-1049.e2. [PMID: 31018122 DOI: 10.1016/j.celrep.2019.03.094] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/25/2019] [Accepted: 03/25/2019] [Indexed: 11/19/2022] Open
Abstract
Body size in holometabolous insects is determined by the size at which the juvenile larva undergoes metamorphosis to the pupal stage. To undergo larva-pupa transition, larva must reach a critical developmental checkpoint, the threshold size (TS); however, the molecular mechanisms through which the TS cues this transition remain to be fully characterized. Here, we use the flour beetle Tribolium castaneum to characterize the molecular mechanisms underlying entry into metamorphosis. We found that T. castaneum reaches a TS at the beginning of the last larval instar, which is associated with the downregulation of TcKr-h1 and the upregulation of TcE93 and TcBr-C. Unexpectedly, we found that while there is an association between TS and TcE93 upregulation, it is the latter that constitutes the molecular trigger for metamorphosis initiation. In light of our results, we evaluate the interactions that control the larva-pupa transition and suggest alternative models.
Collapse
Affiliation(s)
- Silvia Chafino
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Enric Ureña
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Jordi Casanova
- Institut de Biologia Molecular de Barcelona (CSIC), Baldiri Reixac, 4, 08028 Barcelona, Spain; Institut de Recerca Biomèdica de Barcelona, (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Elena Casacuberta
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Xavier Franch-Marro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | - David Martín
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| |
Collapse
|
8
|
Ding N, Wang Z, Geng N, Zou H, Zhang G, Cao C, Li X, Zou C. Silencing Br-C impairs larval development and chitin synthesis in Lymantria dispar larvae. JOURNAL OF INSECT PHYSIOLOGY 2020; 122:104041. [PMID: 32126216 DOI: 10.1016/j.jinsphys.2020.104041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
In insects, 20-hydroxyecdysone (20E) mediates developmental transitions and regulates molting processes through activation of a series of transcription factors. Broad-Complex (Br-C), a vital gene in the 20E signalling pathway, plays crucial roles during insect growth processes. However, whether Br-C affects chitin synthesis in insects remains unclear. In the present study, the Br-C gene from Lymantria dispar, a notorious defoliator of forestry, was identified based on transcriptome data, and subjected to bioinformatic analysis. The regulatory functions of LdBr-C in chitin synthesis and metabolism in L. dispar larvae were analysed by RNA interference (RNAi). The full-length LdBr-C gene (1431 bp) encodes a 477 amino acid (aa) polypeptide containing a common BRcore region (391 aa) at the N-terminus and a C-terminal Zinc finger domain (56 aa) harbouring two characteristic C2H2 motifs (CXXC and HXXXXH). Phylogenetic analyses showed that LdBr-C shares highest homology and identity with Br-C isoform 7 (83.12%) of Helicoverpa armigera. Expression profiles indicate that LdBr-C was expressed throughout larval and pupal stages, and highly expressed in prepupal and pupal stages. Furthermore, LdBr-C expression was strongly induced by exogenous 20E, and suppressed dramatically after application of dsLdBr-C. Bioassay results showed that knockdown of LdBr-C caused larval developmental deformity, significant weight loss, and a mortality rate of 67.18%. Knockdown of LdBr-C significantly down-regulated transcription levels of eight critical genes (LdTre1, LdTre2, LdG6PI, LdUAP, LdCHS1, LdCHS2, LdTPS and LdCHT) related to chitin synthesis and metabolism, thereby lowering the chitin content in the midgut and epidermis. Our findings demonstrate that Br-C knockdown impairs larval development and chitin synthesis in L. dispar.
Collapse
Affiliation(s)
- Nan Ding
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Zhiying Wang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Nannan Geng
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Hang Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Guocai Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Chuanwang Cao
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Xingpeng Li
- Jilin Province Academy of Forestry Sciences, PR China
| | - Chuanshan Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
9
|
Abstract
This autobiographical article describes the research career of Lynn M. Riddiford from its early beginnings in a summer program for high school students at Jackson Laboratory to the present "retirement" at the Friday Harbor Laboratories. The emphasis is on her forays into many areas of insect endocrinology, supported by her graduate students and postdoctoral associates. The main theme is the hormonal regulation of metamorphosis, especially the roles of juvenile hormone (JH). The article describes the work of her laboratory first in the elucidation of the endocrinology of the tobacco hornworm, Manduca sexta, and later in the molecular aspects of the regulation of cuticular and pigment proteins and of the ecdysone-induced transcription factor cascade during molting and metamorphosis. Later studies utilized Drosophila melanogaster to answer further questions about the actions of JH.
Collapse
Affiliation(s)
- Lynn M Riddiford
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington 98250, USA;
| |
Collapse
|
10
|
Xu QY, Meng QW, Deng P, Fu KY, Guo WC, Li GQ. Impairment of pupation by RNA interference-aided knockdown of Broad- Complex gene in Leptinotarsa decemlineata (Say). BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:659-668. [PMID: 30704539 DOI: 10.1017/s0007485318001050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dietary delivery of bacterially expressed double-stranded RNA (dsRNA) has a great potential for management of Leptinotarsa decemlineata. An important first step is to discover possible RNA-interference (RNAi)-target genes effective against larvae, especially the old larvae. In the present paper, five putative Broad-Complex (BrC) cDNAs (Z1-Z4, and Z6) were identified in L. decemlineata. The expression of the five LdBrC isoforms was suppressed by juvenile hormone signaling, whereas the transcription was upregulated by 20-hydroxyecdysone signaling at the fourth (final) instar larval stage. Feeding of bacterially expressed dsBrC (derived from a common fragment of the five LdBrC variants) in the third- and fourth-instar larvae successfully knocked down the target mRNAs. For the fourth-instar LdBrC RNAi hypomorphs, they had a higher larval mortality compared with the controls. Moreover, most dsBrC-fed beetles did not pupate normally. After removal of the apolysed larval cuticle, a miniature adult was found. The adult head, compound eyes, prothorax, mesothorax, metathorax were found on the dorsal view. Distinct adult cuticle pigmentation was seen on the prothorax. The mouthparts, forelegs, midlegs, and hindlegs could be observed on the ventral view of the miniature adults. For the third-instar LdBrC RNAi specimens, around 20% moribund beetles remained as prepupae and finally died. Therefore, LdBrC is among the most attractive candidate genes for RNAi to control the fourth-instar larvae in L. decemlineata.
Collapse
Affiliation(s)
- Q-Y Xu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Q-W Meng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - P Deng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - K-Y Fu
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - W-C Guo
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - G-Q Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Zhang J, Liu X, Liu Y, An Y, Fang H, Michaud JP, Zhang H, Li Y, Zhang Q, Li Z. Molecular Characterization of Primary Juvenile Hormone Responders Methoprene-Tolerant (Met) and Krüppel Homolog 1 (Kr-h1) in Grapholita molesta (Lepidoptera: Tortricidae) with Clarification of Their Roles in Metamorphosis and Reproduction. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2369-2380. [PMID: 31173097 DOI: 10.1093/jee/toz155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Methoprene-tolerant (Met) is a putative JH intracellular receptor that transduces JH signal by activation of the inducible Krüppel homolog 1 (Kr-h1). We analyzed the gene sequences of Met and Kr-h1 and their patterns of expression in Grapholita molesta (Busck) immature and adult stages in order to better understand the roles of these primary JH responders in regulating the metamorphosis and reproduction of this global pest of fruit crops. The deduced amino acid sequences of both GmMet and GmKr-h1 were highly homologous to those of other Lepidoptera, especially the cotton bollworm, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Peak expression of GmMet occurred during the last 3 to 5 d of the final instar, followed by that of GmKr-h1, in the last 3 d of final instar. Similar patterns of GmMet and GmKr-h1 expression were detected across various tissue types in the fifth-instar larvae, with the highest expression observed in the head, followed by the epidermis, and the fat body. When expression of GmMet and GmKr-h1 was knocked down via dsRNA injection in the fifth instar, the results were increased larval mortality, abnormal pupation, delayed pupal duration, reduced adult emergence, extended preoviposition period, and reduced fecundity. We infer that both GmMet and GmKr-h1 participated in regulation of metamorphosis and reproduction in G. molesta, the former acting upstream of the latter, and could present biorational targets for novel pest control compounds.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yichen Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yueqing An
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Haibo Fang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - J P Michaud
- Department of Entomology, Kansas State University, Agricultural Research Station-Hays, Hays, KS
| | - Huaijiang Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
- Institute of Pomology, Chinese Academy of Agricultural Sciences, Liaoning, China
| | - Yisong Li
- The College of Agronomy, Xinjiang Agricultural University, Xinjiang, China
| | - Qingwen Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Liu X, Zhang S, Shen ZJ, Liu Y, Li Z, Liu X. Vrille is required for larval moulting and metamorphosis of Helicoverpa armigera (Lepidoptera: Noctuidae). INSECT MOLECULAR BIOLOGY 2019; 28:355-371. [PMID: 30485565 DOI: 10.1111/imb.12557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vrille (Vri), a basic leucine zipper transcription factor, plays important roles in insect circadian clock regulation, tracheal development, proliferation, flight and metamorphosis. Here, Helicoverpa armigera was used as a model to investigate the role of Vri in larval moulting and metamorphosis. Sequence analysis results revealed that H. armigera Vri (HaVri) shares a high amino acid identity with other Lepidoptera Vri homologues. Spatial-temporal expression pattern data showed that HaVri expression was highly abundant in larval moulting and metamorphosis stages and was mainly expressed in the midgut and Malpighian tubule during metamorphosis. HaVri knockdown by RNA interference in the fourth-instar larvae prevented larval moulting, and HaVri knockdown in the fifth-instar larvae suppressed midgut remodelling and delayed or blocked metamorphosis. Further studies confirmed that 20-hydroxyecdysone (20E) activated HaVri expression via its heterodimer receptors, ecdysone receptor (EcRB1) and ultraspiracle protein (USP1), whereas methoprene [juvenile hormone analogue (JHA)] promoted HaVri expression via its intracellular receptor methoprene-tolerant (Met1). However, 20E and JHA can counteract each other in the activation of HaVri expression. Together, the present results suggested that HaVri was involved in larval moulting and metamorphosis and was regulated by 20E and JHA in H. armigera.
Collapse
Affiliation(s)
- X Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - S Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Z J Shen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Y Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Z Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - X Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| |
Collapse
|
13
|
Ma H, Abbas MN, Zhang K, Hu X, Xu M, Liang H, Kausar S, Yang L, Cui H. 20-Hydroxyecdysone regulates the transcription of the lysozyme via Broad-Complex Z2 gene in silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 94:66-72. [PMID: 30716346 DOI: 10.1016/j.dci.2019.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Broad-Complex Z2 (Br-C Z2) is an ecdysone inducible transcription factor that regulates physiological, innate immune and developmental events in insects. Here, we identified an orthologue of Br-C Z2 from silkworm, Bombyx mori (BmBr-C Z2) to study its involvement in immune responses. The quantitative real-time PCR analysis revealed that BmBr-C Z2 was expressed ubiquitously in all tested tissues under normal physiological conditions. Further, developmental profile displayed that BmBr-C Z2 expression was detectable in different developmental stages, however the gene's expression was highest in the molting and pre-pupal stages. Administration of 20-hydroxyecdysone (20E) enhanced the expression levels of BmBr-C Z2 in hemocytes. The challenge with pathogens and pathogen associated molecular patterns (PAMPs) also upregulated the mRNA levels of BmBr-C Z2 in hemocytes when compared with the control. By contrast, the ectopic expression of BmBr-C Z2 remarkably increased the production of antimicrobial peptides, while the knock-down of this gene by double stranded RNA decreased their production. Dual-luciferase assay exhibited that BmBr-C Z2 induced the expression of lysozyme by directly binding to its promoter region. The treatment of Escherichia coli following the knock-down of BmBr-C Z2 strongly reduced the survival rate of silkworm larvae. These results suggest that BmBr-C Z2 plays an important biological role in the innate immune responses of silkworm by regulating immune-related genes.
Collapse
Affiliation(s)
- Hanxiu Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China; Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, 400716, Chongqing, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China; Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, 400716, Chongqing, China
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China; Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, 400716, Chongqing, China
| | - Xiaosong Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China; Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, 400716, Chongqing, China
| | - Man Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China; Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, 400716, Chongqing, China
| | - Hanghua Liang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China; Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, 400716, Chongqing, China
| | - Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China; Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, 400716, Chongqing, China
| | - Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China; Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, 400716, Chongqing, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China; Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, 400716, Chongqing, China
| |
Collapse
|
14
|
Riddiford LM, Truman JW, Nern A. Juvenile hormone reveals mosaic developmental programs in the metamorphosing optic lobe of Drosophila melanogaster. Biol Open 2018; 7:bio.034025. [PMID: 29618455 PMCID: PMC5936066 DOI: 10.1242/bio.034025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The development of the adult optic lobe (OL) of Drosophila melanogaster is directed by a wave of ingrowth of the photoreceptors over a 2-day period at the outset of metamorphosis, which is accompanied by the appearance of the pupal-specific transcription factor Broad-Z3 (Br-Z3) and expression of early drivers in OL neurons. During this time, there are pulses of ecdysteroids that time the metamorphic events. At the outset, the transient appearance of juvenile hormone (JH) prevents precocious development of the OL caused by the ecdysteroid peak that initiates pupariation, but the artificial maintenance of JH after this time misdirects subsequent development. Axon ingrowth, Br-Z3 appearance and the expression of early drivers were unaffected, but aspects of later development such as the dendritic expansion of the lamina monopolar neurons and the expression of late drivers were suppressed. This effect of the exogenous JH mimic (JHM) pyriproxifen is lost by 24 h after pupariation. Part of this effect of JHM is due to its suppression of the appearance of ecdysone receptor EcR-B1 that occurs after pupation and during early adult development. Summary: Developmental gradients and steroid surges interact during optic lobe development. Early, ectopic juvenile hormone treatment alters steroid receptor levels, suppresses late events but not early events linked to developmental gradients.
Collapse
Affiliation(s)
- Lynn M Riddiford
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| |
Collapse
|
15
|
Gouveia D, Bonneton F, Almunia C, Armengaud J, Quéau H, Degli-Esposti D, Geffard O, Chaumot A. Identification, expression, and endocrine-disruption of three ecdysone-responsive genes in the sentinel species Gammarus fossarum. Sci Rep 2018; 8:3793. [PMID: 29491422 PMCID: PMC5830573 DOI: 10.1038/s41598-018-22235-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/14/2018] [Indexed: 11/17/2022] Open
Abstract
Taking advantage of a large transcriptomic dataset recently obtained in the sentinel crustacean amphipod Gammarus fossarum, we developed an approach based on sequence similarity and phylogenetic reconstruction to identify key players involved in the endocrine regulation of G. fossarum. Our work identified three genes of interest: the nuclear receptors RXR and E75, and the regulator broad-complex (BR). Their involvement in the regulation of molting and reproduction, along with their sensitivity to chemical contamination were experimentally assessed by studying gene expression during the female reproductive cycle, and after laboratory exposure to model endocrine disrupting compounds (EDCs): pyriproxyfen, tebufenozide and piperonyl butoxide. RXR expression suggested a role of this gene in ecdysis and post-molting processes. E75 presented two expression peaks that suggested a role in vitellogenesis, and molting. BR expression showed no variation during molting/reproductive cycle. After exposure to the three EDCs, a strong inhibition of the inter-molt E75 peak was observed with tebufenozide, and an induction of RXR after exposure to pyriproxyfen and piperonyl butoxide. These results confirm the implication of RXR and E75 in hormonal regulation of female reproductive cycles in G. fossarum and their sensitivity towards EDCs opens the possibility of using them as specific endocrine disruption biomarkers.
Collapse
Affiliation(s)
- D Gouveia
- Irstea, UR RiverLy, Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, 5 rue de la Doua CS 20244, F-69625, Villeurbanne, France
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols sur Cèze, France
| | - F Bonneton
- IGFL, Université de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie, F-69364, Lyon, France
| | - C Almunia
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols sur Cèze, France
| | - J Armengaud
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols sur Cèze, France
| | - H Quéau
- Irstea, UR RiverLy, Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, 5 rue de la Doua CS 20244, F-69625, Villeurbanne, France
| | - D Degli-Esposti
- Irstea, UR RiverLy, Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, 5 rue de la Doua CS 20244, F-69625, Villeurbanne, France
| | - O Geffard
- Irstea, UR RiverLy, Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, 5 rue de la Doua CS 20244, F-69625, Villeurbanne, France
| | - A Chaumot
- Irstea, UR RiverLy, Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, 5 rue de la Doua CS 20244, F-69625, Villeurbanne, France.
| |
Collapse
|
16
|
Roy A, George S, Palli SR. Multiple functions of CREB-binding protein during postembryonic development: identification of target genes. BMC Genomics 2017; 18:996. [PMID: 29284404 PMCID: PMC5747157 DOI: 10.1186/s12864-017-4373-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/08/2017] [Indexed: 11/25/2022] Open
Abstract
Background Juvenile hormones (JH) and ecdysteroids control postembryonic development in insects. They serve as valuable targets for pest management. Hence, understanding the molecular mechanisms of their action is of crucial importance. CREB-binding protein (CBP) is a universal transcriptional co-regulator. It controls the expression of several genes including those from hormone signaling pathways through co-activation of many transcription factors. However, the role of CBP during postembryonic development in insects is not well understood. Therefore, we have studied the role of CBP in postembryonic development in Tribolium, a model coleopteran insect. Results CBP is ubiquitously expressed in the red flour beetle, Tribolium castaneum. RNA interference (RNAi) mediated knockdown of CBP resulted in a decrease in JH induction of Kr-h1 gene expression in Tribolium larvae and led to a block in their development. Moreover, the injection of CBP double-stranded RNA (dsRNA) showed lethal phenotypes within 8 days of injection. RNA-seq and subsequent differential gene expression analysis identified CBP target genes in Tribolium. Knockdown of CBP caused a decrease in the expression of 1306 genes coding for transcription factors and other proteins associated with growth and development. Depletion of CBP impaired the expression of several JH response genes (e.g., Kr-h1, Hairy, early trypsin) and ecdysone response genes (EcR, E74, E75, and broad complex). Further, GO enrichment analyses of the downregulated genes showed enrichment in different functions including developmental processes, pigmentation, anatomical structure development, regulation of biological and cellular processes, etc. Conclusion These data suggest diverse but crucial roles for CBP during postembryonic development in the coleopteran model insect, Tribolium. It can serve as a target for RNAi mediated pest management of this stored product pest. Electronic supplementary material The online version of this article (10.1186/s12864-017-4373-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amit Roy
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY, 40546, USA.,Present address, Faculty of Forestry and Wood Sciences, EXTEMIT-K, Czech University of Life Sciences, Kamýcká 1176, Prague 6, 165 21, Suchdol, Czech Republic
| | - Smitha George
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY, 40546, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
17
|
Yuan S, Huang W, Geng L, Beerntsen BT, Song H, Ling E. Differentiation of lepidoptera scale cells from epidermal stem cells followed by ecdysone-regulated DNA duplication and scale secreting. Cell Cycle 2017; 16:2156-2167. [PMID: 28933984 DOI: 10.1080/15384101.2017.1376148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Integuments are the first line to protect insects from physical damage and pathogenic infection. In lepidopteran insects, they undergo distinct morphology changes such as scale formation during metamorphosis. However, we know little about integument development and scale formation during this stage. Here, we use the silkworm, Bombyx mori, as a model and show that stem cells in the integument of each segment, but not intersegmental membrane, divide into two scale precursor cells during the spinning stage. In young pupae, the scale precursor cell divides again. One of the daughter cells becomes a mature scale-secreting cell that undergoes several rounds of DNA duplication and the other daughter cell undergoes apoptosis later on. This scale precursor cell division is crucial to the development and differentiation of scale-secreting cells because scale production can be blocked after treatment with the cell division inhibitor paclitaxel. Subsequently, the growth of scale-secreting cells is under the control of 20-hydroxyecdysone but not juvenile hormone since injection of 20-hydroxyecdysone inhibited scale formation. Further work demonstrated that 20-hydroxyecdysone injection inhibits DNA duplication in scale-secreting cells while the expression of scale-forming gene ASH1 was down-regulated by BR-C Z2. Therefore, this research demonstrates that the scale cells of the silkworm develops through stem cell division prior to pupation and then another wave of cell division differentiates these cells into scale secreting cells soon after entrance into the pupal stage. Additionally, DNA duplication and scale production in the scale-secreting cells were found to be under the regulation of 20-hydroxyecdysone.
Collapse
Affiliation(s)
- Shenglei Yuan
- a Key Laboratory of Insect Developmental and Evolutionary Biology , Institute of Plant Physiology and Ecology, Chinese Academy of Sciences , Shanghai , China.,b Department of Neurosciences , College of Life Sciences, Shanghai University , Shanghai , China
| | - Wuren Huang
- a Key Laboratory of Insect Developmental and Evolutionary Biology , Institute of Plant Physiology and Ecology, Chinese Academy of Sciences , Shanghai , China
| | - Lei Geng
- a Key Laboratory of Insect Developmental and Evolutionary Biology , Institute of Plant Physiology and Ecology, Chinese Academy of Sciences , Shanghai , China
| | - Brenda T Beerntsen
- c Department of Veterinary Pathobiology , University of Missouri , Columbia , MO , USA
| | - Hongsheng Song
- b Department of Neurosciences , College of Life Sciences, Shanghai University , Shanghai , China
| | - Erjun Ling
- a Key Laboratory of Insect Developmental and Evolutionary Biology , Institute of Plant Physiology and Ecology, Chinese Academy of Sciences , Shanghai , China
| |
Collapse
|
18
|
Suang S, Manaboon M, Singtripop T, Hiruma K, Kaneko Y, Tiansawat P, Neumann P, Chantawannakul P. Larval diapause termination in the bamboo borer, Omphisa fuscidentalis. PLoS One 2017; 12:e0174919. [PMID: 28369111 PMCID: PMC5378396 DOI: 10.1371/journal.pone.0174919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 03/17/2017] [Indexed: 11/18/2022] Open
Abstract
In insects, juvenile hormone (JH) and 20-hydroxyecdysone (20E) regulate larval growth and molting. However, little is known about how this cooperative control is terminating larval diapause especially in the bamboo borer, Omphisa fuscidentalis. In both in vivo and in vitro experiments, we here measured the expression levels of genes which were affected by juvenile hormone analogue (JHA: S-methoprene) and 20-hydroxyecdysone (20E) in diapausing O. fuscidentalis larvae. Corresponding mRNA expression changes in the subesophageal ganglion (SG) and prothoracic gland (PG) were evaluated using qRT-PCR. The data showed similar response patterns of JH receptor gene (OfMet), diapause hormone gene (OfDH-PBAN), ecdysone receptor genes (OfEcR-A and OfEcR-B1) and ecdysone inducible genes (OfBr-C, OfE75A, OfE75B, OfE75C and OfHR3). JHA induced the expressions of OfMet and OfDH-PBAN in both SG and PG, whereas ecdysone receptor genes and ecdysone inducible genes were induced by JHA only in PG. For 20E treatment group, expressions of ecdysone receptor genes and ecdysone inducible genes in both SG and PG were increased by 20E injection. In addition, the in vitro experiments showed that OfMet and OfDH-PBAN were up-regulated by JHA alone, but ecdysone receptor genes and ecdysone inducible genes were up-regulated by JHA and 20E. However, OfMet and OfDH-PBAN in the SG was expressed faster than OfMet and OfDH-PBAN in the PG and the expression of ecdysone receptor genes and ecdysone inducible genes induced by JHA was much later than observed for 20E. These results indicate that JHA might stimulate the PG indirectly via factors (OfMet and OfDH-PBAN) in the SG, which might be a regulatory mechanism for larval diapause termination in O. fuscidentalis.
Collapse
Affiliation(s)
- Suphawan Suang
- Endocrinology Research Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Manaporn Manaboon
- Endocrinology Research Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Tippawan Singtripop
- Endocrinology Research Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Kiyoshi Hiruma
- Faculty of Agriculture and Life Sciences, Hirosaki University, Hirosaki, Japan
| | - Yu Kaneko
- Faculty of Agriculture and Life Sciences, Hirosaki University, Hirosaki, Japan
| | - Pimonrat Tiansawat
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Peter Neumann
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Panuwan Chantawannakul
- Endocrinology Research Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
19
|
Kumar S, Venkata P, Kim Y. Suppressive activity of a viral histone H4 against two host chromatin remodelling factors: lysine demethylase and SWI/SNF. J Gen Virol 2016; 97:2780-2796. [PMID: 27443988 DOI: 10.1099/jgv.0.000560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Histone H4, a nucleosome subunit in eukaryotes, plays crucial roles in DNA package and regulation of gene expression through covalent modification. A viral histone H4 encoded in Cotesia plutellae bracovirus (CpBV), a polydnavirus, is called CpBV-H4. It is highly homologous to other histone H4 proteins excepting 38 extra amino acid residues in the N terminus. CpBV-H4 can form octamer with other histone subunits and alter host gene expression. In this study, CpBV-H4 was transiently expressed in a natural host (Plutella xylostella) and its suppressive activity on host gene expression was evaluated by the suppressive subtractive hybridization (SSH) technique. The SSH targets down-regulated by CpBV-H4 were read with the 454 pyrosequencing platform and annotated using the genome of P. xylostella. The down-regulated genes (610 contigs) were annotated in most functional categories based on gene ontology. Among these SSH targets, 115 genes were functionally distinct, including two chromatin remodelling factors: a lysine-specific demethylase (Px-KDM) and a chromatin remodelling complex [Px-SWI/SNF (SWItch/Sucrose Non-Fermentable)]. Px-KDM was highly expressed in all tested tissues during the entire larval period. Suppression of Px-KDM expression by specific RNA interference (RNAi) significantly (P<0.05) reduced haemocyte nodule formation in response to immune challenge and impaired both larval and pupal development. Px-SWI/SNF was expressed in all developmental stages. Suppression of Px-SWI/SNF expression by RNAi reduced cellular immune response and interfered with adult metamorphosis. These results suggest that CpBV-H4 can alter host gene expression by interfering with chromatin modification and remodelling factors in addition to its direct epigenetic control activity.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Bioresource Sciences, Andong National University, Andong 36729, Republic of Korea
| | - Prasad Venkata
- Department of Bioresource Sciences, Andong National University, Andong 36729, Republic of Korea
| | - Yonggyun Kim
- Department of Bioresource Sciences, Andong National University, Andong 36729, Republic of Korea
| |
Collapse
|
20
|
Li Z, You L, Zeng B, Ling L, Xu J, Chen X, Zhang Z, Palli SR, Huang Y, Tan A. Ectopic expression of ecdysone oxidase impairs tissue degeneration in Bombyx mori. Proc Biol Sci 2016; 282:20150513. [PMID: 26041352 DOI: 10.1098/rspb.2015.0513] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Metamorphosis in insects includes a series of programmed tissue histolysis and remolding processes that are controlled by two major classes of hormones, juvenile hormones and ecdysteroids. Precise pulses of ecdysteroids (the most active ecdysteroid is 20-hydroxyecdysone, 20E), are regulated by both biosynthesis and metabolism. In this study, we show that ecdysone oxidase (EO), a 20E inactivation enzyme, expresses predominantly in the midgut during the early pupal stage in the lepidopteran model insect, Bombyx mori. Depletion of BmEO using the transgenic CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/RNA-guided Cas9 nucleases) system extended the duration of the final instar larval stage. Ubiquitous transgenic overexpression of BmEO using the Gal4/UAS system induced lethality during the larval-pupal transition. When BmEO was specifically overexpressed in the middle silk gland (MSG), degeneration of MSG at the onset of metamorphosis was blocked. Transmission electron microscope and LysoTracker analyses showed that the autophagy pathway in MSG is inhibited by BmEO ectopic expression. Furthermore, RNA-seq analysis revealed that the genes involved in autophagic cell death and the mTOR signal pathway are affected by overexpression of BmEO. Taken together, BmEO functional studies reported here provide insights into ecdysone regulation of tissue degeneration during metamorphosis.
Collapse
Affiliation(s)
- Zhiqian Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Lang You
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Baosheng Zeng
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Lin Ling
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Jun Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Xu Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Zhongjie Zhang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, University of Kentucky, S-225 Agriculture Science Center North, Lexington, KY 40546, USA
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Anjiang Tan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
21
|
Vea IM, Tanaka S, Shiotsuki T, Jouraku A, Tanaka T, Minakuchi C. Differential Juvenile Hormone Variations in Scale Insect Extreme Sexual Dimorphism. PLoS One 2016; 11:e0149459. [PMID: 26894583 PMCID: PMC4760703 DOI: 10.1371/journal.pone.0149459] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/01/2016] [Indexed: 11/29/2022] Open
Abstract
Scale insects have evolved extreme sexual dimorphism, as demonstrated by sedentary juvenile-like females and ephemeral winged males. This dimorphism is established during the post-embryonic development; however, the underlying regulatory mechanisms have not yet been examined. We herein assessed the role of juvenile hormone (JH) on the diverging developmental pathways occurring in the male and female Japanese mealybug Planococcus kraunhiae (Kuwana). We provide, for the first time, detailed gene expression profiles related to JH signaling in scale insects. Prior to adult emergence, the transcript levels of JH acid O-methyltransferase, encoding a rate-limiting enzyme in JH biosynthesis, were higher in males than in females, suggesting that JH levels are higher in males. Furthermore, male quiescent pupal-like stages were associated with higher transcript levels of the JH receptor gene, Methoprene-tolerant and its co-activator taiman, as well as the JH early-response genes, Krüppel homolog 1 and broad. The exposure of male juveniles to an ectopic JH mimic prolonged the expression of Krüppel homolog 1 and broad, and delayed adult emergence by producing a supernumeral pupal stage. We propose that male wing development is first induced by up-regulated JH signaling compared to female expression pattern, but a decrease at the end of the prepupal stage is necessary for adult emergence, as evidenced by the JH mimic treatments. Furthermore, wing development seems linked to JH titers as JHM treatments on the pupal stage led to wing deformation. The female pedomorphic appearance was not reflected by the maintenance of high levels of JH. The results in this study suggest that differential variations in JH signaling may be responsible for sex-specific and radically different modes of metamorphosis.
Collapse
Affiliation(s)
- Isabelle Mifom Vea
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- * E-mail:
| | - Sayumi Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | - Akiya Jouraku
- National Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Toshiharu Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Chieka Minakuchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
22
|
Deng H, Niu K, Zhang J, Feng Q. BmBR-C Z4 is an upstream regulatory factor of BmPOUM2 controlling the pupal specific expression of BmWCP4 in the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 66:42-50. [PMID: 26363295 DOI: 10.1016/j.ibmb.2015.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 09/07/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
20-hydroxyecdysone (20E)-induced expression of the wing disc cuticle protein gene BmWCP4 was mediated by the transcription factor BmPOUM2, which binds to the cis-response elements (CREs) of BmWCP4 gene in Bombyx mori. In this study we report the regulation of BmPOUM2. RT-PCR analysis indicated that in response to 20E, BmPOUM2 was expressed at higher levels in the wing discs during the pre-pupal and mid-pupal stages than other stages and the expression pattern of BmBR-C Z1, BmBR-C Z2 and BmBR-C Z4 was in tandem with the expression of BmPOUM2. BmBR-C Z4 was induced by 20E in the wing discs, whereas BmBR-C Z1 and BmBR-C Z2 were not. Three potential BR-C Z4 cis-response elements (CREs) were identified in the promoter region of BmPOUM2. The expression of BmPOUM2 mRNA and protein was increased by the over-expression of BmBR-C Z4 in BmN cells, which acted at the promoter of BmPOUM2. Electrophoretic mobility shift assay (EMSA) and the luciferase activity analysis under the control of wild-type and mutants of the BR-C Z4 CREs suggested that BmBR-C Z4 protein bound to the predicted BRC-Z4 CRE C (-684 ∼ -660). Taken together the data suggest that BmBR-C Z4 is a direct upstream regulator of BmPOUM2 and regulates the pupal-specific expression of BmWCP4 through BmPOUM2.
Collapse
Affiliation(s)
- Huimin Deng
- Laboratory of Molecular and Developmental Entomology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Kangkang Niu
- Laboratory of Molecular and Developmental Entomology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jialing Zhang
- Laboratory of Molecular and Developmental Entomology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qili Feng
- Laboratory of Molecular and Developmental Entomology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
23
|
Kayukawa T, Nagamine K, Ito Y, Nishita Y, Ishikawa Y, Shinoda T. Krüppel Homolog 1 Inhibits Insect Metamorphosis via Direct Transcriptional Repression of Broad-Complex, a Pupal Specifier Gene. J Biol Chem 2015; 291:1751-1762. [PMID: 26518872 DOI: 10.1074/jbc.m115.686121] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Indexed: 01/13/2023] Open
Abstract
The Broad-Complex gene (BR-C) encodes transcription factors that dictate larval-pupal metamorphosis in insects. The expression of BR-C is induced by molting hormone (20-hydroxyecdysone (20E)), and this induction is repressed by juvenile hormone (JH), which exists during the premature larval stage. Krüppel homolog 1 gene (Kr-h1) has been known as a JH-early inducible gene responsible for repression of metamorphosis; however, the functional relationship between Kr-h1 and repression of BR-C has remained unclear. To elucidate this relationship, we analyzed cis- and trans elements involved in the repression of BR-C using a Bombyx mori cell line. In the cells, as observed in larvae, JH induced the expression of Kr-h1 and concurrently suppressed 20E-induced expression of BR-C. Forced expression of Kr-h1 repressed the 20E-dependent activation of the BR-C promoter in the absence of JH, and Kr-h1 RNAi inhibited the JH-mediated repression, suggesting that Kr-h1 controlled the repression of BR-C. A survey of the upstream sequence of BR-C gene revealed a Kr-h1 binding site (KBS) in the BR-C promoter. When KBS was deleted from the promoter, the repression of BR-C was abolished. Electrophoresis mobility shift demonstrated that two Kr-h1 molecules bound to KBS in the BR-C promoter. Based on these results, we conclude that Kr-h1 protein molecules directly bind to the KBS sequence in the BR-C promoter and thereby repress 20E-dependent activation of the pupal specifier, BR-C. This study has revealed a considerable portion of the picture of JH signaling pathways from the reception of JH to the repression of metamorphosis.
Collapse
Affiliation(s)
- Takumi Kayukawa
- From the Insect Growth Regulation Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan,.
| | - Keisuke Nagamine
- From the Insect Growth Regulation Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan,; Laboratory of Applied Entomology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo 113-8657, Japan, and
| | - Yuka Ito
- From the Insect Growth Regulation Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Yoshinori Nishita
- Department of Biological Science and Center for Genome Dynamics, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yukio Ishikawa
- Laboratory of Applied Entomology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo 113-8657, Japan, and
| | - Tetsuro Shinoda
- From the Insect Growth Regulation Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| |
Collapse
|
24
|
Liu CY, Zhao WL, Wang JX, Zhao XF. Cyclin-dependent kinase regulatory subunit 1 promotes cell proliferation by insulin regulation. Cell Cycle 2015. [PMID: 26199131 DOI: 10.1080/15384101.2015.1053664] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cyclin-dependent kinase regulatory subunit 1 (CKS1) helps regulate the cell cycle to increase cell number. However, the hormonal regulation on CKS1 expression is not well understood. We report that CKS1 is involved in the promotion of cell proliferation with insulin regulation in the lepidopteran insect Helicoverpa armigera. CKS1 is expressed in various tissues during the larval feeding stage. CKS1 knockdown results in larval death, body weight decrease, pupation time delay, and small-sized pupa formation. The underlying mechanism involves the blocking of cell proliferation and the repression of gene expression in the insulin pathway after CKS1 knockdown. CKS1 overexpression in the epidermal cell line results in cell proliferation. The N45 amino acid asparagine in the CKS domain is essential for the function of CKS in cell proliferation. CKS1 is upregulated by insulin via an insulin receptor, but is repressed by a high level of steroid hormone 20-hydroxyecdysone (20E). Results suggest that CKS1 promotes cell proliferation and body growth in coordination with the regulatory actions of insulin and steroid hormone 20E.
Collapse
Affiliation(s)
- Chun-Yan Liu
- a Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Sciences; Shandong University ; Jinan , Shandong , China
| | - Wen-Li Zhao
- a Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Sciences; Shandong University ; Jinan , Shandong , China
| | - Jin-Xing Wang
- a Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Sciences; Shandong University ; Jinan , Shandong , China
| | - Xiao-Fan Zhao
- a Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Sciences; Shandong University ; Jinan , Shandong , China
| |
Collapse
|
25
|
Knockout silkworms reveal a dispensable role for juvenile hormones in holometabolous life cycle. Proc Natl Acad Sci U S A 2015. [PMID: 26195792 DOI: 10.1073/pnas.1506645112] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Insect juvenile hormones (JHs) prevent precocious metamorphosis and allow larvae to undergo multiple rounds of status quo molts. However, the roles of JHs during the embryonic and very early larval stages have not been fully understood. We generated and characterized knockout silkworms (Bombyx mori) with null mutations in JH biosynthesis or JH receptor genes using genome-editing tools. We found that embryonic growth and morphogenesis are largely independent of JHs in Bombyx and that, even in the absence of JHs or JH signaling, pupal characters are not formed in first- or second-instar larvae, and precocious metamorphosis is induced after the second instar at the earliest. We also show by mosaic analysis that a pupal specifier gene broad, which is dramatically up-regulated in the late stage of the last larval instar, is essential for pupal commitment in the epidermis. Importantly, the mRNA expression level of broad, which is thought to be repressed by JHs, remained at very low basal levels during the early larval instars of JH-deficient or JH signaling-deficient knockouts. Therefore, our study suggests that the long-accepted paradigm that JHs maintain the juvenile status throughout larval life should be revised because the larval status can be maintained by a JH-independent mechanism in very early larval instars. We propose that the lack of competence for metamorphosis during the early larval stages may result from the absence of an unidentified broad-inducing factor, i.e., a competence factor.
Collapse
|
26
|
Ali MS, Rahman RF, Swapon AH. Transcriptional regulation of cuticular protein glycine-rich13 gene expression in wing disc of Bombyx mori, Lepidoptera. JOURNAL OF INSECT SCIENCE (ONLINE) 2015; 15:iev019. [PMID: 25843580 PMCID: PMC4535481 DOI: 10.1093/jisesa/iev019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/14/2015] [Indexed: 06/04/2023]
Abstract
Cuticular protein genes are good models to study the molecular mechanisms of signaling by ecdysteroids, which regulate molting and metamorphosis in insects. The present research demonstrates on hormonal regulation and analysis of the regulatory sequences and transcription factors important for Bombyx mori cuticular protein glycine-rich13 (CPG13) gene expression. Expression of CPG13 was strong at prepupal stage in wing tissues of B. mori. CPG13 expression was induced by the addition of 20E, which was inhibited by cycloheximide in the wing disc. The upstream region of the CPG13 gene was analyzed using a transient reporter assay with a gene gun system and identified two BR-Z2 binding sites to be important cis-acting elements for the transcription activation of the luciferase reporter gene by an ecdysone pulse. Site-directed mutagenesis of these sites, followed by introduction into wing discs, significantly decreased the reporter activity. It was found that the regions carrying the binding sites for the ecdysone-responsive transcription factor BR-Z2 were responsible for the hormonal enhancement of the reporter gene activity in wing discs. Mutation of the BR-Z2 binding sites decreased the reporter activity suggesting that the BR-Z2 isoform can bind to the upstream region of the cuticle protein gene, CPG13 and activates its expression.
Collapse
Affiliation(s)
- Md Saheb Ali
- Bangladesh Jute Research Institute, Manik Mia Ave., Dhaka 1207, Bangladesh
| | - R F Rahman
- Bangladesh Jute Research Institute, Manik Mia Ave., Dhaka 1207, Bangladesh
| | | |
Collapse
|
27
|
Cai MJ, Liu W, Pei XY, Li XR, He HJ, Wang JX, Zhao XF. Juvenile hormone prevents 20-hydroxyecdysone-induced metamorphosis by regulating the phosphorylation of a newly identified broad protein. J Biol Chem 2014; 289:26630-26641. [PMID: 25096576 DOI: 10.1074/jbc.m114.581876] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The steroid hormone 20-hydroxyecdysone (20E) initiates insect molting and metamorphosis. By contrast, juvenile hormone (JH) prevents metamorphosis. However, the mechanism by which JH inhibits metamorphosis remains unclear. In this study, we propose that JH induces the phosphorylation of Broad isoform Z7 (BrZ7), a newly identified protein, to inhibit 20E-mediated metamorphosis in the lepidopteran insect Helicoverpa armigera. The knockdown of BrZ7 in larvae inhibited metamorphosis by repressing the expression of the 20E response gene. BrZ7 was weakly expressed and phosphorylated during larval growth but highly expressed and non-phosphorylated during metamorphosis. JH regulated the rapid phosphorylation of BrZ7 via a G-protein-coupled receptor-, phospholipase C-, and protein kinase C-triggered pathway. The phosphorylated BrZ7 bound to the 5'-regulatory region of calponin to regulate its expression in the JH pathway. Exogenous JH induced BrZ7 phosphorylation to prevent metamorphosis by suppressing 20E-related gene transcription. JH promoted non-phosphorylated calponin interacting with ultraspiracle protein to activate the JH pathway and antagonize the 20E pathway. This study reveals one of the possible mechanisms by which JH counteracts 20E-regulated metamorphosis by inducing the phosphorylation of BrZ7.
Collapse
Affiliation(s)
- Mei-Juan Cai
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education / Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Wen Liu
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education / Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xu-Yang Pei
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education / Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiang-Ru Li
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education / Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Hong-Juan He
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education / Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jin-Xing Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education / Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiao-Fan Zhao
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education / Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
28
|
Zhao WL, Liu CY, Liu W, Wang D, Wang JX, Zhao XF. Methoprene-tolerant 1 regulates gene transcription to maintain insect larval status. J Mol Endocrinol 2014; 53:93-104. [PMID: 24872508 DOI: 10.1530/jme-14-0019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Insect molting and metamorphosis are regulated by two hormones: 20-hydroxyecdysone (20E) and juvenile hormone (JH). The hormone 20E regulates gene transcription via the nuclear receptor EcR to promote metamorphosis, whereas JH regulates gene transcription via its intracellular receptor methoprene-tolerant (Met) to prevent larval-pupal transition. However, the function and mechanism of Met in various insect developments are not well understood. We propose that Met1 plays a key role in maintaining larval status not only by promoting JH-responsive gene transcription but also by repressing 20E-responsive gene transcription in the Lepidopteran insect Helicoverpa armigera. Met1 protein is increased during feeding stage and decreased during molting and metamorphic stages. Met1 is upregulated by JH III and a low concentration of 20E independently, but is downregulated by a high concentration of 20E. Knockdown of Met1 in larvae causes precocious pupation, decrease in JH pathway gene expression, and increase in 20E pathway gene expression. Met1 interacts with heat shock protein 90 and binds to JH response element to regulate Krüppel homolog 1 transcription in JH III induction. Met1 interacts with ultraspiracle protein 1 (USP1) to repress 20E transcription complex EcRB1/USP1 formation and binding to ecdysone response element. These data indicate that JH via Met1 regulates JH pathway gene expression and represses 20E pathway gene expression to maintain the larval status.
Collapse
Affiliation(s)
- Wen-Li Zhao
- The Key Laboratory of Plant Cell Engineering and Germplasm InnovationMinistry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Chun-Yan Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm InnovationMinistry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Wen Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm InnovationMinistry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Di Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm InnovationMinistry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Jin-Xing Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm InnovationMinistry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Xiao-Fan Zhao
- The Key Laboratory of Plant Cell Engineering and Germplasm InnovationMinistry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| |
Collapse
|
29
|
Liu Z, Yao P, Guo X, Xu B. Two small heat shock protein genes in Apis cerana cerana: characterization, regulation, and developmental expression. Gene 2014; 545:205-14. [DOI: 10.1016/j.gene.2014.05.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 04/24/2014] [Accepted: 05/08/2014] [Indexed: 01/03/2023]
|
30
|
Erezyilmaz DF, Hayward A, Huang Y, Paps J, Acs Z, Delgado JA, Collantes F, Kathirithamby J. Expression of the pupal determinant broad during metamorphic and neotenic development of the strepsipteran Xenos vesparum Rossi. PLoS One 2014; 9:e93614. [PMID: 24709670 PMCID: PMC3977908 DOI: 10.1371/journal.pone.0093614] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/07/2014] [Indexed: 11/18/2022] Open
Abstract
Derived members of the endoparasitic order Strepsiptera have acquired an extreme form of sexual dimorphism whereby males undergo metamorphosis and exist as free-living adults while females remain larviform, reaching sexual maturity within their hosts. Expression of the transcription factor, broad (br) has been shown to be required for pupal development in insects in which both sexes progress through metamorphosis. A surge of br expression appears in the last larval instar, as the epidermis begins pupal development. Here we ask if br is also up-regulated in the last larval instar of male Xenos vesparum Rossi (Stylopidae), and whether such expression is lost in neotenic larviform females. We clone three isoforms of br from X. vesparum (Xv’br), and show that they share greatest similarity to the Z1, Z3 and Z4 isoforms of other insect species. By monitoring Xv’br expression throughout development, we detect elevated levels of total br expression and the Xv’Z1, Xv’Z3, and Xv’Z4 isoforms in the last larval instar of males, but not females. By focusing on Xv’br expression in individual samples, we show that the levels of Xv’BTB and Xv’Z3 in the last larval instar of males are bimodal, with some males expressing 3X greater levels of Xv’br than fourth instar femlaes. Taken together, these data suggest that neoteny (and endoparasitism) in females of Strepsiptera Stylopidia could be linked to the suppression of pupal determination. Our work identifies a difference in metamorphic gene expression that is associated with neoteny, and thus provides insights into the relationship between metamorphic and neotenic development.
Collapse
Affiliation(s)
- Deniz F. Erezyilmaz
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| | - Alex Hayward
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala Biomedical Centre, Uppsala, Sweden
| | - Yan Huang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Jordi Paps
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Zoltan Acs
- Kaposvar University, Faculty of Animal Science, Kaposvar, Hungary
| | - Juan A. Delgado
- Departamento de Zoologia, Facultad de Biologia, Universidad de Murcia, Murcia, Spain
| | - Francisco Collantes
- Departamento de Zoologia, Facultad de Biologia, Universidad de Murcia, Murcia, Spain
| | | |
Collapse
|
31
|
Nijhout HF, Riddiford LM, Mirth C, Shingleton AW, Suzuki Y, Callier V. The developmental control of size in insects. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2014; 3:113-34. [PMID: 24902837 PMCID: PMC4048863 DOI: 10.1002/wdev.124] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mechanisms that control the sizes of a body and its many parts remain among the great puzzles in developmental biology. Why do animals grow to a species-specific body size, and how is the relative growth of their body parts controlled to so they grow to the right size, and in the correct proportion with body size, giving an animal its species-characteristic shape? Control of size must involve mechanisms that somehow assess some aspect of size and are upstream of mechanisms that regulate growth. These mechanisms are now beginning to be understood in the insects, in particular in Manduca sexta and Drosophila melanogaster. The control of size requires control of the rate of growth and control of the cessation of growth. Growth is controlled by genetic and environmental factors. Insulin and ecdysone, their receptors, and intracellular signaling pathways are the principal genetic regulators of growth. The secretion of these growth hormones, in turn, is controlled by complex interactions of other endocrine and molecular mechanisms, by environmental factors such as nutrition, and by the physiological mechanisms that sense body size. Although the general mechanisms of growth regulation appear to be widely shared, the mechanisms that regulate final size can be quite diverse.
Collapse
|
32
|
Callier V, Nijhout HF. Body size determination in insects: a review and synthesis of size- and brain-dependent and independent mechanisms. Biol Rev Camb Philos Soc 2013; 88:944-54. [PMID: 23521745 DOI: 10.1111/brv.12033] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 02/07/2013] [Accepted: 02/27/2013] [Indexed: 12/29/2022]
Abstract
Body size determination requires a mechanism for sensing size and a mechanism for linking size information to the termination of growth. Although the hormonal mechanisms that terminate growth are well elucidated, the mechanisms by which a body senses its own size are only partially understood; most of this understanding has come from the study of the mechanisms that control insect moulting and metamorphosis. We first review and discuss advances in our understanding of the physiological mechanisms by which insect larvae sense their size. Second, we present new findings on how larvae in which the size-sensing mechanism has been disrupted eventually terminate growth (in a size-independent manner). We synthesize recent insights into the genetic and molecular mechanisms of ecdysteroid regulation in Drosophila melanogaster with developmental physiology findings in Manduca sexta, paving the way for an integrated understanding of the mechanisms of body size regulation.
Collapse
Affiliation(s)
- Viviane Callier
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85287, U.S.A
| | | |
Collapse
|
33
|
Kim J, Kim Y. RNA interference of broad gene expression mimics antimetamorphic effect of pyriproxyfen on the beet armyworm, Spodoptera exigua. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2012; 81:214-227. [PMID: 22899018 DOI: 10.1002/arch.21051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A larva-to-pupa metamorphosis is induced by a low or undetectable level of juvenile hormone (JH) during last instar in holometabolous insects. An exogenous application of JH agonist, pyriproxyfen (PYR), inhibited pupal metamorphosis of the beet armyworm, Spodoptera exigua. Last instar larvae of S. exigua exhibited increase of body size at first 3 days along with active feeding behavior. Also, at this period, prothoracic gland increased in size, while corpora allata remained little change. Storage proteins were accumulated in hemolymph plasma from penultimate to last instars, during which two storage protein genes (SeHex and SeSP1) were actively expressed. A Broad-Complex 1 (BRC1) gene of S. exigua (SeBRC1) was partially cloned and showed a specific expression at the last instar in all tested tissues including hemocytes, fat body, epidermis, gut, nerve, and salivary gland. Knockdown of SeBRC1 expression by its specific double-strand RNA mimicked the antimetamorphic effect induced by PYR treatment. PYR treatment at early last instar inhibited expression of SeBRC1, but did not that of other nuclear receptor, βFTZ-F1. These results indicate that a transcriptional factor, SeBRC1, plays a crucial role in pupal metamorphosis of S. exigua.
Collapse
Affiliation(s)
- Jiwan Kim
- Department of Bioresource Sciences, Andong National University, Andong, Korea
| | | |
Collapse
|
34
|
Riddiford LM. How does juvenile hormone control insect metamorphosis and reproduction? Gen Comp Endocrinol 2012; 179:477-84. [PMID: 22728566 DOI: 10.1016/j.ygcen.2012.06.001] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/22/2012] [Accepted: 06/01/2012] [Indexed: 01/08/2023]
Abstract
In insects juvenile hormone (JH) regulates both metamorphosis and reproduction. This lecture focuses on our current understanding of JH action at the molecular level in both of these processes based primarily on studies in the tobacco hornworm Manduca sexta, the flour beetle Tribolium castaneum, the mosquito Aedes aegypti, and the fruit fly Drosophila melanogaster. The roles of the JH receptor complex and the transcription factors that it regulates during larval molting and metamorphosis are summarized. Also highlighted are the intriguing interactions of the JH and insulin signaling pathways in both imaginal disc development and vitellogenesis. Critical actions of JH and its receptor in the timing of maturation of the adult optic lobe and of female receptivity in Drosophila are also discussed.
Collapse
Affiliation(s)
- Lynn M Riddiford
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
35
|
Mod(mdg4) participates in hormonally regulated midgut programmed cell death during metamorphosis. Apoptosis 2012; 17:1327-39. [DOI: 10.1007/s10495-012-0761-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
36
|
Jindra M, Palli SR, Riddiford LM. The juvenile hormone signaling pathway in insect development. ANNUAL REVIEW OF ENTOMOLOGY 2012; 58:181-204. [PMID: 22994547 DOI: 10.1146/annurev-ento-120811-153700] [Citation(s) in RCA: 526] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The molecular action of juvenile hormone (JH), a regulator of vital importance to insects, was until recently regarded as a mystery. The past few years have seen an explosion of studies of JH signaling, sparked by a finding that a JH-resistance gene, Methoprene-tolerant (Met), plays a critical role in insect metamorphosis. Here, we summarize the recently acquired knowledge on the capacity of Met to bind JH, which has been mapped to a particular ligand-binding domain, thus establishing this bHLH-PAS protein as a novel type of an intracellular hormone receptor. Next, we consider the significance of JH-dependent interactions of Met with other transcription factors and signaling pathways. We examine the regulation and biological roles of genes acting downstream of JH and Met in insect metamorphosis. Finally, we discuss the current gaps in our understanding of JH action and outline directions for future research.
Collapse
Affiliation(s)
- Marek Jindra
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic
| | | | | |
Collapse
|
37
|
Ali MS, Wang HB, Iwanaga M, Kawasaki H. Expression of cuticular protein genes, BmorCPG11 and BMWCP5 is differently regulated at the pre-pupal stage in wing discs of Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 2012; 162:44-50. [DOI: 10.1016/j.cbpb.2012.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/13/2012] [Accepted: 02/13/2012] [Indexed: 01/02/2023]
|
38
|
Ali MS, Iwanaga M, Kawasaki H. Ecdysone-responsive transcription factors determine the expression region of target cuticular protein genes in the epidermis of Bombyx mori. Dev Genes Evol 2012; 222:89-97. [DOI: 10.1007/s00427-012-0392-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 02/29/2012] [Indexed: 11/29/2022]
|
39
|
Wang HB, Ali SM, Moriyama M, Iwanaga M, Kawasaki H. 20-hydroxyecdysone and juvenile hormone analog prevent precocious metamorphosis in recessive trimolter mutants of Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:102-108. [PMID: 22155635 DOI: 10.1016/j.ibmb.2011.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/27/2011] [Accepted: 11/17/2011] [Indexed: 05/31/2023]
Abstract
The trimolter mutants of Bombyx mori have four instead of five larval instars of normal tetramolters. Here, we show that the tetramolter was induced in the recessive trimolter European No.7 mutant (rt-E7) by application of either the juvenile hormone analog (JHA) or 20-hydroxyecdysone (20E). However, treatments with JHA or 20E did not change the number of larval instars of the dominant trimolter Si Chuan mutant (DT-SC). Krüppel-homolog 1 (Kr-h1) is an early JH-response gene that mediates the anti-metamorphic action of JH. In the wing disc of tetramolter B. mori, Kr-h1 RNAs decreased shortly after ecdysis to the fifth instar, while pupal specifier gene, Broad Complex Z1 (BR-Z1) RNAs slightly increased and coincided with the onset of metamorphic competence of wing discs. Analysis of the developmental profile of Kr-h1 in the wing disc of rt-E7 showed that its transcript slightly increased from 12 to 24 h and gradually decreased between 24 and 72 h in the fourth (last) larval instar, while Kr-h1 mRNA decreased rapidly between 12 and 72 h in DT-SC. In addition, the expression of BR-Z1 in DT-SC during the early fourth (last) larval instar is relatively higher than that in rt-E7. These results indicated that the occurrence of pupal commitment of the wing disc in DT-SC was much earlier than that in rt-E7. In the early fourth larval instar of rt-E7, feeding on 20E or treatments with exogenous JHA caused up-regulation of Kr-h1, suppressed premature induction of BR-Z1, and then induced an additional larval instar. By contrast, in DT-SC mutant, since pupal commitment immediately occurred after third ecdysis, precocious metamorphosis was not successfully rescued. The results suggest that Kr-h1 and BR-Z1 involved in the prevention of precocious metamorphosis in recessive trimolter mutants by application of 20E and JHA. The result indicated that Kr-h1 and BR-Z1 expression reflected larval-pupal transition of the recessive trimolter of B. mori.
Collapse
Affiliation(s)
- Hua-Bing Wang
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi 321-8505, Japan
| | | | | | | | | |
Collapse
|
40
|
Liu PC, Wang JX, Song QS, Zhao XF. The participation of calponin in the cross talk between 20-hydroxyecdysone and juvenile hormone signaling pathways by phosphorylation variation. PLoS One 2011; 6:e19776. [PMID: 21625546 PMCID: PMC3098250 DOI: 10.1371/journal.pone.0019776] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 04/05/2011] [Indexed: 01/01/2023] Open
Abstract
20-hydroxyecdysone (20E) and juvenile hormone (JH) signaling pathways interact to mediate insect development, but the mechanism of this interaction is poorly understood. Here, a calponin homologue domain (Chd) containing protein (HaCal) is reported to play a key role in the cross talk between 20E and JH signaling by varying its phosphorylation. Chd is known as an actin binding domain present in many proteins including some signaling proteins. Using an epidermal cell line (HaEpi), HaCal was found to be up-regulated by either 20E or the JH analog methoprene (JHA). 20E induced rapid phosphorylation of HaCal whereas no phosphorylation occurred with JHA. HaCal could be quickly translocated into the nuclei through 20E or JH signaling but interacted with USP1 only under the mediation of JHA. Knockdown of HaCal by RNAi blocked the 20E inducibility of USP1, PKC and HR3, and also blocked the JHA inducibility of USP1, PKC and JHi. After gene silencing of HaCal by ingestion of dsHaCal expressed by Escherichia coli, the larval development was arrested and the gene expression of USP1, PKC, HR3 and JHi were blocked. These composite data suggest that HaCal plays roles in hormonal signaling by quickly transferring into nucleus to function as a phosphorylated form in the 20E pathway and as a non-phosphorylated form interacting with USP1 in the JH pathway to facilitate 20E or JH signaling cascade, in short, by switching its phosphorylation status to regulate insect development.
Collapse
Affiliation(s)
- Peng-Cheng Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Jin-Xing Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Qi-Sheng Song
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Xiao-Fan Zhao
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| |
Collapse
|
41
|
Deng H, Zheng S, Yang X, Liu L, Feng Q. Transcription factors BmPOUM2 and BmβFTZ-F1 are involved in regulation of the expression of the wing cuticle protein gene BmWCP4 in the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2011; 20:45-60. [PMID: 20825506 DOI: 10.1111/j.1365-2583.2010.01041.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In Bombyx mori, the wing cuticle protein gene BmWCP4 is expressed specifically in the epidermis at the onset and mid-stage of pupation and is responsible for the formation of the pupal cuticle during the larval-pupal metamorphosis. The gene consists of four exons and three introns and is present as a single copy in the genome. Its expression was up-regulated by 20-hydroxyecdysone (20E) and the 20E-induced expression was suppressed by juvenile hormone (JH) III. The upstream regulatory sequence region of the BmWCP4 gene was cloned and the regulatory elements responsible for 20E induction were identified. Two cis-regulatory elements (CREs) bound by the transcription factors BmPOUM2 and BmβFTZ-F1 were identified that mediated 20E-regulated expression of this gene. An electrophoretic mobility shift assay detected two nuclear proteins isolated from the epidermis and the BmN cell line that specifically bound to the POU and βFTZ-F1 CREs, respectively. BmPOUM2 recombinant protein explicitly bound to the POU CRE. Developmental and 20E-induced expression of the BmWCP4, BmPOUM2 and BmβFTZ-F1 genes showed that BmPOUM2 and BmβFTZ-F1 were initially expressed, followed by BmWCP4. These data suggest that the 20E-induced expression of BmWCP4 is mediated by the transcription factors BmPOUM2 and BmβFTZ-F1 binding to their CREs in the regulatory sequence region of the BmWCP4 gene.
Collapse
Affiliation(s)
- H Deng
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | | | | | | | | |
Collapse
|
42
|
Hiruma K, Riddiford LM. Developmental expression of mRNAs for epidermal and fat body proteins and hormonally regulated transcription factors in the tobacco hornworm, Manduca sexta. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1390-5. [PMID: 20361974 DOI: 10.1016/j.jinsphys.2010.03.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/09/2010] [Accepted: 03/15/2010] [Indexed: 05/21/2023]
Abstract
This paper provides a compilation of diagrammatic representations of the expression profiles of epidermal and fat body mRNAs during the last two larval instars and metamorphosis of the tobacco hornworm, Manduca sexta. Included are those encoding insecticyanin, three larval cuticular proteins, dopa decarboxylase, moling, and the juvenile hormone-binding protein JP29 produced by the dorsal abdominal epidermis, and arylphorin and the methionine-rich storage proteins made by the fat body. The mRNA profiles of the ecdysteroid-regulated cascade of transcription factors in the epidermis during the larval molt and the onset of metamorphosis and in the pupal wing during the onset of adult development are also shown. These profiles are accompanied by a brief summary of the current knowledge about the regulation of these mRNAs by ecdysteroids and juvenile hormone based on experimental manipulations, both in vivo and in vitro.
Collapse
Affiliation(s)
- Kiyoshi Hiruma
- Faculty of Agriculture and Life Sciences, Hirosaki University, Hirosaki 036-8561, Japan
| | | |
Collapse
|
43
|
The role of the pupal determinant broad during embryonic development of a direct-developing insect. Dev Genes Evol 2010; 219:535-44. [PMID: 20127251 DOI: 10.1007/s00427-009-0315-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 12/17/2009] [Indexed: 01/22/2023]
Abstract
Metamorphosis is one of the most common, yet dramatic of life history strategies. In insects, complete metamorphosis with morphologically distinct larval stages arose from hemimetabolous ancestors that were more direct developing. Over the past century, several ideas have emerged that suggest the holometabolous pupa is developmentally homologous to the embryonic stages of the hemimetabolous ancestor. Other theories consider the pupal stage to be a modification of a hemimetabolous nymph. To address this question, we have isolated an ortholog of the pupal determinant, broad (br), from the hemimetabolous milkweed bug and examined its role during embryonic development. We show that Oncopeltus fasciatus br (Of'br) is expressed in two phases. The first occurs during germ band invagination and segmentation when Of'br is expressed ubiquitously in the embryonic tissues. The second phase of Of'br expression appears during the pronymphal phase of embryogenesis and persists through nymphal differentiation to decline just before hatching. Knock-down of Of'br transcripts results in defects that range from posterior truncations in the least-affected phenotypes to completely fragmented embryonic tissues in the most severe cases. Analysis of the patterning genes engrailed and hunchback reveal loss of segments and a failure in neural differentiation after Of'br depletion. Finally, we show that br is constitutively expressed during embyrogenesis of the ametabolous firebrat, Thermobia domestica. This suggests that br expression is prominent during embryonic development of ametabolous and hemimetabolous insects but was lost with the emergence of the completely metamorphosing insects.
Collapse
|
44
|
Zhou B, Williams DW, Altman J, Riddiford LM, Truman JW. Temporal patterns of broad isoform expression during the development of neuronal lineages in Drosophila. Neural Dev 2009; 4:39. [PMID: 19883497 PMCID: PMC2780399 DOI: 10.1186/1749-8104-4-39] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 11/02/2009] [Indexed: 12/28/2022] Open
Abstract
Background During the development of the central nervous system (CNS) of Drosophila, neuronal stem cells, the neuroblasts (NBs), first generate a set of highly diverse neurons, the primary neurons that mature to control larval behavior, and then more homogeneous sets of neurons that show delayed maturation and are primarily used in the adult. These latter, 'secondary' neurons show a complex pattern of expression of broad, which encodes a transcription factor usually associated with metamorphosis, where it acts as a key regulator in the transitions from larva and pupa. Results The Broad-Z3 (Br-Z3) isoform appears transiently in most central neurons during embryogenesis, but persists in a subset of these cells through most of larval growth. Some of the latter are embryonic-born secondary neurons, whose development is arrested until the start of metamorphosis. However, the vast bulk of the secondary neurons are generated during larval growth and bromodeoxyuridine incorporation shows that they begin expressing Br-Z3 about 7 hours after their birth, approximately the time that they have finished outgrowth to their initial targets. By the start of metamorphosis, the oldest secondary neurons have turned off Br-Z3 expression, while the remainder, with the exception of the very youngest, maintain Br-Z3 while they are interacting with potential partners in preparation for neurite elaboration. That Br-Z3 may be involved in early sprouting is suggested by ectopically expressing this isoform in remodeling primary neurons, which do not normally express Br-Z3. These cells now sprout into ectopic locations. The expression of Br-Z3 is transient and seen in all interneurons, but two other isoforms, Br-Z4 and Br-Z1, show a more selective expression. Analysis of MARCM clones shows that the Br-Z4 isoform is expressed by neurons in virtually all lineages, but only in those cells born during a window during the transition from the second to the third larval instar. Br-Z4 expression is then maintained in this temporal cohort of cells into the adult. Conclusion These data show the potential for diverse functions of Broad within the developing CNS. The Br-Z3 isoform appears in all interneurons, but not motoneurons, when they first begin to interact with potential targets. Its function during this early sorting phase needs to be defined. Two other Broad isoforms, by contrast, are stably expressed in cohorts of neurons in all lineages and are the first examples of persisting molecular 'time-stamps' for Drosophila postembryonic neurons.
Collapse
Affiliation(s)
- Baohua Zhou
- Department of Biology, University of Washington, Seattle, 98195, USA.
| | | | | | | | | |
Collapse
|
45
|
Wang HB, Nita M, Iwanaga M, Kawasaki H. betaFTZ-F1 and Broad-Complex positively regulate the transcription of the wing cuticle protein gene, BMWCP5, in wing discs of Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:624-633. [PMID: 19580866 DOI: 10.1016/j.ibmb.2009.06.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 06/15/2009] [Accepted: 06/28/2009] [Indexed: 05/28/2023]
Abstract
The present study was undertaken to clarify the mechanism regulating cuticle protein gene expression. Expression of BMWCP5 was strong at around pupation and weak at the mid-pupal stage in wing tissues of Bombyx mori. We analyzed the upstream region of the BMWCP5 gene using a transient reporter assay with a gene gun system to identify the regulatory elements responsible for its unique expression pattern. We identified two betaFTZ-F1 binding sites to be important cis-acting elements for the transcription activation of the luciferase reporter gene by an ecdysone pulse. Site-directed mutagenesis of these sites, followed by introduction into wing discs, significantly decreased the reporter activity. We also found that the regions carrying the binding sites for the ecdysone-responsive factor BR-C Z4 (BR-Z4) were responsible for the hormonal enhancement of the reporter gene activity in wing discs. Mutation of the BR-Z4 binding sites decreased the reporter activity. The nuclear proteins that bound to these betaFTZ-F1 and BR-Z4 sites were identified by an electrophoretic mobility shift assay (EMSA). The results demonstrate for the first time that the BR-Z4 isoform can bind to the upstream region of the cuticle protein gene, BMWCP5, and activate its expression. The results also suggest that the BMWCP5 transcription is primarily regulated by the ecdysone pulse through betaFTZ-F1, and the stage-specific enhancement is brought about through BR-Z4.
Collapse
Affiliation(s)
- Hua-Bing Wang
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi 321-8505, Japan
| | | | | | | |
Collapse
|
46
|
Wang HB, Iwanaga M, Kawasaki H. Activation of BMWCP10 promoter and regulation by BR-C Z2 in wing disc of Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:615-623. [PMID: 19580867 DOI: 10.1016/j.ibmb.2009.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 06/29/2009] [Accepted: 06/29/2009] [Indexed: 05/28/2023]
Abstract
The cuticle protein gene BMWCP10 is transcriptionally upregulated by ecdysone during development. In the present study, using a transient reporter assay, the activity of various genomic segments at the 5'-flanking region of the BMWCP10 gene in driving gene expression and their involvement in ecdysone-mediated activation were assessed in the Bombyx wing disc. The promoter activity of BMWCP10 was responsive to 20-hydroxyecdysone (20E) in a dose-dependent manner, and the highest luciferase activity was observed in the presence of 2 microg/ml 20E. Furthermore, the upstream BMWCP10 promoter was activated by 20E in a stage-specific manner, and the 2.9-kb promoter contained essential elements for the temporal regulation of BMWCP10 in the Bombyx wing disc. Deletion studies revealed that the -598/-387 bp region was required for high-level transcription. In this region, a BR-C Z2 binding element was identified by electrophoretic mobility shift assay (EMSA). Site-directed mutagenesis of this element in the context of the 598-bp promoter fragment significantly decreased the reporter activity in response to ecdysone treatment. The results confirmed the role of BmBR-C Z2 in the transcription regulation of BMWCP10 and suggested the contribution of BmBR-C Z2 to BMWCP10 induction by 20E.
Collapse
Affiliation(s)
- Hua-Bing Wang
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi 321-8505, Japan
| | | | | |
Collapse
|
47
|
Koyama T, Syropyatova MO, Riddiford LM. Insulin/IGF signaling regulates the change in commitment in imaginal discs and primordia by overriding the effect of juvenile hormone. Dev Biol 2008; 324:258-65. [DOI: 10.1016/j.ydbio.2008.09.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Revised: 09/07/2008] [Accepted: 09/14/2008] [Indexed: 11/25/2022]
|
48
|
Okamoto S, Futahashi R, Kojima T, Mita K, Fujiwara H. Catalogue of epidermal genes: genes expressed in the epidermis during larval molt of the silkworm Bombyx mori. BMC Genomics 2008; 9:396. [PMID: 18721459 PMCID: PMC2542385 DOI: 10.1186/1471-2164-9-396] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 08/22/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The insect cuticle is composed of various proteins and formed during the molt under hormonal regulation, although its precise composition and formation mechanism are largely unknown. The exhaustive catalogue of genes expressed in epidermis at the molt constitutes a massive amount of information from which to draw a complete picture of the molt and cuticle formation in insects. Therefore, we have catalogued a library of full-length cDNAs (designated epM) from epidermal cells during the last larval molt of Bombyx mori. RESULTS Of the 10,368 sequences in the library, we isolated 6,653 usable expressed sequence tags (ESTs), which were categorized into 1,451 nonredundant gene clusters. Seventy-one clusters were considered to be isoforms or premature forms of other clusters. Therefore, we have identified 1,380 putative genes. Of the 6,653 expressed sequences, 48% were derived from 92 cuticular protein genes (RR-1, 24; RR-2, 17; glycine-rich, 29; other classes, 22). A comparison of epM with another epidermal EST data set, epV3 (feeding stage: fifth instar, day 3), showed marked differences in cuticular protein gene. Various types of cuticular proteins are expressed in epM but virtually only RR-1 proteins were expressed in epV3. Cuticular protein genes expressed specifically in epidermis, with several types of expression patterns during the molt, suggest different types of responses to the ecdysteroid pulse. Compared with other Bombyx EST libraries, 13 genes were preferentially included in epM data set. We isolated 290 genes for proteins other than cuticular proteins, whose amino acid sequences retain putative signal peptides, suggesting that they play some role in cuticle formation or in other molting events. Several gene groups were also included in this data set: hormone metabolism, P450, modifier of cuticular protein structure, small-ligand-binding protein, transcription factor, and pigmentation genes. CONCLUSION We have identified 1,380 genes in epM data set and 13 preferentially expressed genes in epidermis at the molt. The comparison of the epM and other EST libraries clarified the totally different gene expression patterns in epidermis between the molting and feeding stages and many novel tissue- and stage-specifically expressed epidermal genes. These data should further our understanding of cuticle formation and the insect molt.
Collapse
Affiliation(s)
- Shun Okamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan.
| | | | | | | | | |
Collapse
|
49
|
Muramatsu D, Kinjoh T, Shinoda T, Hiruma K. The role of 20-hydroxyecdysone and juvenile hormone in pupal commitment of the epidermis of the silkworm, Bombyx mori. Mech Dev 2008; 125:411-20. [PMID: 18331786 DOI: 10.1016/j.mod.2008.02.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 02/02/2008] [Accepted: 02/05/2008] [Indexed: 10/22/2022]
Abstract
During the pupal metamorphosis in insects, cellular commitment for pupal differentiation must precede before its differentiation. The pupal commitment of Bombyx mori epidermis occurred from day 3 to day 6 last (5th) instar larvae in response to the gradual increase in ecdysteroid titer in the presence of a small amount of juvenile hormone (JH). Yet the concealed preparatory process of the commitment had begun in the newly synthesized 5th instar larval epidermis (approximately 6 h before the ecdysis) as a competence phase, in which pupal commitment in vitro was induced by 20-hydroxyecdysone (20E) but inhibited by JH. This competence phase continued until day 2 5th instar, and the decrease and increase in cellular sensitivity to JH and 20E, respectively, occurred gradually during this period. In early day 3, autonomous pupal commitment began in vitro and 20E stimulated the commitment, but JH could only partially prevent the commitment in both cases. This apparent reversible to irreversible transition ended in early day 6 by the completion of pupal commitment, when the cells completely lost their sensitivity to JH and no longer expressed the larval cuticle protein gene 30. The expression of the transcription factor, broad, closely followed the commitment, so that we could use this gene expression as a molecular marker for pupal commitment. These results indicate that exposure to 20E and loss of the sensitivity of the epidermal cells to JH are required for the completion of pupal commitment, and suggest that the unusually long process over 3 days could be due to the presence of the detectable JH during the commitment.
Collapse
Affiliation(s)
- Daisuke Muramatsu
- Faculty of Agriculture and Life Sciences, Hirosaki University, Hirosaki 036-8561, Japan
| | | | | | | |
Collapse
|
50
|
Suzuki Y, Truman JW, Riddiford LM. The role of Broad in the development of Tribolium castaneum: implications for the evolution of the holometabolous insect pupa. Development 2008; 135:569-77. [PMID: 18171684 DOI: 10.1242/dev.015263] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The evolution of complete metamorphosis in insects is a key innovation that has led to the successful diversification of holometabolous insects, yet the origin of the pupa remains an enigma. Here, we analyzed the expression of the pupal specifier gene broad (br), and the effect on br of isoform-specific, double-stranded RNA-mediated silencing, in a basal holometabolous insect, the beetle Tribolium castaneum. All five isoforms are weakly expressed during the penultimate instar and highly expressed during the prepupal period of the final instar. Application of hydroprene, a juvenile hormone analog, during the penultimate instar caused a repeat of the penultimate br expression patterns, and the formation of supernumerary larvae. Use of dsRNA against the br core region, or against a pair of either the br-Z2 or br-Z3 isoform with the br-Z1 or br-Z4 isoform, produced mobile animals with well-differentiated adult-like appendages, but which retained larval-like urogomphi and epidermis. Disruption of either the br-Z2 or the br-Z3 isoform caused the formation of shorter wings. Disruption of both br-Z1 and br-Z4 caused the appearance of pupal traits in the adults, but disruption of br-Z5 had no morphological effect. Our findings show that the br isoform functions are broadly conserved within the Holometabola and suggest that evolution of br isoform expression may have played an important role in the evolution of the pupa in holometabolous insects.
Collapse
Affiliation(s)
- Yuichiro Suzuki
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195-1800, USA
| | | | | |
Collapse
|