1
|
Zou J, Anai S, Ota S, Ishitani S, Oginuma M, Ishitani T. Determining zebrafish dorsal organizer size by a negative feedback loop between canonical/non-canonical Wnts and Tlr4/NFκB. Nat Commun 2023; 14:7194. [PMID: 37938219 PMCID: PMC10632484 DOI: 10.1038/s41467-023-42963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
In vertebrate embryos, the canonical Wnt ligand primes the formation of dorsal organizers that govern dorsal-ventral patterns by secreting BMP antagonists. In contrast, in Drosophila embryos, Toll-like receptor (Tlr)-mediated NFκB activation initiates dorsal-ventral patterning, wherein Wnt-mediated negative feedback regulation of Tlr/NFκB generates a BMP antagonist-secreting signalling centre to control the dorsal-ventral pattern. Although both Wnt and BMP antagonist are conserved among species, the involvement of Tlr/NFκB and feedback regulation in vertebrate organizer formation remains unclear. By imaging and genetic modification, we reveal that a negative feedback loop between canonical and non-canonical Wnts and Tlr4/NFκB determines the size of zebrafish organizer, and that Tlr/NFκB and Wnts switch initial cue and feedback mediator roles between Drosophila and zebrafish. Here, we show that canonical Wnt signalling stimulates the expression of the non-canonical Wnt5b ligand, activating the Tlr4 receptor to stimulate NFκB-mediated transcription of the Wnt antagonist frzb, restricting Wnt-dependent dorsal organizer formation.
Collapse
Affiliation(s)
- Juqi Zou
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Satoshi Anai
- Yuuai Medical Center, Tomigusuku, Okinawa, 901-0224, Japan
| | - Satoshi Ota
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo, 153-8904, Japan
| | - Shizuka Ishitani
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masayuki Oginuma
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tohru Ishitani
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
2
|
Pluripotency factors determine gene expression repertoire at zygotic genome activation. Nat Commun 2022; 13:788. [PMID: 35145080 PMCID: PMC8831532 DOI: 10.1038/s41467-022-28434-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 01/24/2022] [Indexed: 12/28/2022] Open
Abstract
Awakening of zygotic transcription in animal embryos relies on maternal pioneer transcription factors. The interplay of global and specific functions of these proteins remains poorly understood. Here, we analyze chromatin accessibility and time-resolved transcription in single and double mutant zebrafish embryos lacking pluripotency factors Pou5f3 and Sox19b. We show that two factors modify chromatin in a largely independent manner. We distinguish four types of direct enhancers by differential requirements for Pou5f3 or Sox19b. We demonstrate that changes in chromatin accessibility of enhancers underlie the changes in zygotic expression repertoire in the double mutants. Pou5f3 or Sox19b promote chromatin accessibility of enhancers linked to the genes involved in gastrulation and ventral fate specification. The genes regulating mesendodermal and dorsal fates are primed for activation independently of Pou5f3 and Sox19b. Strikingly, simultaneous loss of Pou5f3 and Sox19b leads to premature expression of genes, involved in regulation of organogenesis and differentiation. Zygotic genome activation in zebrafish relies on pluripotency transcription factors Pou5f3 and Sox19b. Here the authors investigate how these factors interact in vivo by analyzing the changes in chromatin state and time-resolved transcription in Pou5f3 and Sox19b single and double mutant embryos.
Collapse
|
3
|
Jones WD, Mullins MC. Cell signaling pathways controlling an axis organizing center in the zebrafish. Curr Top Dev Biol 2022; 150:149-209. [DOI: 10.1016/bs.ctdb.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
4
|
Hao X, Wang Q, Hou J, Liu K, Feng B, Shao C. Temporal Transcriptome Analysis Reveals Dynamic Expression Profiles of Gametes and Embryonic Development in Japanese Flounder ( Paralichthys olivaceus). Genes (Basel) 2021; 12:genes12101561. [PMID: 34680958 PMCID: PMC8535655 DOI: 10.3390/genes12101561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/25/2022] Open
Abstract
The maternal-to-zygotic transition (MZT) is a crucial event in embryo development. While the features of the MZT across species are shared, the stage of this transition is different among species. We characterized MZT in a flatfish species, Japanese flounder (Paralichthys olivaceus). In this study, we analyzed the 551.57 GB transcriptome data of two types of gametes (sperms and eggs) and 10 embryo developmental stages in Japanese flounder. We identified 2512 maternal factor-related genes and found that most of those maternal factor-related genes expression decreased at the low blastula (LB) stage and remained silent in the subsequent embryonic development period. Meanwhile, we verified that the zygotic genome transcription might occur at the 128-cell stage and large-scale transcription began at the LB stage, which indicates the LB stage is the major wave zygotic genome activation (ZGA) occurs. In addition, we indicated that the Wnt signaling pathway, playing a diverse role in embryonic development, was involved in the ZGA and the axis formation. The results reported the list of the maternal genes in Japanese flounder and defined the stage of MZT, contributing to the understanding of the details of MZT during Japanese flounder embryonic development.
Collapse
Affiliation(s)
- Xiancai Hao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266072, China; (X.H.); (Q.W.); (K.L.); (B.F.)
| | - Qian Wang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266072, China; (X.H.); (Q.W.); (K.L.); (B.F.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jilun Hou
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China;
| | - Kaiqiang Liu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266072, China; (X.H.); (Q.W.); (K.L.); (B.F.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Bo Feng
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266072, China; (X.H.); (Q.W.); (K.L.); (B.F.)
| | - Changwei Shao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266072, China; (X.H.); (Q.W.); (K.L.); (B.F.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Correspondence:
| |
Collapse
|
5
|
Weger M, Weger BD, Schink A, Takamiya M, Stegmaier J, Gobet C, Parisi A, Kobitski AY, Mertes J, Krone N, Strähle U, Nienhaus GU, Mikut R, Gachon F, Gut P, Dickmeis T. MondoA regulates gene expression in cholesterol biosynthesis-associated pathways required for zebrafish epiboly. eLife 2020; 9:e57068. [PMID: 32969791 PMCID: PMC7515633 DOI: 10.7554/elife.57068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022] Open
Abstract
The glucose-sensing Mondo pathway regulates expression of metabolic genes in mammals. Here, we characterized its function in the zebrafish and revealed an unexpected role of this pathway in vertebrate embryonic development. We showed that knockdown of mondoa impaired the early morphogenetic movement of epiboly in zebrafish embryos and caused microtubule defects. Expression of genes in the terpenoid backbone and sterol biosynthesis pathways upstream of pregnenolone synthesis was coordinately downregulated in these embryos, including the most downregulated gene nsdhl. Loss of Nsdhl function likewise impaired epiboly, similar to MondoA loss of function. Both epiboly and microtubule defects were partially restored by pregnenolone treatment. Maternal-zygotic mutants of mondoa showed perturbed epiboly with low penetrance and compensatory changes in the expression of terpenoid/sterol/steroid metabolism genes. Collectively, our results show a novel role for MondoA in the regulation of early vertebrate development, connecting glucose, cholesterol and steroid hormone metabolism with early embryonic cell movements.
Collapse
Affiliation(s)
- Meltem Weger
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
- Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - Benjamin D Weger
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
- Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
- Nestlé Institute of Health Sciences SA, EPFL Innovation ParkLausanneSwitzerland
| | - Andrea Schink
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| | - Masanari Takamiya
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| | - Johannes Stegmaier
- Institute for Automation and Applied Informatics, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| | - Cédric Gobet
- Nestlé Institute of Health Sciences SA, EPFL Innovation ParkLausanneSwitzerland
| | - Alice Parisi
- Nestlé Institute of Health Sciences SA, EPFL Innovation ParkLausanneSwitzerland
| | - Andrei Yu Kobitski
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
- Institute of Applied Physics, Karlsruhe Institute of TechnologyKarlsruheGermany
| | - Jonas Mertes
- Institute of Applied Physics, Karlsruhe Institute of TechnologyKarlsruheGermany
| | - Nils Krone
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Uwe Strähle
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| | - Gerd Ulrich Nienhaus
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
- Institute of Applied Physics, Karlsruhe Institute of TechnologyKarlsruheGermany
- Department of Physics, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Institute of Nanotechnology, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| | - Ralf Mikut
- Institute for Automation and Applied Informatics, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| | - Frédéric Gachon
- Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
- Nestlé Institute of Health Sciences SA, EPFL Innovation ParkLausanneSwitzerland
| | - Philipp Gut
- Nestlé Institute of Health Sciences SA, EPFL Innovation ParkLausanneSwitzerland
| | - Thomas Dickmeis
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| |
Collapse
|
6
|
He M, Zhang R, Jiao S, Zhang F, Ye D, Wang H, Sun Y. Nanog safeguards early embryogenesis against global activation of maternal β-catenin activity by interfering with TCF factors. PLoS Biol 2020; 18:e3000561. [PMID: 32702011 PMCID: PMC7402524 DOI: 10.1371/journal.pbio.3000561] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 08/04/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Maternal β-catenin activity is essential and critical for dorsal induction and its dorsal activation has been thoroughly studied. However, how the maternal β-catenin activity is suppressed in the nondorsal cells remains poorly understood. Nanog is known to play a central role for maintenance of the pluripotency and maternal -zygotic transition (MZT). Here, we reveal a novel role of Nanog as a strong repressor of maternal β-catenin signaling to safeguard the embryo against hyperactivation of maternal β-catenin activity and hyperdorsalization. In zebrafish, knockdown of nanog at different levels led to either posteriorization or dorsalization, mimicking zygotic or maternal activation of Wnt/β-catenin activities, and the maternal zygotic mutant of nanog (MZnanog) showed strong activation of maternal β-catenin activity and hyperdorsalization. Although a constitutive activator-type Nanog (Vp16-Nanog, lacking the N terminal) perfectly rescued the MZT defects of MZnanog, it did not rescue the phenotypes resulting from β-catenin signaling activation. Mechanistically, the N terminal of Nanog directly interacts with T-cell factor (TCF) and interferes with the binding of β-catenin to TCF, thereby attenuating the transcriptional activity of β-catenin. Therefore, our study establishes a novel role for Nanog in repressing maternal β-catenin activity and demonstrates a transcriptional switch between β-catenin/TCF and Nanog/TCF complexes, which safeguards the embryo from global activation of maternal β-catenin activity. Maternal β-catenin activity induces the primary dorsal axis during early development, but how the activity is suppressed in the non-dorsal cells remains poorly understood. This study reveals Nanog as a strong repressor of nuclear β-catenin to safeguard embryogenesis against global activation of maternal β-catenin activity and hyper-dorsalization in zebrafish.
Collapse
Affiliation(s)
- Mudan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ru Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shengbo Jiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fenghua Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ding Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Houpeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
7
|
Fuentes R, Tajer B, Kobayashi M, Pelliccia JL, Langdon Y, Abrams EW, Mullins MC. The maternal coordinate system: Molecular-genetics of embryonic axis formation and patterning in the zebrafish. Curr Top Dev Biol 2020; 140:341-389. [PMID: 32591080 DOI: 10.1016/bs.ctdb.2020.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Axis specification of the zebrafish embryo begins during oogenesis and relies on proper formation of well-defined cytoplasmic domains within the oocyte. Upon fertilization, maternally-regulated cytoplasmic flow and repositioning of dorsal determinants establish the coordinate system that will build the structure and developmental body plan of the embryo. Failure of specific genes that regulate the embryonic coordinate system leads to catastrophic loss of body structures. Here, we review the genetic principles of axis formation and discuss how maternal factors orchestrate axis patterning during zebrafish early embryogenesis. We focus on the molecular identity and functional contribution of genes controlling critical aspects of oogenesis, egg activation, blastula, and gastrula stages. We examine how polarized cytoplasmic domains form in the oocyte, which set off downstream events such as animal-vegetal polarity and germ line development. After gametes interact and form the zygote, cytoplasmic segregation drives the animal-directed reorganization of maternal determinants through calcium- and cell cycle-dependent signals. We also summarize how maternal genes control dorsoventral, anterior-posterior, mesendodermal, and left-right cell fate specification and how signaling pathways pattern these axes and tissues during early development to instruct the three-dimensional body plan. Advances in reverse genetics and phenotyping approaches in the zebrafish model are revealing positional patterning signatures at the single-cell level, thus enhancing our understanding of genotype-phenotype interactions in axis formation. Our emphasis is on the genetic interrogation of novel and specific maternal regulatory mechanisms of axis specification in the zebrafish.
Collapse
Affiliation(s)
- Ricardo Fuentes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| | - Benjamin Tajer
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Manami Kobayashi
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Jose L Pelliccia
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | | | - Elliott W Abrams
- Department of Biology, Purchase College, State University of New York, Harrison, NY, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
8
|
|
9
|
Abstract
Soon after fertilization the zebrafish embryo generates the pool of cells that will give rise to the germline and the three somatic germ layers of the embryo (ectoderm, mesoderm and endoderm). As the basic body plan of the vertebrate embryo emerges, evolutionarily conserved developmental signaling pathways, including Bmp, Nodal, Wnt, and Fgf, direct the nearly totipotent cells of the early embryo to adopt gene expression profiles and patterns of cell behavior specific to their eventual fates. Several decades of molecular genetics research in zebrafish has yielded significant insight into the maternal and zygotic contributions and mechanisms that pattern this vertebrate embryo. This new understanding is the product of advances in genetic manipulations and imaging technologies that have allowed the field to probe the cellular, molecular and biophysical aspects underlying early patterning. The current state of the field indicates that patterning is governed by the integration of key signaling pathways and physical interactions between cells, rather than a patterning system in which distinct pathways are deployed to specify a particular cell fate. This chapter focuses on recent advances in our understanding of the genetic and molecular control of the events that impart cell identity and initiate the patterning of tissues that are prerequisites for or concurrent with movements of gastrulation.
Collapse
Affiliation(s)
- Florence L Marlow
- Icahn School of Medicine Mount Sinai Department of Cell, Developmental and Regenerative Biology, New York, NY, United States.
| |
Collapse
|
10
|
Pshennikova ES, Voronina AS. The ved protein patterning in zebrafish embryos. Stem Cell Investig 2018; 5:17. [PMID: 29984226 DOI: 10.21037/sci.2018.05.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/09/2018] [Indexed: 11/06/2022]
Abstract
Homeobox transcription factors play an essential role in cells differentiation. The function is realized by the proteins (not by the mRNA) and it is necessary to pay more attention to the protein patterns. In this study we were the first to obtain antibodies against the ved protein, tested their specificity by Western-blot analysis and performed a whole mount immunostaining of zebrafish embryos. It was shown that the spatial-temporal ved protein pattern did not differ from that of other vent-family factors. And moreover, its synthesis like that of vox and vent did not depend on pou5f3.
Collapse
Affiliation(s)
- Elena S Pshennikova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology RAS, Moscow, Russia
| | - Anna S Voronina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology RAS, Moscow, Russia
| |
Collapse
|
11
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
12
|
Kobayashi K, Khan A, Ikeda M, Nakamoto A, Maekawa M, Yamasu K. In vitro analysis of the transcriptional regulatory mechanism of zebrafish pou5f3. Exp Cell Res 2018; 364:28-41. [PMID: 29366809 DOI: 10.1016/j.yexcr.2018.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/11/2017] [Accepted: 01/17/2018] [Indexed: 12/18/2022]
Abstract
Zebrafish pou5f3 (previously named pou2), a close homologue of mouse Oct4, encodes a PouV-family transcription factor. pou5f3 has been implicated in diverse aspects of developmental regulation during embryogenesis. In the present study, we addressed the molecular function of Pou5f3 as a transcriptional regulator and the mechanism by which pou5f3 expression is transcriptionally regulated. We examined the influence of effector genes on the expression of the luciferase gene under the control of the upstream 2.1-kb regulatory DNA of pou5f3 (Luc-2.2) in HEK293T and P19 cells. We first confirmed that Pou5f3 functions as a transcriptional activator both in cultured cells and embryos, which confirmed autoregulation of pou5f3 in embryos. It was further shown that Luc-2.2 was activated synergistically by pou5f3 and sox3, which is similar to the co-operative activity of Oct4 and Sox2 in mice, although synergy between pou5f3 and sox2 was less obvious in this zebrafish system. The effects of pou5f3 deletion constructs on the regulation of Luc-2.2 expression revealed different roles for the three subregions of the N-terminal region in Pou5f3 in terms of its regulatory functions and co-operativity with Sox3. Electrophoretic mobility shift assays confirmed that Pou5f3 and Sox3 proteins specifically bind to adjacent sites in the 2.1-kb DNA and that there is an interaction between the two proteins. The synergy with sox3 was unique to pou5f3-the other POU factor genes examined did not show such synergy in Luc-2.2 regulation. Finally, functional interaction was observed between pou5f3 and sox3 in embryos in terms of the regulation of dorsoventral patterning and convergent extension movement. These findings together demonstrate co-operative functions of pou5f3 and sox3, which are frequently coexpressed in early embryos, in the regulation of early development.
Collapse
Affiliation(s)
- Kana Kobayashi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Alam Khan
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Masaaki Ikeda
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Andrew Nakamoto
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Masato Maekawa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Kyo Yamasu
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan; Saitama University Brain Science Institute, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan.
| |
Collapse
|
13
|
Genthe JR, Min J, Farmer DM, Shelat AA, Grenet JA, Lin W, Finkelstein D, Vrijens K, Chen T, Guy RK, Clements WK, Roussel MF. Ventromorphins: A New Class of Small Molecule Activators of the Canonical BMP Signaling Pathway. ACS Chem Biol 2017; 12:2436-2447. [PMID: 28787124 DOI: 10.1021/acschembio.7b00527] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Here, we describe three new small-molecule activators of BMP signaling found by high throughput screening of a library of ∼600 000 small molecules. Using a cell-based luciferase assay in the BMP4-responsive human cervical carcinoma clonal cell line, C33A-2D2, we identified three compounds with similar chemotypes that each ventralize zebrafish embryos and stimulate increased expression of the BMP target genes, bmp2b and szl. Because these compounds ventralize zebrafish embryos, we have termed them "ventromorphins." As expected for a BMP pathway activator, they induce the differentiation of C2C12 myoblasts to osteoblasts. Affymetrix RNA analysis confirmed the differentiation results and showed that ventromorphins treatment elicits a genetic response similar to BMP4 treatment. Unlike isoliquiritigenin (SJ000286237), a flavone that maximally activates the pathway after 24 h of treatment, all three ventromorphins induced SMAD1/5/8 phosphorylation within 30 min of treatment and achieved peak activity within 1 h, indicating that their responses are consistent with directly activating BMP signaling.
Collapse
Affiliation(s)
- Jamie R. Genthe
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Jaeki Min
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Dana M. Farmer
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Anang A. Shelat
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Jose A. Grenet
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Wenwei Lin
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - David Finkelstein
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Karen Vrijens
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Taosheng Chen
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - R. Kiplin Guy
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Wilson K. Clements
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Martine F. Roussel
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
14
|
Pshennikova ES, Tereshina MB, Voronina AS. Expression of vox and vent mRNAs and encoded proteins in zebrafish embryos. Stem Cell Investig 2017; 4:60. [PMID: 28725656 DOI: 10.21037/sci.2017.06.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/24/2017] [Indexed: 01/06/2023]
Abstract
In Danio rerio (zebrafish), members of the vent gene-family (vox/vega1, vent/vega2) are considered as ventralizing factors. We investigated not only the expression of their mRNAs by in situ hybridization at different stages of embryonic development, but also the spatial distribution of the encoded proteins by whole-mount immunostaining. We showed vox mRNA to be available in embryos since early cleavage and later on. Vent mRNA appeared after zygotic genome activation only. The vox and vent proteins were revealed at stage of eight blastomeres. At blastula and gastrula the vox and vent protein staining areas completely overlapped those of the mRNAs. They were expressed uniformly throughout the embryo except for a small region of clearing on the dorsal side. From the bud stage throughout somitogenesis, the vox and vent proteins staining progressively covered the embryos except for dorsal side: at the bud stage it resembled that of mRNA and at the beginning of somitogenesis it was clearly seen along the axis structures. At the pharyngula period stages the proteins were located in neural crest zone, but their mRNAs appeared to be in the tail tips. Thus during embryogenesis, the spatial distributions of a protein and its mRNA may not always quite coincide. We observed such mismatches in embryos at the cleavage stage and in the pharyngula period.
Collapse
Affiliation(s)
- Elena S Pshennikova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology RAS, Moscow, Russia
| | - Maria B Tereshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Anna S Voronina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology RAS, Moscow, Russia
| |
Collapse
|
15
|
Houston DW. Vertebrate Axial Patterning: From Egg to Asymmetry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:209-306. [PMID: 27975274 PMCID: PMC6550305 DOI: 10.1007/978-3-319-46095-6_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emergence of the bilateral embryonic body axis from a symmetrical egg has been a long-standing question in developmental biology. Historical and modern experiments point to an initial symmetry-breaking event leading to localized Wnt and Nodal growth factor signaling and subsequent induction and formation of a self-regulating dorsal "organizer." This organizer forms at the site of notochord cell internalization and expresses primarily Bone Morphogenetic Protein (BMP) growth factor antagonists that establish a spatiotemporal gradient of BMP signaling across the embryo, directing initial cell differentiation and morphogenesis. Although the basics of this model have been known for some time, many of the molecular and cellular details have only recently been elucidated and the extent that these events remain conserved throughout vertebrate evolution remains unclear. This chapter summarizes historical perspectives as well as recent molecular and genetic advances regarding: (1) the mechanisms that regulate symmetry-breaking in the vertebrate egg and early embryo, (2) the pathways that are activated by these events, in particular the Wnt pathway, and the role of these pathways in the formation and function of the organizer, and (3) how these pathways also mediate anteroposterior patterning and axial morphogenesis. Emphasis is placed on comparative aspects of the egg-to-embryo transition across vertebrates and their evolution. The future prospects for work regarding self-organization and gene regulatory networks in the context of early axis formation are also discussed.
Collapse
Affiliation(s)
- Douglas W Houston
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA, 52242, USA.
| |
Collapse
|
16
|
The proteins of Vent-family and their mRNAs are located in different areas of the tails of Zebrafish and Xenopus embryos. Int J Biochem Cell Biol 2016; 79:388-392. [DOI: 10.1016/j.biocel.2016.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/02/2016] [Accepted: 09/09/2016] [Indexed: 12/11/2022]
|
17
|
Perez-Camps M, Tian J, Chng SC, Sem KP, Sudhaharan T, Teh C, Wachsmuth M, Korzh V, Ahmed S, Reversade B. Quantitative imaging reveals real-time Pou5f3-Nanog complexes driving dorsoventral mesendoderm patterning in zebrafish. eLife 2016; 5. [PMID: 27684073 PMCID: PMC5042653 DOI: 10.7554/elife.11475] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 08/04/2016] [Indexed: 12/11/2022] Open
Abstract
Formation of the three embryonic germ layers is a fundamental developmental process that initiates differentiation. How the zebrafish pluripotency factor Pou5f3 (homologous to mammalian Oct4) drives lineage commitment is unclear. Here, we introduce fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy to assess the formation of Pou5f3 complexes with other transcription factors in real-time in gastrulating zebrafish embryos. We show, at single-cell resolution in vivo, that Pou5f3 complexes with Nanog to pattern mesendoderm differentiation at the blastula stage. Later, during gastrulation, Sox32 restricts Pou5f3–Nanog complexes to the ventrolateral mesendoderm by binding Pou5f3 or Nanog in prospective dorsal endoderm. In the ventrolateral endoderm, the Elabela / Aplnr pathway limits Sox32 levels, allowing the formation of Pou5f3–Nanog complexes and the activation of downstream BMP signaling. This quantitative model shows that a balance in the spatiotemporal distribution of Pou5f3–Nanog complexes, modulated by Sox32, regulates mesendoderm specification along the dorsoventral axis. DOI:http://dx.doi.org/10.7554/eLife.11475.001 As an animal embryo develops, cells divide and establish three distinct layers called the ectoderm, mesoderm and endoderm. Proteins called transcription factors control this process by regulating the activity of particular genes. Two or more transcription factors may interact to modulate each other’s activity. Zebrafish embryos provide an ideal model system for monitoring how these embryonic layers form and the interactions between transcription factors in real-time because they are transparent and develop outside their parents. Pou5f3 and Nanog are two key transcription factors involved in this process in zebrafish. However, it is not clear how Pou5f3 and Nanog instruct cells to become ectoderm, mesoderm or endoderm. Perez Camps et al. used imaging techniques to study Pou5f3 and Nanog. The experiments show that Pou5f3 and Nanog bind together to form complexes that instruct cells to form the temporary layer that later gives rise to both the mesoderm and endoderm. The cells in which there are less Pou5f3 and Nanog complexes form the ectoderm layer. To develop the body shape of adult zebrafish, the embryos need to give individual cells information about their location in the body. For example, a signal protein called bone morphogenetic protein (BMP) accumulates on the side of the embryo that will become the underside of the fish. Perez Camps et al. show that once the endoderm, mesoderm and ectoderm have formed, Pou5f3–Nanog complexes regulate BMP signalling to specify the underside of the fish. Meanwhile, in the endoderm on the opposite side, another transcription factor called Sox32 binds to individual Pou5f3 and Nanog proteins. This prevents Pou5f3 and Nanog from forming complexes and determines which side of the embryo will make the topside of the fish. A future challenge is to explore other transcription factors that may prevent Pou5f1 and Nanog from binding in the mesoderm and ectoderm of the topside of the fish. DOI:http://dx.doi.org/10.7554/eLife.11475.002
Collapse
Affiliation(s)
| | - Jing Tian
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - Serene C Chng
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - Kai Pin Sem
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | | | - Cathleen Teh
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Malte Wachsmuth
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Vladimir Korzh
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Sohail Ahmed
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - Bruno Reversade
- Institute of Medical Biology, A*STAR, Singapore, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| |
Collapse
|
18
|
Fabian P, Pantzartzi CN, Kozmikova I, Kozmik Z. vox homeobox gene: a novel regulator of midbrain-hindbrain boundary development in medaka fish? Dev Genes Evol 2016; 226:99-107. [PMID: 26965282 DOI: 10.1007/s00427-016-0533-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/17/2016] [Indexed: 11/27/2022]
Abstract
The midbrain-hindbrain boundary (MHB) is one of the key organizing centers of the vertebrate central nervous system (CNS). Its patterning is governed by a well-described gene regulatory network (GRN) involving several transcription factors, namely, pax, gbx, en, and otx, together with signaling molecules of the Wnt and Fgf families. Here, we describe the onset of these markers in Oryzias latipes (medaka) early brain development in comparison to previously known zebrafish expression patterns. Moreover, we show for the first time that vox, a member of the vent gene family, is expressed in the developing neural tube similarly to CNS markers. Overexpression of vox leads to profound changes in the gene expression patterns of individual components of MHB-specific GRN, most notably of fgf8, a crucial organizer molecule of MHB. Our data suggest that genes from the vent family, in addition to their crucial role in body axis formation, may play a role in regionalization of vertebrate CNS.
Collapse
Affiliation(s)
- Peter Fabian
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, Czech Republic
| | - Chrysoula N Pantzartzi
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, Czech Republic
| | - Iryna Kozmikova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, Czech Republic
| | - Zbynek Kozmik
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, Czech Republic.
| |
Collapse
|
19
|
Kiecker C, Bates T, Bell E. Molecular specification of germ layers in vertebrate embryos. Cell Mol Life Sci 2016; 73:923-47. [PMID: 26667903 PMCID: PMC4744249 DOI: 10.1007/s00018-015-2092-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/11/2015] [Accepted: 11/09/2015] [Indexed: 11/17/2022]
Abstract
In order to generate the tissues and organs of a multicellular organism, different cell types have to be generated during embryonic development. The first step in this process of cellular diversification is the formation of the three germ layers: ectoderm, endoderm and mesoderm. The ectoderm gives rise to the nervous system, epidermis and various neural crest-derived tissues, the endoderm goes on to form the gastrointestinal, respiratory and urinary systems as well as many endocrine glands, and the mesoderm will form the notochord, axial skeleton, cartilage, connective tissue, trunk muscles, kidneys and blood. Classic experiments in amphibian embryos revealed the tissue interactions involved in germ layer formation and provided the groundwork for the identification of secreted and intracellular factors involved in this process. We will begin this review by summarising the key findings of those studies. We will then evaluate them in the light of more recent genetic studies that helped clarify which of the previously identified factors are required for germ layer formation in vivo, and to what extent the mechanisms identified in amphibians are conserved across other vertebrate species. Collectively, these studies have started to reveal the gene regulatory network (GRN) underlying vertebrate germ layer specification and we will conclude our review by providing examples how our understanding of this GRN can be employed to differentiate stem cells in a targeted fashion for therapeutic purposes.
Collapse
Affiliation(s)
- Clemens Kiecker
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK
| | - Thomas Bates
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Esther Bell
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK.
| |
Collapse
|
20
|
Tuazon FB, Mullins MC. Temporally coordinated signals progressively pattern the anteroposterior and dorsoventral body axes. Semin Cell Dev Biol 2015; 42:118-33. [PMID: 26123688 PMCID: PMC4562868 DOI: 10.1016/j.semcdb.2015.06.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
The vertebrate body plan is established through the precise spatiotemporal coordination of morphogen signaling pathways that pattern the anteroposterior (AP) and dorsoventral (DV) axes. Patterning along the AP axis is directed by posteriorizing signals Wnt, fibroblast growth factor (FGF), Nodal, and retinoic acid (RA), while patterning along the DV axis is directed by bone morphogenetic proteins (BMP) ventralizing signals. This review addresses the current understanding of how Wnt, FGF, RA and BMP pattern distinct AP and DV cell fates during early development and how their signaling mechanisms are coordinated to concomitantly pattern AP and DV tissues.
Collapse
Affiliation(s)
- Francesca B Tuazon
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States.
| |
Collapse
|
21
|
Thisse B, Thisse C. Formation of the vertebrate embryo: Moving beyond the Spemann organizer. Semin Cell Dev Biol 2015; 42:94-102. [PMID: 25999320 DOI: 10.1016/j.semcdb.2015.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022]
Abstract
During the course of their classic experiments, Hilde Mangold and Hans Spemann discovered that the dorsal blastopore lip of an amphibian gastrula was able to induce formation of a complete embryonic axis when transplanted into the ventral side of a host gastrula embryo. Since then, the inducing activity of the dorsal lip has been known as the Spemann or dorsal organizer. During the past 25 years, studies performed in a variety of species have led to the identification of molecular factors associated with the properties of this tissue. However, none of them is, by itself, able to induce formation of the main body axis from a population of naive pluripotent embryonic cells. Recently, experiments performed using the zebrafish (Danio rerio) revealed that the organizing activities present in the embryo are not restricted to the Spemann organizer but are distributed along the entire blastula/gastrula margin. These organizing activities result from the interaction between two opposing gradients of morphogens, BMP and Nodal, that are the primary signals that trigger the cascade of developmental events leading to the organization of the embryo. These studies mark the end of the era during which developmental biologists saw the Spemann organizer as the core element for the organization of the vertebrate embryonic axis and, instead, provides opportunities for the experimental control of morphogenesis starting with a population of embryonic pluripotent cells that will be instructed using those two morphogen gradients.
Collapse
Affiliation(s)
- Bernard Thisse
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Christine Thisse
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
22
|
Moreno-Ayala R, Schnabel D, Salas-Vidal E, Lomelí H. PIAS-like protein Zimp7 is required for the restriction of the zebrafish organizer and mesoderm development. Dev Biol 2015; 403:89-100. [PMID: 25912688 DOI: 10.1016/j.ydbio.2015.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/30/2015] [Accepted: 04/03/2015] [Indexed: 12/16/2022]
Abstract
The Zmiz2 (Zimp7) protein and its homolog Zmiz1 (Zimp10) were initially identified in humans as androgen receptor co-activators. Sequence analysis revealed the presence of an SP-RING/Miz domain, which is highly conserved in members of the PIAS family and confers SUMO-conjugating activity. Zimp7 has been shown to interact with components of the Wnt/β-Catenin signaling pathway and with Brg1 and BAF57, components of the ATP-dependent mammalian SWI/SNF-like BAF chromatin-remodeling complexes. In this work, we analyze the role of zygotic Zimp7 in zebrafish development. We describe evidence indicating that Zimp7 is required for mesoderm development and dorsoventral patterning. Morpholino-mediated reduction of zygotic Zimp7 produced axial mesodermal defects that were preceded by up-regulation of organizer genes such as bozozok, goosecoid and floating head at the onset of gastrulation and by down-regulation of the ventral markers vox, vent and eve1 indicating loss of the ventrolateral mesoderm. Consistently, embryos overexpressing zimp7 RNA exhibited midline defects such as loss of forebrain and cyclopia accompanied by transcriptional changes directly opposite of those found in the morphants. In addition, the patterning of ventralized embryos produced by the overexpression of vox and vent was restored by a reduction of Zimp7 activity. Altogether, our findings indicate that Zimp7 is involved in transcriptional regulation of factors that are essential for patterning in the dorsoventral axis.
Collapse
Affiliation(s)
- Roberto Moreno-Ayala
- Departamento de Genética del Desarrollo y Fisiología Molecular Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico
| | - Denhí Schnabel
- Departamento de Genética del Desarrollo y Fisiología Molecular Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico
| | - Enrique Salas-Vidal
- Departamento de Genética del Desarrollo y Fisiología Molecular Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico
| | - Hilda Lomelí
- Departamento de Genética del Desarrollo y Fisiología Molecular Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
23
|
Feng L, Jiang H, Wu P, Marlow FL. Negative feedback regulation of Wnt signaling via N-linked fucosylation in zebrafish. Dev Biol 2014; 395:268-86. [PMID: 25238963 DOI: 10.1016/j.ydbio.2014.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 07/25/2014] [Accepted: 09/09/2014] [Indexed: 01/05/2023]
Abstract
L-fucose, a monosaccharide widely distributed in eukaryotes and certain bacteria, is a determinant of many functional glycans that play central roles in numerous biological processes. The molecular mechanism, however, by which fucosylation mediates these processes remains largely elusive. To study how changes in fucosylation impact embryonic development, we up-regulated N-linked fucosylation via over-expression of a key GDP-Fucose transporter, Slc35c1, in zebrafish. We show that Slc35c1 overexpression causes elevated N-linked fucosylation and disrupts embryonic patterning in a transporter activity dependent manner. We demonstrate that patterning defects associated with enhanced N-linked fucosylation are due to diminished canonical Wnt signaling. Chimeric analyses demonstrate that elevated Slc35c1 expression in receiving cells decreases the signaling range of Wnt8a during zebrafish embryogenesis. Moreover, we provide biochemical evidence that this decrease is associated with reduced Wnt8 ligand and elevated Lrp6 coreceptor, which we show are both substrates for N-linked fucosylation in zebrafish embryos. Strikingly, slc35c1 expression is regulated by canonical Wnt signaling. These results suggest that Wnt limits its own signaling activity in part via up-regulation of a transporter, slc35c1 that promotes terminal fucosylation and thereby limits Wnt activity.
Collapse
Affiliation(s)
- Lei Feng
- Department of Biochemistry, Albert Einstein College of Medicine Yeshiva University, Bronx, NY 10461, USA
| | - Hao Jiang
- Department of Biochemistry, Albert Einstein College of Medicine Yeshiva University, Bronx, NY 10461, USA
| | - Peng Wu
- Department of Biochemistry, Albert Einstein College of Medicine Yeshiva University, Bronx, NY 10461, USA.
| | - Florence L Marlow
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine Yeshiva University, Bronx, NY 10461, USA
| |
Collapse
|
24
|
Xu T, Zhao J, Hu P, Dong Z, Li J, Zhang H, Yin D, Zhao Q. Pentachlorophenol exposure causes Warburg-like effects in zebrafish embryos at gastrulation stage. Toxicol Appl Pharmacol 2014; 277:183-91. [PMID: 24642059 DOI: 10.1016/j.taap.2014.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 02/21/2014] [Accepted: 03/04/2014] [Indexed: 12/31/2022]
Abstract
Pentachlorophenol (PCP) is a prevalent pollutant in the environment and has been demonstrated to be a serious toxicant to humans and animals. However, little is known regarding the molecular mechanism underlying its toxic effects on vertebrate early development. To explore the impacts and underlying mechanisms of PCP on early development, zebrafish (Danio rerio) embryos were exposed to PCP at concentrations of 0, 20 and 50 μg/L, and microscopic observation and cDNA microarray analysis were subsequently conducted at gastrulation stage. The morphological observations revealed that PCP caused a developmental delay of zebrafish embryos in a concentration-dependent manner. Transcriptomic data showed that 50 μg/L PCP treatment resulted in significant changes in gene expression level, and the genes involved in energy metabolism and cell behavior were identified based on gene functional enrichment analysis. The energy production of embryos was influenced by PCP via the activation of glycolysis along with the inhibition of oxidative phosphorylation (OXPHOS). The results suggested that PCP acts as an inhibitor of OXPHOS at 8 hpf (hours postfertilization). Consistent with the activated glycolysis, the cell cycle activity of PCP-treated embryos was higher than the controls. These characteristics are similar to the Warburg effect, which occurs in human tumors. The microinjection of exogenous ATP confirmed that an additional energy supply could rescue PCP-treated embryos from the developmental delay due to the energy deficit. Taken together, our results demonstrated that PCP causes a Warburg-like effect on zebrafish embryos during gastrulation, and the affected embryos had the phenotype of developmental delay.
Collapse
Affiliation(s)
- Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Technology, Tongji University, Shanghai 200092, China
| | - Jing Zhao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Technology, Tongji University, Shanghai 200092, China
| | - Ping Hu
- Key Laboratory of Model Animal for Disease Study, Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing 210061, China; State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China
| | - Zhangji Dong
- Key Laboratory of Model Animal for Disease Study, Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Jingyun Li
- Key Laboratory of Model Animal for Disease Study, Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Hongchang Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Technology, Tongji University, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Technology, Tongji University, Shanghai 200092, China.
| | - Qingshun Zhao
- Key Laboratory of Model Animal for Disease Study, Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing 210061, China.
| |
Collapse
|
25
|
He Y, Xu X, Zhao S, Ma S, Sun L, Liu Z, Luo C. Maternal control of axial-paraxial mesoderm patterning via direct transcriptional repression in zebrafish. Dev Biol 2013; 386:96-110. [PMID: 24296303 DOI: 10.1016/j.ydbio.2013.11.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 11/01/2013] [Accepted: 11/18/2013] [Indexed: 11/28/2022]
Abstract
Axial-paraxial mesoderm patterning is a special dorsal-ventral patterning event of establishing the vertebrate body plan. Though dorsal-ventral patterning has been extensively studied, the initiation of axial-paraxial mesoderm pattering remains largely unrevealed. In zebrafish, spt cell-autonomously regulates paraxial mesoderm specification and flh represses spt expression to promote axial mesoderm fate, but the expression domains of spt and flh initially overlap in the entire marginal zone of the embryo. Defining spt and flh territories is therefore a premise of axial-paraxial mesoderm patterning. In this study, we investigated why and how the initial expression of flh becomes repressed in the ventrolateral marginal cells during blastula stage. Loss- and gain-of-function experiments showed that a maternal transcription factor Vsx1 is essential for restricting flh expression within the dorsal margin and preserving spt expression and paraxial mesoderm specification in the ventrolateral margin of embryo. Chromatin immunoprecipitation and electrophoretic mobility shift assays in combination with core consensus sequence mutation analysis further revealed that Vsx1 can directly repress flh by binding to the proximal promoter at a specific site. Inhibiting maternal vsx1 translation resulted in confusion of axial and paraxial mesoderm markers expression and axial-paraxial mesoderm patterning. These results demonstrated that direct transcriptional repression of the decisive axial mesoderm gene by maternal ventralizing factor is a crucial regulatory mechanism of initiating axial-paraxial mesoderm patterning in vertebrates.
Collapse
Affiliation(s)
- Ying He
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang, People's Republic of China
| | - Xiaofeng Xu
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang, People's Republic of China
| | - Shufang Zhao
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang, People's Republic of China
| | - Shanshan Ma
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang, People's Republic of China
| | - Lei Sun
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang, People's Republic of China
| | - Zhenghua Liu
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang, People's Republic of China
| | - Chen Luo
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang, People's Republic of China.
| |
Collapse
|
26
|
Kapp LD, Abrams EW, Marlow FL, Mullins MC. The integrator complex subunit 6 (Ints6) confines the dorsal organizer in vertebrate embryogenesis. PLoS Genet 2013; 9:e1003822. [PMID: 24204286 PMCID: PMC3814294 DOI: 10.1371/journal.pgen.1003822] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 08/08/2013] [Indexed: 11/19/2022] Open
Abstract
Dorsoventral patterning of the embryonic axis relies upon the mutual antagonism of competing signaling pathways to establish a balance between ventralizing BMP signaling and dorsal cell fate specification mediated by the organizer. In zebrafish, the initial embryo-wide domain of BMP signaling is refined into a morphogenetic gradient following activation dorsally of a maternal Wnt pathway. The accumulation of β-catenin in nuclei on the dorsal side of the embryo then leads to repression of BMP signaling dorsally and the induction of dorsal cell fates mediated by Nodal and FGF signaling. A separate Wnt pathway operates zygotically via Wnt8a to limit dorsal cell fate specification and maintain the expression of ventralizing genes in ventrolateral domains. We have isolated a recessive dorsalizing maternal-effect mutation disrupting the gene encoding Integrator Complex Subunit 6 (Ints6). Due to widespread de-repression of dorsal organizer genes, embryos from mutant mothers fail to maintain expression of BMP ligands, fail to fully express vox and ved, two mediators of Wnt8a, display delayed cell movements during gastrulation, and severe dorsalization. Consistent with radial dorsalization, affected embryos display multiple independent axial domains along with ectopic dorsal forerunner cells. Limiting Nodal signaling or restoring BMP signaling restores wild-type patterning to affected embryos. Our results are consistent with a novel role for Ints6 in restricting the vertebrate organizer to a dorsal domain in embryonic patterning.
Collapse
Affiliation(s)
- Lee D. Kapp
- Perelman School of Medicine at the University of Pennsylvania, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States of America
| | - Elliott W. Abrams
- Perelman School of Medicine at the University of Pennsylvania, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States of America
| | - Florence L. Marlow
- Perelman School of Medicine at the University of Pennsylvania, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States of America
| | - Mary C. Mullins
- Perelman School of Medicine at the University of Pennsylvania, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
27
|
Kumari P, Gilligan PC, Lim S, Tran LD, Winkler S, Philp R, Sampath K. An essential role for maternal control of Nodal signaling. eLife 2013; 2:e00683. [PMID: 24040511 PMCID: PMC3771576 DOI: 10.7554/elife.00683] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 08/06/2013] [Indexed: 12/26/2022] Open
Abstract
Growth factor signaling is essential for pattern formation, growth, differentiation, and maintenance of stem cell pluripotency. Nodal-related signaling factors are required for axis formation and germ layer specification from sea urchins to mammals. Maternal transcripts of the zebrafish Nodal factor, Squint (Sqt), are localized to future embryonic dorsal. The mechanisms by which maternal sqt/nodal RNA is localized and regulated have been unclear. Here, we show that maternal control of Nodal signaling via the conserved Y box-binding protein 1 (Ybx1) is essential. We identified Ybx1 via a proteomic screen. Ybx1 recognizes the 3’ untranslated region (UTR) of sqt RNA and prevents premature translation and Sqt/Nodal signaling. Maternal-effect mutations in zebrafish ybx1 lead to deregulated Nodal signaling, gastrulation failure, and embryonic lethality. Implanted Nodal-coated beads phenocopy ybx1 mutant defects. Thus, Ybx1 prevents ectopic Nodal activity, revealing a new paradigm in the regulation of Nodal signaling, which is likely to be conserved. DOI:http://dx.doi.org/10.7554/eLife.00683.001 In many organisms, embryonic development is controlled in part by RNAs that are deposited into the egg as it forms inside the mother. These ‘maternal RNAs’ may localize to particular regions of the egg or embryo, where they are then exclusively translated into protein and carry out their specific function. This helps to establish asymmetry in the developing organism—that is, to produce tissues that will eventually become the top or bottom, front or back, and left or right of the organism. One such maternal RNA encodes Nodal, a key signaling molecule that is conserved across vertebrate and some invertebrate organisms. In zebrafish, the equivalent RNA is called squint, and plays an important role in embryonic development. The squint RNA deposited by the mother localizes to the dorsal region—the embryo’s back—and signals that region to make dorsal tissues, but how squint is regulated is not well understood. Now, Kumari et al. identify a protein that controls the positioning of squint RNA, and find that it can also prevent this RNA from being translated into protein. The squint RNA contains a ‘dorsal localization element’ that recruits it to the dorsal cells of the embryo by the 4-cell stage (i.e., within two cell divisions after the egg is fertilized). Kumari et al. identified a protein called Ybx1 that could bind to this element: this protein may help to correctly position RNAs in many other organisms, including fruit flies and mammals. Strikingly, embryos formed abnormally when their maternally derived Ybx1 protein was mutant, and these mutations also prevented the squint RNA from localizing properly. This suggests that maternally derived Ybx1 protein directly regulates the squint RNA. As well as positioning the squint RNA correctly, the embryo must translate this RNA into protein at the right time. In embryos with mutant maternal Ybx1 protein, the Squint protein could be detected at the 16-cell stage, whereas in wild-type embryos this protein is not translated until the 256-cell stage; this indicates that Ybx1 protein might normally repress the translation of the squint RNA. Indeed, Kumari et al. found that Ybx1 binds to another protein—eIF4E—that recruits mRNAs to the ribosome (the cell’s translational machinery). Ybx1 might therefore prevent eIF4E from associating with other components of the ribosomal complex, and initiating the translation of the squint RNA, until additional signals have been received. It will be interesting to determine how widespread this regulatory mechanism is in other organisms. DOI:http://dx.doi.org/10.7554/eLife.00683.002
Collapse
Affiliation(s)
- Pooja Kumari
- Temasek Life Sciences Laboratory , National University of Singapore , Singapore , Singapore ; Department of Biological Sciences , National University of Singapore , Singapore , Singapore
| | | | | | | | | | | | | |
Collapse
|
28
|
Zhao J, Lambert G, Meijer AH, Rosa FM. The transcription factor Vox represses endoderm development by interacting with Casanova and Pou2. Development 2013; 140:1090-9. [DOI: 10.1242/dev.082008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Endoderm and mesoderm are both formed upon activation of Nodal signaling but how endoderm differentiates from mesoderm is still poorly explored. The sox-related gene casanova (sox32) acts downstream of the Nodal signal, is essential for endoderm development and requires the co-factor Pou2 (Pou5f1, Oct3, Oct4) in this process. Conversely, BMP signals have been shown to inhibit endoderm development by an as yet unexplained mechanism. In a search for Casanova regulators in zebrafish, we identified two of its binding partners as the transcription factors Pou2 and Vox, a member of the Vent group of proteins also involved in the patterning of the gastrula. In overexpression studies we show that vox and/or Vent group genes inhibit the capacity of Casanova to induce endoderm, even in the presence of its co-factor Pou2, and that Vox acts as a repressor in this process. We further show that vox, but not other members of the Vent group, is essential for defining the proper endodermal domain size at gastrulation. In this process, vox acts downstream of BMPs. Cell fate analysis further shows that Vox plays a key role downstream of BMP signals in regulating the capacity of Nodal to induce endoderm versus mesoderm by modulating the activity of the Casanova/Pou2 regulatory system.
Collapse
Affiliation(s)
- Jue Zhao
- INSERM U1024, F-75005 Paris, France
- CNRS UMR 8197, F-75005 Paris, France
- IBENS, Institut de Biologie de l’Ecole Normale Supérieure, F-75230 Paris, France
- College of Life Sciences, Peking University, Beijing 100871, P. R. China
| | - Guillaume Lambert
- INSERM U1024, F-75005 Paris, France
- CNRS UMR 8197, F-75005 Paris, France
- IBENS, Institut de Biologie de l’Ecole Normale Supérieure, F-75230 Paris, France
| | | | - Frederic M. Rosa
- INSERM U1024, F-75005 Paris, France
- CNRS UMR 8197, F-75005 Paris, France
- IBENS, Institut de Biologie de l’Ecole Normale Supérieure, F-75230 Paris, France
| |
Collapse
|
29
|
Abstract
The Wnt pathway is a major embryonic signaling pathway that controls cell proliferation, cell fate, and body-axis determination in vertebrate embryos. Soon after egg fertilization, Wnt pathway components play a role in microtubule-dependent dorsoventral axis specification. Later in embryogenesis, another conserved function of the pathway is to specify the anteroposterior axis. The dual role of Wnt signaling in Xenopus and zebrafish embryos is regulated at different developmental stages by distinct sets of Wnt target genes. This review highlights recent progress in the discrimination of different signaling branches and the identification of specific pathway targets during vertebrate axial development.
Collapse
Affiliation(s)
- Hiroki Hikasa
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | | |
Collapse
|
30
|
Pshennikova E, Voronina A. Expression of the transcription factor Xvent-2 in <i>Xenopus laevis</i> embryogenesis. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ajmb.2012.22014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Kalisz M, Winzi M, Bisgaard HC, Serup P. EVEN-SKIPPED HOMEOBOX 1 controls human ES cell differentiation by directly repressing GOOSECOID expression. Dev Biol 2011; 362:94-103. [PMID: 22178155 DOI: 10.1016/j.ydbio.2011.11.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 11/18/2011] [Accepted: 11/28/2011] [Indexed: 11/20/2022]
Abstract
TGFß signaling patterns the primitive streak, yet little is known about transcriptional effectors that mediate the cell fate choices during streak-like development in mammalian embryos and in embryonic stem (ES) cells. Here we demonstrate that cross-antagonistic actions of EVEN-SKIPPED HOMEOBOX 1 (EVX1) and GOOSECOID (GSC) regulate cell fate decisions in streak-like progenitors derived from human ES cells exposed to BMP4 and/or activin. We found that EVX1 repressed GSC expression and promoted formation of posterior streak-like progeny in response to BMP4, and conversely that GSC repressed EVX1 expression and was required for development of anterior streak-like progeny in response to activin. Chromatin immunoprecipitation assays showed that EVX1 bound to the GSC 5'-flanking region in BMP4 treated human ES cells, and band shift assays identified two EVX1 binding sites in the GSC 5'-region. Significantly, we found that intact EVX1 binding sites were required for BMP4-mediated repression of GSC reporter constructs. We conclude that BMP4-induced EVX1 repress GSC directly and the two genes form the core of a gene regulatory network (GRN) controlling cell fates in streak-like human ES cell progeny.
Collapse
Affiliation(s)
- Mark Kalisz
- Department of Developmental Biology, Hagedorn Research Institute, Gentofte, Denmark.
| | | | | | | |
Collapse
|
32
|
Abstract
Vertebrate development begins with precise molecular, cellular, and morphogenetic controls to establish the basic body plan of the embryo. In zebrafish, these tightly regulated processes begin during oogenesis and proceed through gastrulation to establish and pattern the axes of the embryo. During oogenesis a maternal factor is localized to the vegetal pole of the oocyte that is a determinant of dorsal tissues. Following fertilization this vegetally localized dorsal determinant is asymmetrically translocated in the egg and initiates formation of the dorsoventral axis. Dorsoventral axis formation and patterning is then mediated by maternal and zygotic factors acting through Wnt, BMP (bone morphogenetic protein), Nodal, and FGF (fibroblast growth factor) signaling pathways, each of which is required to establish and/or pattern the dorsoventral axis. This review addresses recent advances in our understanding of the molecular factors and mechanisms that establish and pattern the dorsoventral axis of the zebrafish embryo, including establishment of the animal-vegetal axis as it relates to formation of the dorsoventral axis.
Collapse
Affiliation(s)
- Yvette G Langdon
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
33
|
Belting HG, Wendik B, Lunde K, Leichsenring M, Mössner R, Driever W, Onichtchouk D. Pou5f1 contributes to dorsoventral patterning by positive regulation of vox and modulation of fgf8a expression. Dev Biol 2011; 356:323-36. [PMID: 21621531 DOI: 10.1016/j.ydbio.2011.05.660] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 05/05/2011] [Accepted: 05/06/2011] [Indexed: 12/18/2022]
Abstract
Pou5f1/Oct-4 in mice is required for maintenance of embryonic pluripotent cell populations. Zebrafish pou5f1 maternal-zygotic mutant embryos (spiel ohne grenzen; MZspg) lack endoderm and have gastrulation and dorsoventral patterning defects. A contribution of Pou5f1 to the control of bmp2b, bmp4 and vox expression has been suggested, however the mechanisms remained unclear and are investigated in detail here. Low-level overexpression of a Pou5f1-VP16 activator fusion protein can rescue dorsalization in MZspg mutants, indicating that Pou5f1 acts as a transcriptional activator during dorsoventral patterning. Overexpression of larger quantities of Pou5f1-VP16 can ventralize wild-type embryos, while overexpression of a Pou5f1-En repressor fusion protein can dorsalize embryos. Lack of Pou5f1 causes a transient upregulation of fgf8a expression after mid-blastula transition, providing a mechanism for delayed activation of bmp2b in MZspg embryos. Overexpression of the Pou5f1-En repressor induces fgf8, suggesting an indirect mechanism of Pou5f1 control of fgf8a expression. Transcription of vox is strongly activated by Pou5f1-VP16 even when translation of zygotically expressed transcripts is experimentally inhibited by cycloheximide. In contrast, bmp2b and bmp4 are not activated under these conditions. We show that Pou5f1 binds to phylogenetically conserved Oct/Pou5f1 sites in the vox promoter, both in vivo (ChIP) and in vitro. Our data reveals a set of direct and indirect interactions of Pou5f1 with the BMP dorsoventral patterning network that serve to fine-tune dorsoventral patterning mechanisms and coordinate patterning with developmental timing.
Collapse
Affiliation(s)
- Heinz-Georg Belting
- Developmental Biology, Faculty of Biology, University of Freiburg, Hauptstrasse 1, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Kozmikova I, Smolikova J, Vlcek C, Kozmik Z. Conservation and diversification of an ancestral chordate gene regulatory network for dorsoventral patterning. PLoS One 2011; 6:e14650. [PMID: 21304903 PMCID: PMC3033397 DOI: 10.1371/journal.pone.0014650] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 01/04/2011] [Indexed: 12/24/2022] Open
Abstract
Formation of a dorsoventral axis is a key event in the early development of most animal embryos. It is well established that bone morphogenetic proteins (Bmps) and Wnts are key mediators of dorsoventral patterning in vertebrates. In the cephalochordate amphioxus, genes encoding Bmps and transcription factors downstream of Bmp signaling such as Vent are expressed in patterns reminiscent of those of their vertebrate orthologues. However, the key question is whether the conservation of expression patterns of network constituents implies conservation of functional network interactions, and if so, how an increased functional complexity can evolve. Using heterologous systems, namely by reporter gene assays in mammalian cell lines and by transgenesis in medaka fish, we have compared the gene regulatory network implicated in dorsoventral patterning of the basal chordate amphioxus and vertebrates. We found that Bmp but not canonical Wnt signaling regulates promoters of genes encoding homeodomain proteins AmphiVent1 and AmphiVent2. Furthermore, AmphiVent1 and AmphiVent2 promoters appear to be correctly regulated in the context of a vertebrate embryo. Finally, we show that AmphiVent1 is able to directly repress promoters of AmphiGoosecoid and AmphiChordin genes. Repression of genes encoding dorsal-specific signaling molecule Chordin and transcription factor Goosecoid by Xenopus and zebrafish Vent genes represents a key regulatory interaction during vertebrate axis formation. Our data indicate high evolutionary conservation of a core Bmp-triggered gene regulatory network for dorsoventral patterning in chordates and suggest that co-option of the canonical Wnt signaling pathway for dorsoventral patterning in vertebrates represents one of the innovations through which an increased morphological complexity of vertebrate embryo is achieved.
Collapse
|
35
|
Seebald JL, Szeto DP. Zebrafish eve1 regulates the lateral and ventral fates of mesodermal progenitor cells at the onset of gastrulation. Dev Biol 2011; 349:78-89. [DOI: 10.1016/j.ydbio.2010.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 10/01/2010] [Accepted: 10/05/2010] [Indexed: 12/13/2022]
|
36
|
Goessling W, North TE. Hematopoietic stem cell development: using the zebrafish to identify the signaling networks and physical forces regulating hematopoiesis. Methods Cell Biol 2011; 105:117-36. [PMID: 21951528 DOI: 10.1016/b978-0-12-381320-6.00005-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cells (HSC) form the basis of the hematopoietic hierarchy, giving rise to each of the blood lineages found throughout the lifetime of the organism. The genetic programs regulating HSC development are highly conserved between vertebrate species. The zebrafish has proven to be an excellent model for discovering and characterizing the signaling networks and physical forces regulating vertebrate hematopoietic development.
Collapse
Affiliation(s)
- Wolfram Goessling
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
37
|
Ro H, Dawid IB. Lnx-2b restricts gsc expression to the dorsal mesoderm by limiting Nodal and Bozozok activity. Biochem Biophys Res Commun 2010; 402:626-30. [PMID: 20971071 DOI: 10.1016/j.bbrc.2010.10.070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 10/17/2010] [Indexed: 11/18/2022]
Abstract
Coordinated Nodal-related signals and Bozozok (Boz) activity are critical for the initial specification of dorsal mesoderm and anterior neuroectoderm during zebrafish embryogenesis. Overexpression of Boz expands gsc expression into the ventro-lateral marginal blastomeres where Nodal signaling is active, but is insufficient to induce ectopic gsc expression in the animal region. We found that overexpression of Boz together with depletion of Lnx-2b (previously named Lnx-like, Lnx-l), but not each manipulation alone, causes robust gsc expression in all blastomeres. Furthermore, nodal-related signals are required for gsc expression in embryos with elevated Boz activity. Through targeted injection into single cells at the 128-cell stage we illustrate the role of maternally deposited Lnx-2b to restrict the expansion of gsc expression into the presumptive ectodermal region. This report provides a novel mechanism for limiting dorsal organizer specification to a defined region of the early zebrafish embryo.
Collapse
Affiliation(s)
- Hyunju Ro
- Laboratory of Molecular Genetics, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
38
|
Baker KD, Ramel MC, Lekven AC. A direct role for Wnt8 in ventrolateral mesoderm patterning. Dev Dyn 2010; 239:2828-36. [DOI: 10.1002/dvdy.22419] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
39
|
Caveolin-1 regulates dorsoventral patterning through direct interaction with β-catenin in zebrafish. Dev Biol 2010; 344:210-23. [DOI: 10.1016/j.ydbio.2010.04.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 01/22/2023]
|
40
|
Organizer restriction through modulation of Bozozok stability by the E3 ubiquitin ligase Lnx-like. Nat Cell Biol 2009; 11:1121-7. [PMID: 19668196 PMCID: PMC2759713 DOI: 10.1038/ncb1926] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 05/20/2009] [Indexed: 12/18/2022]
Abstract
The organizer anchors the primary embryonic axis, and balance between dorsal (organizer) and ventral domains is fundamental to body patterning. LNX (ligand of Numb protein-X) is a RING finger and four PDZ domain-containing E3 ubiquitin ligase. LNX serves as a binding platform and may have a role in cell fate determination, but its in vivo functions are unknown. Here we show that Lnx-l (Lnx-like) functions as a critical regulator of dorso-ventral axis formation in zebrafish. Depletion of Lnx-l using specific antisense morpholinos (MOs) caused strong embryonic dorsalization. We identified Bozozok (Boz, also known as Dharma or Nieuwkoid) as a binding partner and substrate of Lnx-l. Boz is a homeodomain-containing transcriptional repressor induced by canonical Wnt signalling that is critical for dorsal organizer formation. Lnx-l induced K48-linked polyubiquitylation of Boz, leading to its proteasomal degradation in human 293T cells and in zebrafish embryos. Dorsalization induced by Boz overexpression was suppressed by raising the level of Lnx-l, but Lnx-l failed to counteract dorsalization caused by mutant Boz lacking a critical motif for Lnx-l binding. Furthermore, dorsalization induced by depletion of Lnx-l was alleviated by attenuation of Boz expression. We conclude that Lnx-l modulates Boz activity to prevent the invasion of ventral regions of the embryo by organizer tissue. These studies introduce a ubiquitin ligase, Lnx-l, as a balancing modulator of axial patterning in the zebrafish embryo.
Collapse
|
41
|
Pshennikova ES, Voronina AS. Detection of the Xvent-2 transcription factor in early development of Xenopus laevis. Mol Biol 2008. [DOI: 10.1134/s0026893308060101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Alpha2 macroglobulin-like is essential for liver development in zebrafish. PLoS One 2008; 3:e3736. [PMID: 19011686 PMCID: PMC2581608 DOI: 10.1371/journal.pone.0003736] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 10/19/2008] [Indexed: 12/20/2022] Open
Abstract
Background Alpha 2 Macroglobulin family members have been studied extensively with respect to their roles in physiology and human disease including innate immunity and Alzheimer's disease, but little is known about a possible role in liver development loss-of-function in model systems. Principal Findings We report the isolation of the zebrafish α2 macroglobulin-like (A2ML) gene and its specific expression in the liver during differentiation. Morpholino-based knock-down of A2ML did not block the initial formation of the liver primordium, but inhibited liver growth and differentiation. Significance This report on A2ML function in zebrafish development provides the first evidence for a specific role of an A2M family gene in liver formation during early embryogenesis in a vertebrate.
Collapse
|
43
|
Esterberg R, Fritz A. dlx3b/4b are required for the formation of the preplacodal region and otic placode through local modulation of BMP activity. Dev Biol 2008; 325:189-99. [PMID: 19007769 DOI: 10.1016/j.ydbio.2008.10.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 09/19/2008] [Accepted: 10/13/2008] [Indexed: 12/20/2022]
Abstract
The vertebrate inner ear arises from the otic placode, a transient thickening of ectodermal epithelium adjacent to neural crest domains in the presumptive head. During late gastrulation, cells fated to comprise the inner ear are part of a domain in cranial ectoderm that contain precursors of all sensory placodes, termed the preplacodal region (PPR). The combination of low levels of BMP activity coupled with high levels of FGF signaling are required to establish the PPR through induction of members of the six/eya/dach, iro, and dlx families of transcription factors. The zebrafish dlx3b/4b transcription factors are expressed at the neural plate border where they play partially redundant roles in the specification of the PPR, otic and olfactory placodes. We demonstrate that dlx3b/4b assist in establishing the PPR through the transcriptional regulation of the BMP antagonist cv2. Morpholino-mediated knockdown of Dlx3b/4b results in loss of cv2 expression in the PPR and a transient increase in Bmp4 activity that lasts throughout early somitogenesis. Through the cv2-mediated inhibition of BMP activity, dlx3b/4b create an environment where FGF activity is favorable for PPR and otic marker expression. Our results provide insight into the mechanisms of PPR specification as well as the role of dlx3b/4b function in PPR and otic placode induction.
Collapse
|
44
|
Esterberg R, Delalande JM, Fritz A. Tailbud-derived Bmp4 drives proliferation and inhibits maturation of zebrafish chordamesoderm. Development 2008; 135:3891-901. [PMID: 18948415 DOI: 10.1242/dev.029264] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In zebrafish, BMP signaling establishes cell identity along the dorsoventral (DV) axis during gastrulation. Owing to the early requirements of BMP activity in DV patterning, it has been difficult to assign later roles in cell fate specification to specific BMP ligands. In this study, we have taken advantage of two follistatin-like genes (fstl1 and fstl2), as well as a transgenic zebrafish line carrying an inducible truncated form of the BMP-type 1 receptor to study the role of Bmp4 outside of the context of DV specification. Characterization of fstl1/2 suggests that they exert a redundant role as BMP antagonists during late gastrulation, regulating BMP activity in axial mesoderm. Maintenance of appropriate levels of BMP signaling is crucial for the proper development of chordamesoderm, a subset of axial mesoderm that gives rise to the notochord, but not prechordal mesoderm, which gives rise to the prechordal plate. Bmp4 activity in particular is required during a crucial window beginning at late gastrulation and lasting through early somitogenesis to promote chordamesoderm proliferation. In the absence of Bmp4, the notochord precursor pool is depleted, and the notochord differentiates prematurely. Our results illustrate a role for Bmp4 in the proliferation and timely differentiation of axial tissue after DV axis specification.
Collapse
|
45
|
Smith J, Wardle F, Loose M, Stanley E, Patient R. Germ layer induction in ESC--following the vertebrate roadmap. ACTA ACUST UNITED AC 2008; Chapter 1:Unit 1D.1. [PMID: 18785165 DOI: 10.1002/9780470151808.sc01d01s1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Controlled differentiation of pluripotential cells takes place routinely and with great success in developing vertebrate embryos. It therefore makes sense to take note of how this is achieved and use this knowledge to control the differentiation of embryonic stem cells (ESCs). An added advantage is that the differentiated cells resulting from this process in embryos have proven functionality and longevity. This unit reviews what is known about the embryonic signals that drive differentiation in one of the most informative of the vertebrate animal models of development, the amphibian Xenopus laevis. It summarizes their identities and the extent to which their activities are dose-dependent. The unit details what is known about the transcription factor responses to these signals, describing the networks of interactions that they generate. It then discusses the target genes of these transcription factors, the effectors of the differentiated state. Finally, how these same developmental programs operate during germ layer formation in the context of ESC differentiation is summarized.
Collapse
Affiliation(s)
- Jim Smith
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
46
|
Chan TM, Longabaugh W, Bolouri H, Chen HL, Tseng WF, Chao CH, Jang TH, Lin YI, Hung SC, Wang HD, Yuh CH. Developmental gene regulatory networks in the zebrafish embryo. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1789:279-98. [PMID: 18992377 DOI: 10.1016/j.bbagrm.2008.09.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Revised: 08/21/2008] [Accepted: 09/22/2008] [Indexed: 01/12/2023]
Abstract
The genomic developmental program operates mainly through the regulated expression of genes encoding transcription factors and signaling pathways. Complex networks of regulatory genetic interactions control developmental cell specification and fates. Development in the zebrafish, Danio rerio, has been studied extensively and large amounts of experimental data, including information on spatial and temporal gene expression patterns, are available. A wide variety of maternal and zygotic regulatory factors and signaling pathways have been discovered in zebrafish, and these provide a useful starting point for reconstructing the gene regulatory networks (GRNs) underlying development. In this review, we describe in detail the genetic regulatory subcircuits responsible for dorsoanterior-ventroposterior patterning and endoderm formation. We describe a number of regulatory motifs, which appear to act as the functional building blocks of the GRNs. Different positive feedback loops drive the ventral and dorsal specification processes. Mutual exclusivity in dorsal-ventral polarity in zebrafish is governed by intra-cellular cross-inhibiting GRN motifs, including vent/dharma and tll1/chordin. The dorsal-ventral axis seems to be determined by competition between two maternally driven positive-feedback loops (one operating on Dharma, the other on Bmp). This is the first systematic approach aimed at developing an integrated model of the GRNs underlying zebrafish development. Comparison of GRNs' organizational motifs between different species will provide insights into developmental specification and its evolution. The online version of the zebrafish GRNs can be found at http://www.zebrafishGRNs.org.
Collapse
Affiliation(s)
- Tzu-Min Chan
- Division of Molecular and Genomic Medicine, National Health Research Institute, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kishimoto N, Cao Y, Park A, Sun Z. Cystic kidney gene seahorse regulates cilia-mediated processes and Wnt pathways. Dev Cell 2008; 14:954-61. [PMID: 18539122 DOI: 10.1016/j.devcel.2008.03.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 12/24/2007] [Accepted: 03/19/2008] [Indexed: 12/11/2022]
Abstract
Recently the cilium has emerged as an important sensory organelle for a wide range of cell types in vertebrates. However, the signaling cascade that links ciliary signals to cellular events remains poorly understood. Here, we show that the zebrafish cystic kidney gene seahorse is closely associated with ciliary functions: seahorse is required for establishing left-right asymmetry and for preventing kidney cyst formation; seahorse transcript is highly enriched in heavily ciliated tissues; and seahorse genetically interacts with the ciliary gene inversin. Yet seahorse is dispensable for cilia assembly or motility and the Seahorse protein is cytoplasmic. We provide evidence that Seahorse associates with Dishevelled. Finally, we show that seahorse constrains the canonical Wnt pathway and promotes the noncanonical Wnt pathway during gastrulation. Together, these data suggest that Seahorse may provide a link between ciliary signals and Wnt pathways.
Collapse
Affiliation(s)
- Norihito Kishimoto
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, NSB-393, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
48
|
Krens SFG, Corredor-Adámez M, He S, Snaar-Jagalska BE, Spaink HP. ERK1 and ERK2 MAPK are key regulators of distinct gene sets in zebrafish embryogenesis. BMC Genomics 2008; 9:196. [PMID: 18442396 PMCID: PMC2390552 DOI: 10.1186/1471-2164-9-196] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 04/28/2008] [Indexed: 11/20/2022] Open
Abstract
Background The MAPK signaling proteins are involved in many eukaryotic cellular processes and signaling networks. However, specific functions of most of these proteins in vertebrate development remain elusive because of potential redundancies. For instance, the upstream activation pathways for ERK1 and ERK2 are highly similar, and also many of their known downstream targets are common. In contrast, mice and zebrafish studies indicate distinct roles for both ERKs in cellular proliferation, oncogenic transformation and development. A major bottleneck for further studies is that relatively little is known of in vivo downstream signaling specific for these kinases. Results Microarray based gene expression profiling of ERK1 and ERK2 knockdown zebrafish embryos at various stages of early embryogenesis resulted in specific gene expression signature sets that showed pronounced differences in gene ontology analyses. In order to predict functions of these genes, zebrafish specific in silico signaling pathways involved in early embryogenesis were constructed using the GenMAPP program. The obtained transcriptome signatures were analyzed in the BMP, FGF, Nodal and Wnt pathways. Predicted downstream effects of ERK1 and ERK2 knockdown treatments on key pathways responsible for mesendoderm development were confirmed by whole mount in situ hybridization experiments. Conclusion The gene ontology analyses showed that ERK1 and ERK2 target common and distinct gene sets, confirming the difference in knockdown phenotypes and diverse roles for these kinases during embryogenesis. For ERK1 we identified specific genes involved in dorsal-ventral patterning and subsequent embryonic cell migration. For ERK2 we identified genes involved in cell-migration, mesendoderm differentiation and patterning. The specific function of ERK2 in the initiation, maintenance and patterning of mesoderm and endoderm formation was biologically confirmed.
Collapse
Affiliation(s)
- S F Gabby Krens
- Institute of Biology, Leiden University, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
49
|
Varga M, Maegawa S, Bellipanni G, Weinberg ES. Chordin expression, mediated by Nodal and FGF signaling, is restricted by redundant function of two beta-catenins in the zebrafish embryo. Mech Dev 2007; 124:775-91. [PMID: 17686615 PMCID: PMC2156153 DOI: 10.1016/j.mod.2007.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 05/30/2007] [Accepted: 05/31/2007] [Indexed: 12/13/2022]
Abstract
Using embryos transgenic for the TOP-GFP reporter, we show that the two zebrafish beta-catenins have different roles in the organizer and germ-ring regions of the embryo. beta-Catenin-activated transcription in the prospective organizer region specifically requires beta-catenin-2, whereas the ventrolateral domain of activated transcription is abolished only when both beta-catenins are inhibited. chordin expression during zebrafish gastrulation has been previously shown in both axial and paraxial domains, but is excluded from ventrolateral domains. We show that this gene is expressed in paraxial territories adjacent to the domain of ventrolateral beta-catenin-activated transcription, with only slight overlap, consistent with the now well-known inhibitory effects of Wnt8 on dorsal gene expression. Eliminating both Wnt8/beta-catenin signaling and organizer activity by inhibition of expression of the two beta-catenins results in massive ectopic circumferential expression of chordin and later, by formation of a distinctive embryonic phenotype ('ciuffo') that expresses trunk and anterior neural markers with correct relative anteroposterior patterning. We show that chordin expression is required for this neural gene expression. The Nodal gene squint has been shown to be necessary for optimal expression of chordin and is sufficient in some contexts for its expression. However, chordin is not normally expressed in the ventrolateral germ-ring despite robust expression of squint in this domain. We show the ectopic circumferential expression of chordin and other dorsal genes to be completely dependent on Nodal and FGF signaling, and to be independent of a functional organizer. We propose that whereas the axial domain of chordin expression is formed by cells that are derived from the organizer, the paraxial domain is the result of axial-derived anti-Wnt signals, which relieve the repression that otherwise is set by the Wnt8/beta-catenin/vox,vent pathway on latent germ-ring Nodal/FGF-activated expression.
Collapse
Affiliation(s)
| | - Shingo Maegawa
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Eric S. Weinberg
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
50
|
Stickney HL, Imai Y, Draper B, Moens C, Talbot WS. Zebrafish bmp4 functions during late gastrulation to specify ventroposterior cell fates. Dev Biol 2007; 310:71-84. [PMID: 17727832 PMCID: PMC2683675 DOI: 10.1016/j.ydbio.2007.07.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 07/03/2007] [Accepted: 07/19/2007] [Indexed: 11/16/2022]
Abstract
Bone morphogenetic proteins (BMPs) are key mediators of dorsoventral patterning in vertebrates and are required for the induction of ventral fates in fish and frogs. A widely accepted model of dorsoventral patterning postulates that a morphogenetic BMP activity gradient patterns cell fates along the dorsoventral axis. Recent work in zebrafish suggests that the role of BMP signaling changes over time, with BMPs required for global dorsoventral patterning during early gastrulation and for tail patterning during late gastrulation and early somitogenesis. Key questions remain about the late phase, including which BMP ligands are required and how the functions of BMPs differ during the early and late gastrula stages. In a screen for dominant enhancers of mutations in the homeobox genes vox and vent, which function in parallel to bmp signaling, we identified an insertion mutation in bmp4. We then performed a reverse genetic screen to isolate a null allele of bmp4. We report the characterization of these two alleles and demonstrate that BMP4 is required during the later phase of BMP signaling for the specification of ventroposterior cell fates. Our results indicate that different bmp genes are essential at different stages. In addition, we present genetic evidence supporting a role for a morphogenetic BMP gradient in establishing mesodermal fates during the later phase of BMP signaling.
Collapse
Affiliation(s)
- Heather L Stickney
- Stanford University School of Medicine, Department of Developmental Biology, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|