1
|
Amourda C, Saunders TE. Gene expression boundary scaling and organ size regulation in the Drosophila embryo. Dev Growth Differ 2017; 59:21-32. [PMID: 28093727 DOI: 10.1111/dgd.12333] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 12/21/2022]
Abstract
How the shape and size of tissues and organs is regulated during development is a major question in developmental biology. Such regulation relies upon both intrinsic cues (such as signaling networks) and extrinsic inputs (such as from neighboring tissues). Here, we focus on pattern formation and organ development during Drosophila embryogenesis. In particular, we outline the importance of both biochemical and mechanical tissue-tissue interactions in size regulation. We describe how the Drosophila embryo can potentially provide novel insights into how shape and size are regulated during development. We focus on gene expression boundary scaling in the early embryo and how size is regulated in three organs (hindgut, trachea, and ventral nerve cord) later in development, with particular focus on the role of tissue-tissue interactions. Overall, we demonstrate that Drosophila embryogenesis provides a suitable model system for studying spatial and temporal scaling and size control in vivo.
Collapse
Affiliation(s)
- Christopher Amourda
- Mechanobiology Institute, National University of Singapore, T-Lab, #10-01, 5A Engineering Drive 1, 117411, Singapore
| | - Timothy E Saunders
- Mechanobiology Institute, National University of Singapore, T-Lab, #10-01, 5A Engineering Drive 1, 117411, Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore.,Institute Of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|
2
|
Wang Y, Cruz T, Irion U, Moussian B. Differentiated muscles are mandatory for gas-filling of the Drosophila airway system. Biol Open 2015; 4:1753-61. [PMID: 26621831 PMCID: PMC4736026 DOI: 10.1242/bio.013086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
At the end of development, organs acquire functionality, thereby ensuring autonomy of an organism when it separates from its mother or a protective egg. In insects, respiratory competence starts when the tracheal system fills with gas just before hatching of the juvenile animal. Cellular and molecular mechanisms of this process are not fully understood. Analyses of the phenotype of Drosophila embryos with malformed muscles revealed that they fail to gas-fill their tracheal system. Indeed, we show that major regulators of muscle formation like Lame duck and Blown fuse are important, while factors involved in the development of subsets of muscles including cardiac and visceral muscles are dispensable for this process, suggesting that somatic muscles (or parts of them) are essential to enable tracheal terminal differentiation. Based on our phenotypic data, we assume that somatic muscle defect severity correlates with the penetrance of the gas-filling phenotype. This argues that a limiting molecular or mechanical muscle-borne signal tunes tracheal differentiation. We think that in analogy to the function of smooth muscles in vertebrate lungs, a balance of physical forces between muscles and the elasticity of tracheal walls may be decisive for tracheal terminal differentiation in Drosophila. Summary: During embryogenesis in Drosophila melanogaster, without involving the nervous system, somatic muscles control terminal differentiation of the airway system by stimulating gas-filling before hatching.
Collapse
Affiliation(s)
- Yiwen Wang
- Animal Genetics, Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, Tübingen 72076, Germany
| | - Tina Cruz
- Animal Genetics, Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, Tübingen 72076, Germany
| | - Uwe Irion
- Department of Genetics, Max-Planck Institute for Developmental Biology, Spemannstr. 35, Tübingen 72076, Germany
| | - Bernard Moussian
- Institute of Biology Valrose, University of Nice, Parc Valrose, Nice 06108, France Applied Zoology, Department of Biology, Technische Universität Dresden, Zellescher Weg 20b, Dresden D-01217, Germany
| |
Collapse
|
3
|
Araújo SJ. The Hedgehog Signalling Pathway in Cell Migration and Guidance: What We Have Learned from Drosophila melanogaster. Cancers (Basel) 2015; 7:2012-22. [PMID: 26445062 PMCID: PMC4695873 DOI: 10.3390/cancers7040873] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/23/2015] [Accepted: 09/28/2015] [Indexed: 01/20/2023] Open
Abstract
Cell migration and guidance are complex processes required for morphogenesis, the formation of tumor metastases, and the progression of human cancer. During migration, guidance molecules induce cell directionality and movement through complex intracellular mechanisms. Expression of these molecules has to be tightly regulated and their signals properly interpreted by the receiving cells so as to ensure correct navigation. This molecular control is fundamental for both normal morphogenesis and human disease. The Hedgehog (Hh) signaling pathway is evolutionarily conserved and known to be crucial for normal cellular growth and differentiation throughout the animal kingdom. The relevance of Hh signaling for human disease is emphasized by its activation in many cancers. Here, I review the current knowledge regarding the involvement of the Hh pathway in cell migration and guidance during Drosophila development and discuss its implications for human cancer origin and progression.
Collapse
Affiliation(s)
- Sofia J Araújo
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Cientific de Barcelona, C. Baldiri Reixac 10,08028 Barcelona, Spain.
| |
Collapse
|
4
|
Sharma R, Beer K, Iwanov K, Schmöhl F, Beckmann PI, Schröder R. The single fgf receptor gene in the beetle Tribolium castaneum codes for two isoforms that integrate FGF8- and Branchless-dependent signals. Dev Biol 2015; 402:264-75. [PMID: 25864412 DOI: 10.1016/j.ydbio.2015.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 11/16/2022]
Abstract
The precise regulation of cell-cell communication by numerous signal-transduction pathways is fundamental for many different processes during embryonic development. One important signalling pathway is the evolutionary conserved fibroblast-growth-factor (FGF)-pathway that controls processes like cell migration, axis specification and mesoderm formation in vertebrate and invertebrate animals. In the model insect Drosophila, the FGF ligand / receptor combinations of FGF8 (Pyramus and Thisbe) / Heartless (Htl) and Branchless (Bnl) / Breathless (Btl) are required for the migration of mesodermal cells and for the formation of the tracheal network respectively with both the receptors functioning independently of each other. However, only a single fgf-receptor gene (Tc-fgfr) has been identified in the genome of the beetle Tribolium. We therefore asked whether both the ligands Fgf8 and Bnl could transduce their signal through a common FGF-receptor in Tribolium. Indeed, we found that the function of the single Tc-fgfr gene is essential for mesoderm differentiation as well as for the formation of the tracheal network during early development. Ligand specific RNAi for Tc-fgf8 and Tc-bnl resulted in two distinct non-overlapping phenotypes of impaired mesoderm differentiation and abnormal formation of the tracheal network in Tc-fgf8- and Tc-bnl(RNAi) embryos respectively. We further show that the single Tc-fgfr gene encodes at least two different receptor isoforms that are generated through alternative splicing. We in addition demonstrate through exon-specific RNAi their distinct tissue-specific functions. Finally, we discuss the structure of the fgf-receptor gene from an evolutionary perspective.
Collapse
Affiliation(s)
- Rahul Sharma
- University of Rostock, Biological Sciences, Department of Genetics, Albert-Einsteinstr. 3, 18059 Rostock, Germany
| | - Katharina Beer
- University of Rostock, Biological Sciences, Department of Genetics, Albert-Einsteinstr. 3, 18059 Rostock, Germany
| | - Katharina Iwanov
- University of Rostock, Biological Sciences, Department of Genetics, Albert-Einsteinstr. 3, 18059 Rostock, Germany
| | - Felix Schmöhl
- University of Rostock, Biological Sciences, Department of Genetics, Albert-Einsteinstr. 3, 18059 Rostock, Germany
| | - Paula Indigo Beckmann
- University of Rostock, Biological Sciences, Department of Genetics, Albert-Einsteinstr. 3, 18059 Rostock, Germany
| | - Reinhard Schröder
- University of Rostock, Biological Sciences, Department of Genetics, Albert-Einsteinstr. 3, 18059 Rostock, Germany.
| |
Collapse
|
5
|
Bower DV, Lee HK, Lansford R, Zinn K, Warburton D, Fraser SE, Jesudason EC. Airway branching has conserved needs for local parasympathetic innervation but not neurotransmission. BMC Biol 2014; 12:92. [PMID: 25385196 PMCID: PMC4255442 DOI: 10.1186/s12915-014-0092-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 10/20/2014] [Indexed: 11/24/2022] Open
Abstract
Background Parasympathetic signaling has been inferred to regulate epithelial branching as well as organ regeneration and tumor development. However, the relative contribution of local nerve contact versus secreted signals remains unclear. Here, we show a conserved (vertebrates to invertebrates) requirement for intact local nerves in airway branching, persisting even when cholinergic neurotransmission is blocked. Results In the vertebrate lung, deleting enhanced green fluorescent protein (eGFP)-labeled intrinsic neurons using a two-photon laser leaves adjacent cells intact, but abolishes branching. Branching is unaffected by similar laser power delivered to the immediately adjacent non-neural mesodermal tissue, by blocking cholinergic receptors or by blocking synaptic transmission with botulinum toxin A. Because adjacent vasculature and epithelial proliferation also contribute to branching in the vertebrate lung, the direct dependence on nerves for airway branching was tested by deleting neurons in Drosophila embryos. A specific deletion of neurons in the Drosophila embryo by driving cell-autonomous RicinA under the pan-neuronal elav enhancer perturbed Drosophila airway development. This system confirmed that even in the absence of a vasculature or epithelial proliferation, airway branching is still disrupted by neural lesioning. Conclusions Together, this shows that airway morphogenesis requires local innervation in vertebrates and invertebrates, yet neurotransmission is dispensable. The need for innervation persists in the fly, wherein adjacent vasculature and epithelial proliferation are absent. Our novel, targeted laser ablation technique permitted the local function of parasympathetic innervation to be distinguished from neurotransmission. Electronic supplementary material The online version of this article (doi:10.1186/s12915-014-0092-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Danielle V Bower
- Division of Biological Sciences, California Institute of Technology, Pasadena, USA. .,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, USA. .,Biological Imaging Center, California Institute of Technology, 1200 E. California Blvd, MC 139-74, Pasadena, CA, 91125, USA.
| | - Hyung-Kook Lee
- Division of Biological Sciences, California Institute of Technology, Pasadena, USA.
| | - Rusty Lansford
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, USA.
| | - Kai Zinn
- Division of Biological Sciences, California Institute of Technology, Pasadena, USA.
| | - David Warburton
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, USA.
| | - Scott E Fraser
- Division of Biological Sciences, California Institute of Technology, Pasadena, USA. .,Biological Sciences and Biomedical Engineering, University of Southern California, Los Angeles, USA. .,Biological Imaging Center, California Institute of Technology, 1200 E. California Blvd, MC 139-74, Pasadena, CA, 91125, USA.
| | - Edwin C Jesudason
- Division of Biological Sciences, California Institute of Technology, Pasadena, USA. .,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, USA. .,Division of Child Health, University of Liverpool, Liverpool, UK. .,Biological Imaging Center, California Institute of Technology, 1200 E. California Blvd, MC 139-74, Pasadena, CA, 91125, USA.
| |
Collapse
|
6
|
Ochoa-Espinosa A, Affolter M. Branching morphogenesis: from cells to organs and back. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a008243. [PMID: 22798543 DOI: 10.1101/cshperspect.a008243] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Many animal organs, such as the lung, the kidney, the mammary gland, and the vasculature, consist of branched tubular structures that arise through a process known as "branching morphogenesis" that results from the remodeling of epithelial or endothelial sheaths into multicellular tubular networks. In recent years, the combination of molecular biology, forward and reverse genetic approaches, and their complementation by live imaging has started to unravel rules and mechanisms controlling branching processes in animals. Common patterns of branch formation spanning diverse model systems are beginning to emerge that might reflect unifying principles of tubular organ formation.
Collapse
|
7
|
Bitra K, Palli SR. The members of bHLH transcription factor superfamily are required for female reproduction in the red flour beetle, Tribolium castaneum. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1481-9. [PMID: 20223247 PMCID: PMC2916060 DOI: 10.1016/j.jinsphys.2010.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/01/2010] [Accepted: 03/02/2010] [Indexed: 05/24/2023]
Abstract
Proteins containing the basic Helix-Loop-Helix (bHLH) domain function as transcription factors and play important roles during the development of various metazoans including insects, nematodes and vertebrates. Insect genomes contain more than 50 bHLH transcription factors, but the function of only a few of these proteins in regulation of female reproduction is known. Using RNA interference, we have tested knock-down in the expression of genes coding for bHLH transcription factors in newly emerged adult females to determine their function in regulation of female reproduction in the red flour beetle, Tribolium castaneum. Knock-down in the expression of genes coding for four bHLH transcription factors (TcSRC, TcSim1, TcAsh and TcDaughterless) caused mortality in the female beetles. In addition, knocking-down the expression of 16 bHLH genes affected oogenesis and knock-down in the expression of 13 genes affected embryogenesis. Two genes TcSide1 and TcSpineless are required for both oogenesis and embryogenesis. Thus, the data reported here showed that 31 bHLH transcription factors are required for female survival, reproduction and embryogenesis.
Collapse
Affiliation(s)
| | - Subba R. Palli
- Corresponding Author: Phone: 859 257 4962, Fax: 859 323 1120,
| |
Collapse
|
8
|
Caussinus E, Colombelli J, Affolter M. Tip-Cell Migration Controls Stalk-Cell Intercalation during Drosophila Tracheal Tube Elongation. Curr Biol 2008; 18:1727-34. [DOI: 10.1016/j.cub.2008.10.062] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 10/03/2008] [Accepted: 10/17/2008] [Indexed: 01/11/2023]
|
9
|
Casanova J. The emergence of shape: notions from the study of the Drosophila tracheal system. EMBO Rep 2007; 8:335-9. [PMID: 17401407 PMCID: PMC1852757 DOI: 10.1038/sj.embor.7400942] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 02/05/2007] [Indexed: 11/09/2022] Open
Abstract
The generation of bodies and body parts with specific shapes and sizes has been a longstanding issue in biology. Morphogenesis in general and organogenesis in particular are complex events that involve global changes in cell populations in terms of their proliferation, migration, differentiation and shape. Recent studies have begun to address how these synchronized changes are controlled by the genes that specify cell fate and by the ability of cells to respond to extracellular cues. In particular, a notable shift in this research has occurred owing to the ability to address these issues in the context of the whole organism. For such studies, the Drosophila tracheal system has proven to be a particularly appropriate model. Here, my aim is to highlight some ideas that have arisen through our studies, and those from other groups, of Drosophila tracheal development. Rather than providing an objective review of the features of tracheal development, I intend to discuss some selected notions that I think are relevant to the question of shape generation.
Collapse
Affiliation(s)
- Jordi Casanova
- Institut de Biologia Molecular de Barcelona (CSIC), Institut de Recerca Biomèdica, Carrer Josep Samitier 1-5, 08028, Barcelona, Spain.
| |
Collapse
|
10
|
Kerman BE, Cheshire AM, Andrew DJ. From fate to function: the Drosophila trachea and salivary gland as models for tubulogenesis. Differentiation 2006; 74:326-48. [PMID: 16916373 PMCID: PMC2827874 DOI: 10.1111/j.1432-0436.2006.00095.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tube formation is a ubiquitous process required to sustain life in multicellular organisms. The tubular organs of adult mammals include the lungs, vasculature, digestive and excretory systems, as well as secretory organs such as the pancreas, salivary, prostate, and mammary glands. Other tissues, including the embryonic heart and neural tube, have requisite stages of tubular organization early in development. To learn the molecular and cellular basis of how epithelial cells are organized into tubular organs of various shapes and sizes, investigators have focused on the Drosophila trachea and salivary gland as model genetic systems for branched and unbranched tubes, respectively. Both organs begin as polarized epithelial placodes, which through coordinated cell shape changes, cell rearrangement, and cell migration form elongated tubes. Here, we discuss what has been discovered regarding the details of cell fate specification and tube formation in the two organs; these discoveries reveal significant conservation in the cellular and molecular events of tubulogenesis.
Collapse
Affiliation(s)
- Bilal E Kerman
- Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205-2196, USA
| | | | | |
Collapse
|
11
|
Brodu V, Casanova J. The RhoGAP crossveinless-c links trachealess and EGFR signaling to cell shape remodeling in Drosophila tracheal invagination. Genes Dev 2006; 20:1817-28. [PMID: 16818611 PMCID: PMC1522077 DOI: 10.1101/gad.375706] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A major issue in morphogenesis is to understand how the activity of genes specifying cell fate affects cytoskeletal components that modify cell shape and induce cell movements. Here, we approach this question by investigating how a group of cells from an epithelial sheet initiate invagination to ultimately form the Drosophila tracheal tubes. We describe tracheal cell behavior at invagination and show that it is associated with, and requires, a distinct recruitment of Myosin II to the apical surface of cells at the invaginating edge. We show that this process is achieved by the activity of crossveinless-c, a gene coding for a RhoGAP and whose specific transcriptional activation in the tracheal cells is triggered by both the trachealess patterning gene and the EGF Receptor (EGFR) signaling pathway. Our results identify a developmental pathway linking cell fate genes and cell signaling pathways to intracellular modifications during tracheal cell invagination.
Collapse
Affiliation(s)
- Véronique Brodu
- Institut de Biologia Molecular de Barcelona (CSIC) and Institut de Recerca Biomèdica, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | | |
Collapse
|
12
|
Krause C, Wolf C, Hemphälä J, Samakovlis C, Schuh R. Distinct functions of the leucine-rich repeat transmembrane proteins capricious and tartan in the Drosophila tracheal morphogenesis. Dev Biol 2006; 296:253-64. [PMID: 16764850 DOI: 10.1016/j.ydbio.2006.04.462] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 04/24/2006] [Accepted: 04/25/2006] [Indexed: 10/24/2022]
Abstract
A key step in organogenesis of the Drosophila tracheal system is the integration of isolated tracheal metameres into a connected tubular network. The interaction of tracheal cells with surrounding mesodermal cells is crucial in this process. In particular, single mesodermal cells called bridge-cells are essential for the guided outgrowth of dorsal trunk branches to direct formation of the main airway, the dorsal trunk. Here, we present evidence that the two leucine-rich repeat transmembrane proteins Capricious and Tartan contribute differently to the formation of branch interconnections during tracheal development. Capricious is specifically localized on the surface of bridge-cells and facilitates the outgrowing dorsal trunk cells of adjacent metameres toward each other. We show that Capricious requires both extracellular and intracellular domains during tracheal branch outgrowth. In contrast, Tartan is expressed broadly in mesodermal cells and exerts its role in tracheal branch outgrowth through its extracellular domain. We propose that Capricious contributes to the instructive role of bridge-cells whereas Tartan provides permissive substrate for the migrating tracheal cells during the network formation.
Collapse
Affiliation(s)
- Cindy Krause
- Abteilung Molekulare Entwicklungsbiologie, Max-Planck-Institut für biophysikalische Chemie, Am Fassberg, D-37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
13
|
Araújo SJ, Aslam H, Tear G, Casanova J. mummy/cystic encodes an enzyme required for chitin and glycan synthesis, involved in trachea, embryonic cuticle and CNS development--analysis of its role in Drosophila tracheal morphogenesis. Dev Biol 2005; 288:179-93. [PMID: 16277981 DOI: 10.1016/j.ydbio.2005.09.031] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 09/09/2005] [Accepted: 09/11/2005] [Indexed: 11/24/2022]
Abstract
Tracheal and nervous system development are two model systems for the study of organogenesis in Drosophila. In two independent screens, we identified three alleles of a gene involved in tracheal, cuticle and CNS development. Here, we show that these alleles, and the previously identified cystic and mummy, all belong to the same complementation group. These are mutants of a gene encoding the UDP-N-acetylglucosamine diphosphorylase, an enzyme responsible for the production of UDP-N-acetylglucosamine, an important intermediate in chitin and glycan biosynthesis. cyst was originally singled out as a gene required for the regulation of tracheal tube diameter. We characterized the cyst/mmy tracheal phenotype and upon histological examination concluded that mmy mutant embryos lack chitin-containing structures, such as the procuticle at the epidermis and the taenidial folds in the tracheal lumen. While most of their tracheal morphogenesis defects can be attributed to the lack of chitin, when compared to krotzkopf verkehrt (kkv) chitin-synthase mutants, mmy mutants showed a stronger phenotype, suggesting that some of the mmy phenotypes, like the axon guidance defects, are chitin-independent. We discuss the implications of these new data in the mechanism of size control in the Drosophila trachea.
Collapse
Affiliation(s)
- Sofia J Araújo
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Cientific de Barcelona, Carrer Josep Samitier 1-5, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
14
|
Vining MS, Bradley PL, Comeaux CA, Andrew DJ. Organ positioning in Drosophila requires complex tissue-tissue interactions. Dev Biol 2005; 287:19-34. [PMID: 16171793 DOI: 10.1016/j.ydbio.2005.08.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 08/05/2005] [Accepted: 08/09/2005] [Indexed: 12/25/2022]
Abstract
Positioning an organ with respect to other tissues is a complex process necessary for proper anatomical development and organ function. The local environment surrounding an organ can serve both as a substrate for migration and as a source of guidance cues that direct migration. Little is known about the factors guiding Drosophila salivary gland movement or about the contacts the glands establish along their migratory path. Here, we provide a detailed description of the spatial and temporal interactions between the salivary glands and surrounding tissues during embryogenesis. The glands directly contact five other tissues: the visceral mesoderm, gastric caecae, somatic mesoderm, fat body, and central nervous system. Mutational analysis reveals that all of the tissues tested in this study are important for normal salivary gland positioning; proper differentiation of the visceral and somatic mesoderm is necessary for the glands to attain their final correct position. We also provide evidence that the segment-polarity gene, gooseberry (gsb), controls expression of signals from the developing fat body that direct posterior migration of the glands. These data further the understanding of how organ morphology and position are determined by three-dimensional constraints and guidance cues provided by neighboring tissues.
Collapse
Affiliation(s)
- Melissa S Vining
- The Johns Hopkins University School of Medicine, Department of Cell Biology, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
15
|
Abstract
We review insights in signaling pathways controlling cell polarization and cytoskeletal organization during chemotactic movement in Dictyostelium amoebae and neutrophils. We compare and contrast these insights with our current understanding of pathways controlling chemotactic movements in more-complex multicellular developmental contexts.
Collapse
Affiliation(s)
- Markus Affolter
- Department of Cell Biology, Biozentrum University of Basel, Klingelbergstr. 70, CH-4056 Basel, Switzerland
| | | |
Collapse
|
16
|
Kato K, Chihara T, Hayashi S. Hedgehog and Decapentaplegic instruct polarized growth of cell extensions in theDrosophilatrachea. Development 2004; 131:5253-61. [PMID: 15456724 DOI: 10.1242/dev.01404] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The migration of cellular extensions is guided by signals from tissues with which they contact. Many axon guidance molecules regulate growth cone migration by directly regulating actin cytoskeletal dynamics. Secreted morphogens control global patterns of cell fate decisions during organogenesis through transcriptional regulation, and constitute another class of guidance molecules. We have investigated the guidance roles of the morphogens Hedgehog and Decapentaplegic during directed outgrowth of cytoplasmic extensions in the Drosophila trachea. A subset of tracheal terminal cells adheres to the internal surface of the epidermis and elongates cytoplasmic processes called terminal branches. Hedgehog promotes terminal branch spreading and its extension over the posterior compartment of the epidermis. Decapentaplegic,which is expressed at the onset of terminal branching, restricts dorsal extension of the terminal branch and ensures its monopolar growth. Orthogonal expression of Hedgehog and Decapentaplegic in the epidermis instructs monopolar extension of the terminal branch along the posterior compartment,thereby matching the pattern of airway growth with that of the epidermis.
Collapse
Affiliation(s)
- Kagayaki Kato
- Riken Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku Kobe 650-0047, Japan
| | | | | |
Collapse
|
17
|
Petit V, Nussbaumer U, Dossenbach C, Affolter M. Downstream-of-FGFR is a fibroblast growth factor-specific scaffolding protein and recruits Corkscrew upon receptor activation. Mol Cell Biol 2004; 24:3769-81. [PMID: 15082772 PMCID: PMC387756 DOI: 10.1128/mcb.24.9.3769-3781.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fibroblast growth factor (FGF) receptor (FGFR) signaling controls the migration of glial, mesodermal, and tracheal cells in Drosophila melanogaster. Little is known about the molecular events linking receptor activation to cytoskeletal rearrangements during cell migration. We have performed a functional characterization of Downstream-of-FGFR (Dof), a putative adapter protein that acts specifically in FGFR signal transduction in Drosophila. By combining reverse genetic, cell culture, and biochemical approaches, we demonstrate that Dof is a specific substrate for the two Drosophila FGFRs. After defining a minimal Dof rescue protein, we identify two regions important for Dof function in mesodermal and tracheal cell migration. The N-terminal 484 amino acids are strictly required for the interaction of Dof with the FGFRs. Upon receptor activation, tyrosine residue 515 becomes phosphorylated and recruits the phosphatase Corkscrew (Csw). Csw recruitment represents an essential step in FGF-induced cell migration and in the activation of the Ras/MAPK pathway. However, our results also indicate that the activation of Ras is not sufficient to activate the migration machinery in tracheal and mesodermal cells. Additional proteins binding either to the FGFRs, to Dof, or to Csw appear to be crucial for a chemotactic response.
Collapse
Affiliation(s)
- Valérie Petit
- Abteilung Zellbiologie, Biozentrum der Universität Basel, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
18
|
Abstract
Many organs including the mammalian lung and vascular system consist of branched tubular networks that transport essential gases or fluids, but the genetic programs that control the development of these complex three-dimensional structures are not well understood. The Drosophila melanogaster tracheal (respiratory) system is a network of interconnected epithelial tubes that transports oxygen and other gases in the body and provides a paradigm of branching morphogenesis. It develops by sequential sprouting of primary, secondary, and terminal branches from an epithelial sac of approximately 80 cells in each body segment of the embryo. Mapping of the cell movements and shape changes during the sprouting process has revealed that distinct mechanisms of epithelial migration and tube formation are used at each stage of branching. Genetic dissection of the process has identified a general program in which a fibroblast growth factor (FGF) and fibroblast growth factor receptor (FGFR) are used repeatedly to control branch budding and outgrowth. At each stage of branching, the mechanisms controlling FGF expression and the downstream signal transduction pathway change, altering the pattern and structure of the branches that form. During terminal branching, FGF expression is regulated by hypoxia, ensuring that tracheal structure matches cellular oxygen need. A branch diversification program operates in parallel to the general budding program: Regional signals locally modify the general program, conferring specific structural features and other properties on individual branches, such as their substrate outgrowth preferences, differences in tube size and shape, and the ability to fuse to other branches to interconnect the network.
Collapse
Affiliation(s)
- Amin Ghabrial
- Howard Hughes Medical Institute, Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305-5307, USA
| | | | | | | |
Collapse
|
19
|
Hosono C, Takaira K, Matsuda R, Saigo K. Functional subdivision of trunk visceral mesoderm parasegments in Drosophila is required for gut and trachea development. Development 2003; 130:439-49. [PMID: 12490551 DOI: 10.1242/dev.00242] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Drosophila, trunk visceral mesoderm, a derivative of dorsal mesoderm, gives rise to circular visceral muscles. It has been demonstrated that the trunk visceral mesoderm parasegment is subdivided into at least two domains by connectin expression, which is regulated by Hedgehog and Wingless emanating from the ectoderm. We now extend these findings by examining a greater number of visceral mesodermal genes, including hedgehog and branchless. Each visceral mesodermal parasegment appears to be divided into five or six regions, based on differences in expression patterns of these genes. Ectodermal Hedgehog and Wingless differentially regulate the expression of these metameric targets in trunk visceral mesoderm. hedgehog expression in trunk visceral mesoderm is responsible for maintaining its own expression and con expression. hedgehog expressed in visceral mesoderm parasegment 3 may also be required for normal decapentaplegic expression in this region and normal gastric caecum development. branchless expressed in each trunk visceral mesodermal parasegment serves as a guide for the initial budding of tracheal visceral branches. The metameric pattern of trunk visceral mesoderm, organized in response to ectodermal instructive signals, is thus maintained at a later time via autoregulation, is required for midgut morphogenesis and exerts feedback effect on trachea, ectodermal derivatives.
Collapse
Affiliation(s)
- Chie Hosono
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
20
|
Franch-Marro X, Casanova J. spalt-Induced Specification of Distinct Dorsal and Ventral Domains Is Required for Drosophila Tracheal Patterning. Dev Biol 2002. [DOI: 10.1006/dbio.2002.0799] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Wolf C, Gerlach N, Schuh R. Drosophila tracheal system formation involves FGF-dependent cell extensions contacting bridge-cells. EMBO Rep 2002; 3:563-8. [PMID: 12034756 PMCID: PMC1084149 DOI: 10.1093/embo-reports/kvf115] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Development of the ectodermally derived Drosophila tracheal system is based on branch outgrowth and fusion that interconnect metamerically arranged tracheal subunits into a highly stereotyped three-dimensional tubular structure. Recent studies have revealed that this process involves a specialized cell type of mesodermal origin, termed bridge-cell. Single bridge-cells are located between adjacent tracheal subunits and serve as guiding posts for the outgrowing dorsal trunk branches. We show that bridge-cell-approaching tracheal cells form filopodia-like cell extensions, which attach to the bridge-cell surface and are essential for the tracheal subunit interconnection. The results of both dominant-negative and gain-of-function experiments suggest that the formation of cell extensions require Cdc42-mediated Drosophila fibroblast growth factor activity.
Collapse
Affiliation(s)
- Christian Wolf
- Max-Planck-Institut für biophysikalische Chemie, Abt. Molekulare Entwicklungsbiologie, Am Fassberg, D-37077 Göttingen, Germany
| | | | | |
Collapse
|
22
|
Abstract
The Drosophila tracheal system forms by highly stereotyped migration of the tracheal cells, generating an elaborate network of interconnected tubes supplying oxygen to all tissues. A major guiding system in the migration process of all branches is the dynamic and localized expression of Branchless (Bnl), an FGF-like molecule. Bnl triggers the activation of the FGF receptor Breathless (Btl) locally in all tracheal cells. Is this the only guiding cue, or do additional local signals provide distinct inputs to each branch? Several recent papers identify such local signals, relying on contacts with specific cell types and with the matrix encountered by the migrating tracheal branches. In particular, the paper by Boube et al(1) demonstrates a role for PS integrins in promoting migration of a specific tracheal branch.
Collapse
Affiliation(s)
- Dalia Rosin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
23
|
Abstract
We wanted to investigate the relationship between receptor tyrosine kinase (RTK) activated signaling pathways and the induction of cell migration. Using Drosophila tracheal and mesodermal cell migration as model systems, we find that the intracellular domain of the fibroblast growth factor receptors (FGFRs) Breathless (Btl) and Heartless (Htl) can be functionally replaced by the intracellular domains of Torso (Tor) and epidermal growth factor receptor (EGFR). These hybrid receptors can also rescue cell migration in the absence of Downstream of FGFR (Dof), a cytoplasmic protein essential for FGF signaling. These results demonstrate that tracheal and mesodermal cells respond during a specific time window to a receptor tyrosine kinase (RTK) signal with directed migration, independent of the presence or absence of Dof. We discuss our findings in the light of the recent findings that RTKs generate a generic signal that is interpreted in responding cells according to their developmental history.
Collapse
Affiliation(s)
- C Dossenbach
- Abteilung Zellbiologie, Biozentrum der Universität Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | | |
Collapse
|
24
|
Boube M, Martin-Bermudo MD, Brown NH, Casanova J. Specific tracheal migration is mediated by complementary expression of cell surface proteins. Genes Dev 2001; 15:1554-62. [PMID: 11410535 PMCID: PMC312719 DOI: 10.1101/gad.195501] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Migration of the Drosophila tracheal cells relies on cues provided by nearby cells; however, little is known about how these signals specify a migratory path. Here we investigate the role of cell surface proteins in the definition of such a pathway. We have found that the PS1 integrin is required in the tracheal cells of the visceral branch, whereas the PS2 integrin is required in the visceral mesoderm; both integrins are necessary for the spreading of the visceral branch over its substratum. This is the first identification of a cell surface molecule with expression restricted to a subset of tracheal cells that all migrate in a given direction. We have also found that expression of PS1 in the visceral branch is regulated by the genes that direct tracheal cell migration, showing that integrin expression is part of the cell-fate program that they specify. These results support a model in which signal transduction determines the tracheal migratory pathways by regulating the expression of cell surface proteins, which in turn interact with surface molecules on the surrounding cell population.
Collapse
Affiliation(s)
- M Boube
- Institut de Biologia de Biologia Molecular de Barcelona (CSIC), 08034 Barcelona, Spain
| | | | | | | |
Collapse
|